动点问题--圆(含问题详解)初三数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.如图7,梯形中,,,,,,点

为线段上一动点(不与点重合),关于的轴对称图

形为,连接,设,的面积为,

的面积为.

(1)当点落在梯形的中位线上时,求的值;(全等)

(2)试用表示,并写出的取值围;(相似)

(3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)(1)如图1,为梯形的中位线,则,过点作

【答案】解:

于点,则有:

在中,有

在中,

解得:

(2)如图2,交于点,与关于对称,

则有:,

又与关于对称,

(3)如图3,当的外接圆与相切时,则为切点.

的圆心落在的中点,设为

则有,过点作,

连接,得

解得:(舍去)

①②③

3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)

(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等)

(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存

在,请说明理由.(讨论对称轴+全等+相似)

【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,

(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.

【解答】:

证明:(1)如图,连接PM,PN,

∵⊙P与x轴,y轴分别相切于点M和点N,

∴PM⊥MF,PN⊥ON且PM=PN,

∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,

∠NPE=∠MPF=90°﹣∠MPE,

在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),

∴PE=PF,

(2)解:①当t>1时,点E在y轴的负半轴上,如图,

由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,

∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,

∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,

②0<t≤1时,如图2,点E在y轴的正半轴或原点上,

同理可证△PMF≌△PNE,

∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,

∴b+a=1+t+1﹣t=2,

∴b=2﹣a,

(3)如图3,(Ⅰ)当1<t<2时,

∵F(1+t,0),F和F′关于点M对称,

∴F′(1﹣t,0)

∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,

∴Q(1﹣t,0)∴OQ=1﹣t,

由(1)得△PMF≌△PNE [来源:学,科,网]

∴NE=MF=t,∴OE=t﹣1

当△OEQ∽△MPF∴=∴=,

解得,t=,当△OEQ∽△MFP时,∴=,

=,解得,t=,

(Ⅱ)如图4,当t>2时,

∵F(1+t,0),F和F′关于点M对称,

∴F′(1﹣t,0)

∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,

∴Q(1﹣t,0)∴OQ=t﹣1,

由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1

当△OEQ∽△MPF∴=∴=,无解,

当△OEQ∽△MFP时,∴=,=,解得,t=2±,

所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.

【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.

3.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:

方案一:直接锯一个半径最大的圆;

方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;(圆心距+勾股)

方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(相似+设半径)

方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;

(2)通过计算说明方案二和方案三中,哪个圆的半径较大?

(3)在方案四中,设CE=x(0<x<1),圆的半径为y.(分类讨论)

①求y关于x的函数解析式;

②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.

【考点】:圆的综合题

【分析】:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.

(2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似

中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所

求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E

为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN

后对应边成比例整理方程,进而可求r的值.

(3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然

方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨

度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平

方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别

讨论结论.

②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另

与前三方案比较,即得最终结论.

【解答】:解:(1)方案一中的最大半径为1.

相关文档
最新文档