matlab中插值拟合与查表

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB中的插值、拟合与查表

插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:

1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:

1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。

2.2.1 插值命令

命令1 interp1

功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。

格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。

yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。

yi = interp1(x,Y,xi,method) %用指定的算法计算插值:

’nearest’:最近邻点插值,直接完成计算;

’linear’:线性插值(缺省方式),直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline用它们执行三次样条函数插值;

’pchip’:分段三次Hermite插值。对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。该方法保留单调性与数据的外形;

’cubic’:与’pchip’操作相同;

’v5cubic’:在MATLAB 5.0中的三次插值。

对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1将对超出的分量执行外插值算法。

yi = interp1(x,Y,xi,method,'extrap') %对于超出x范围的xi中的分量将执行特殊的外插值法extrap。

yi = interp1(x,Y,xi,method,extrapval) %确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。

例2-31

>>x = 0:10; y = x.*sin(x);

>>xx = 0:.25:10; yy = interp1(x,y,xx);

>>plot(x,y,'kd',xx,yy)

例2-32

>> year = 1900:10:2010;

>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 256.344 267.893 ];

>>p1995 = interp1(year,product,1995)

>>x = 1900:1:2010;

>>y = interp1(year,product,x,'pchip');

>>plot(year,product,'o',x,y)

插值结果为:

p1995 =

252.9885

命令2 interp2

功能二维数据内插值(表格查找)

格式 ZI = interp2(X,Y,Z,XI,YI) %返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(Not a Number)。

ZI = interp2(Z,XI,YI) %缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。

ZI = interp2(Z,n) %作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。interp2(Z)等价于interp2(z,1)。

ZI = interp2(X,Y,Z,XI,YI,method) %用指定的算法method计算二维插值:

’linear’:双线性插值算法(缺省算法);

’nearest’:最临近插值;

’spline’:三次样条插值;

’cubic’:双三次插值。

例2-33:

>>[X,Y] = meshgrid(-3:.25:3);

>>Z = peaks(X,Y);

>>[XI,YI] = meshgrid(-3:.125:3);

相关文档
最新文档