矩阵练习(带答案详解)

矩阵练习(带答案详解)
矩阵练习(带答案详解)

一、填空题:

1.若A ,B 为同阶方阵,则22))((B A B A B A -=-+的充分必要条件是

BA

AB =。

2. 若n 阶方阵A ,B ,C 满足I ABC =,I 为n 阶单位矩阵,则1

-C =

AB

3. 设A ,B 都是n 阶可逆矩阵,若???

? ??=00A B C ,则1

-C =

???

? ??--00

11B A 。

4. 设A =?

???

??--1112,则1

-A =???

? ??2111。

5. 设???? ??--=111111A , ???

?

??--=432211B .则=+B A 2???

? ??--731733。

6.设????

?

??=300020001A ,则1

-A =

???????

?

?

?

31000210001

7.设矩阵 1 -1 3 2 0,2 0 10 1A B ????== ? ?

????

,T A 为A 的转置,则B A T

=????

?

??-160222.

8. ???

?

?

??=110213021A ,B 为秩等于2的三阶方阵,则AB 的秩等于 2 .

二、判断题(每小题2分,共12分)

1. 设B A 、均为n 阶方阵,则 k k k B A AB =)((k 为正整数)。……………( × )

2. 设,,A B C 为n 阶方阵,若ABC I =,则111

C B A ---=。……………………………( × )

3. 设B A 、为n 阶方阵,若AB 不可逆,则,A B 都不可逆。……………………… ( × )

4. 设B A 、为n 阶方阵,且0AB =,其中0A ≠,则0B =。……………………… ( × )

5. 设C B A 、、都是n 阶矩阵,且I CA I AB ==,,则C B =。……………………( √ )

6. 若A 是n 阶对角矩阵,B 为n 阶矩阵,且AC AB =,则B 也是n 阶对角矩阵。…( × )

7. 两个矩阵A 与B ,如果秩(A )等于秩(B ),那么A 与B 等价。 …………( × )

8. 矩阵A 的秩与它的转置矩阵T

A 的秩相等。 ……………………………………( √ )

三、选择题(每小题3分,共12分)

1.设A 为3×4矩阵,若矩阵A 的秩为2,则矩阵T

A 3的秩等于(

B )

(A) 1 (B) 2 (C) 3 (D) 4

2.假定A 、B 、C 为n 阶方阵,关于矩阵乘法,下述哪一个是错误的 ( C ) (A ))(BC A ABC = (B ))(kB A kAB = (C )BA AB = (D )CB CA B A C +=+)(

3. 已知B A 、为n 阶方阵,则下列性质不正确的是( A )

(A) BA AB = (B) )()(BC A C AB =

(C) BC AC C B A +=+)( (D) CB CA B A C +=+)( 4. 设I PAQ =,其中P 、Q 、A 都是n 阶方阵,则( D )

(A )111

---=Q P A (B )111---=P Q A

(C )PQ A

=-1

(D )QP A =-1

5. 设n 阶方阵A ,如果与所有的n 阶方阵B 都可以交换,即BA AB =,那么A 必定是( B )

(A )可逆矩阵 (B )数量矩阵 (C )单位矩阵 (D )反对称矩阵 6. 两个n 阶初等矩阵的乘积为( C )

(A )初等矩阵 (B )单位矩阵 (C )可逆矩阵 (D )不可逆矩阵

7. 有矩阵

23?A ,32?B ,33?C A )

(A )AC (B )BC (C )ABC (D )C AB -

8. 设A 与B 为矩阵且AC CB =,C 为m n ?的矩阵,则A 与B 分别是什么矩阵( D )

(A) n m m n ?? (B) m n n m ?? (C) n n

m m ?? (D) m m n n ??

9.设A 为n 阶可逆矩阵,则下列不正确的是 ( B )

(A) 1

A -可逆 (B) I A +可逆

(C) 2A -可逆 (D) 2

A 可逆

10.B A ,均n 阶为方阵,下面等式成立的是 ( B ) (A ) BA AB = (B )T T T B A B A +=+)( (C ) 111)(---+=+B A B A (D )111)(---=B A AB 11.设B A ,都是n 阶矩阵,且0=AB ,则下列一定成立的是( C )

(A ) 0=A 或0=B (B )B A ,都不可逆 (C )B A ,中至少有一个不可逆 (D )0=+B A 12.设B A ,是两个n 阶可逆方阵,则()

[

]

1

-T AB 等于( A )

(A )()1

-T

A

()

1

-T B (B) ()1

-T

B

()

1

-T A

(C )()

T

B

1

-T A )(1- (D )()T

B 1-()1

-T A

13.若B A ,都是n 阶方阵,且B A ,都可逆,则下述错误的是( A )

(A )B A +也可逆 (B )AB 也可逆 (C )1

-B

也可逆 (D )1

1--B A 也可逆

14.B A ,为可逆矩阵,则下述不一定可逆的是 ( B ) (A )AB (B )B A + (C )BA (D )BAB

15.设B A ,均为n 阶方阵,下列情况下能推出A 是单位矩阵的是 ( D )

(A )B AB = (B )BA AB =

(C )I AA = (D )I A =-1

16.设B A ,都是n 阶方阵,则下列结论正确的是( D ) (A )若A 和B 都是对称矩阵,则AB 也是对称矩阵 (B )若0≠A 且0≠B ,则0≠AB

(C )若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (D )若AB 是可逆矩阵,则A 和B 都是可逆矩阵

17. 若B A 与均为n 阶非零矩阵,且0=AB ,则( A )

(A )n A R <)( (B )n A R =)( (C )0)(=A R (D )0)(=B R

四、解答题:

1. 给定矩阵??????????-----=443312111A ,??

??

??????=343122321B ,求A B T 及1-A

解:

??

??

?

?????---=??????????-----??????????=6848126594443312111313422321A B T …………………..(5分)

????

???

?

??

-=-212

12

52121211041A ……………………………………………………(5分) 2. 求解矩阵方程=????? ??X 110011101???

?

? ??521234311

解:021

10011

1

01≠= ................................2分

1

110011101-????

?

????????????---=11111111121 .

..........................3分 ????

?

?????-=301222012X ..

........................... 3分

3. 求解矩阵方程B XA =,其中??????????--=011220111A ,??

??

?

?????-=112011111B

解:因为 6-=A 所以A 可逆 ……………….…………………….(2分)

?????

??

?????

????--=-313

13

131********

311

A ………………………(4分) 故

?????

??

?????

????-==-346

53

23131323431

31

1

BA X ……………………………..(4分)

4. 求解下面矩阵方程中的矩阵X :???

?

?

??---=????? ??????? ??021102341010100001100001010X

解:

令???

?

?

??---=????? ??=????? ??=021102341,010100001,100001010C B A ,则B A ,均可逆,且

????

?

??=????? ??=--010100001,10000101011B A

所以????

?

??--==--2014311121

1B C A X

5. 设矩阵???

?

? ??-=321011324A ,求矩阵B ,使其满足矩阵方程B A AB 2+=.

解:B A AB 2+=即A B I A =-)2(..........................2分

而.461351341121011322

)

2(1

1

????

?

??-----=????

? ??--=---I A ...................3分

所以 A I A B 1

--=)2(????

? ??-????? ??-----=321011324461351341 =.9122692683???

?

? ??-----.........................3分

五、证明题

1. 若A 是反对称阵,证明2

A 是对称阵。

证明:因为A 是反对称阵,所以A A T

-= (3分)

22))(()()(A A A A A AA A T T T T =--===,所以2A 为对称阵。

(5分)

2.设矩阵,A B 及A B +都可逆,证明1

1

A B --+也可逆。

证明:因为,A B ,A B +可逆,故11,A B --,1()A B -+存在,.........3分

所以有

()()()()11

1111

111

1

1()()()()A B B A B A A B I B A A A B A A B A A A B A B A A

A A I

-----------++=++=++=++==......4分

故1

1

A B --+可逆,其逆为()

1

B A B A -+....................... 1分

3.已知B A ,为n 阶方阵,且B A B A B B A A +=-==2

2

2

)(,,, 证明:0=+BA AB

证明:B A BA AB B A B A +=--+=-2

2

2

)(……………4分

所以0=+BA AB ……………4分

4.设B A ,为两个n 阶方阵,试证明:2

2))((B A B A B A -=+-的充要条件是BA AB =。

证明:充分性: 因为BA AB =

所以2222))((B A B BA AB A B A B A -=--+=+-……… 4分

必要性:因为22))((B A B A B A -=+-,即2

2

2

2

B A B BA AB A -=--+ 所以BA AB =……… 8分

5. A 是反对称矩阵,B 是对称矩阵,

证明:AB 是反对称矩阵的充要条件是BA AB =。

证明: 充分性:因为A A T -=,B B T

=, BA AB =

所以AB BA A B AB T T T -=-==)(,即AB 是反对称矩阵……… 4分 必要性:因为AB 是反对称矩阵,即AB AB T -=)( 又BA A B AB T T T -==)( 所以BA AB =……… 8分

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

大连理工大学09级矩阵与数值分析试题

大 连 理 工 大 学 课 程 名 称: 矩阵与数值分析 试 卷: 统一 考试类型 闭卷 授课院 (系): 数 学 系 考试日期:2010年1月12日 试卷共 8页 一、 填空与判断题(?或√),每空 2 分,共50分 (1) 已知2009.12a =,2010.01b =分别是按四舍五入原则得到的1x 和2x 近似值,那么,1x a -≤ ; 2x b b -≤ ;12x x ab -≤ 。 (2)[]0,1上权函 数()x x ρ=的正交多项式族中()1x φ= ; ()()1 5 350 x x x φ+=? 。 (3) 已知存在实数R 使曲线2y x =和()2 228y x R +-=相切。求切点横坐标近似值的Newton 迭代公式为 。 (4) 设1221?? ?-??A =,则它的奇异值为 。 (5)若取1101??=????A ,则1 d t e t =?A 。 (6) 若1

(8) 已知0.2510.25??= ?? ?A ,则0k k ∞ ==∑A 。 (9) 设,n ≠∈C s 0则 () 2 T =ss s,s 。 (10) 求解微分方程(0)2u t u u '=-??=?,的Euler 法公式为 ; 绝对稳定区间为 ;改进的Euler 公式为 。 (11) 用A (-2,-3.1)、B (-1,0.9)、C (0,1.0) 、D (1,3.1)、E (2,4.9)拟合一 直线s (x )=a +bx 的法方程组为: 。 (12) 已知多项式()3234321p x x x x =+++,那么求此多项式值的秦九韶算法公为:_ ______。 (13) 给定如下数据表 则均差[1,0,1f -= ,由数据构造出最简插值多项式 ()p x = 。 (14)设???? ? ? ?? +=231311a A ,当a 满足条件 时, A 必有唯一的T LL 分解(其中L 是对角元为正的下三角矩阵)。 (15) 求01)(=--=x e x f x 根的Newton 迭代法至少局部平方收敛 ( ) (16) 若A 为可逆矩阵,则求解A T Ax=b 的Gauss-Seidel 迭代法收敛 ( ) (17) 分段二点三次Hermite 插值多项式∈C 2函数类 ( ) (18) 如果A 为Hermite 矩阵,则A 的奇异值是A 的特征值 ( )

大连理工大学矩阵与数值分析2017年考题

大连理工大学2017年研究生矩阵与数值分析考试 考试日期:2017年6月5日 一、填空题(50分,每空2分) 1.a=0.3000经过四舍五入具有4位有效数字,则 x a a -≤,ln ln x a -≤ 2.已知X=(1,5,12)T ,Y=(1,0,a)T ,则由X 映射到Y 的Householder 矩阵为:,计算||H||2=,cond 2(H)= 3.根据3次样条函数的性质(后面-前面=a (x-x0)3),一个求其中的参数b== 4.2 '3u u t =,写出隐式Euler 格式: 梯形法格式: 5.已知A=XX T ,其中X 为n 维列向量,则||A||2=,||A||F =,矩阵序列的极限:2lim k k A A →∞?? ? ? ?? = 6.A=LU ,其解为x ,写出一步迭代后的改善格式: 7. 531A -?? ? = ? ?-?? ,请问通过幂法与反幂法计算出的特征值分别是, 8.1111A ?? ?= ? ??? ,sin A =,823A A A +-=,At e =,d d At e t =,2 1At e dt ?= 9. ()()()()2 1 2 012f x dx A f A f A f =++?是Newton-cotes 公式,则1 A =,具有代数精度= 10. f(x)=7x 7+6x 6+…+x ,f[20,21,22….,28]= 11. 0.40.200.5A ??= ???,1 k k A ∞=∑= 12.f(0)=1,f(1)=-1,f(2)=1,f(3)=19,请问对该节点进行插值后最高次的系数= 还有2空没有回忆出来,但是比上面题目还简单,因此不用担心。 二、121232352A -?? ?=-- ? ?--??,121b ?? ? = ? ?-?? (1)计算LU 分解 (2)利用LU 求逆矩阵 (3)写出G-S 格式(12分)

矩阵变换及应用开题报告

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号:30 指导教师:裴银淑 2013年12月26日

一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。 2 、本人对以上综述的评价:

矩阵论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4 A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 112211111 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-????????=+==?? ???????? n ∑。 2.设11 22 (1,0),0 a A P P a A E λλ-??===?? ?? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112222 0 0 000 0 0 a λλλλλλ?? ????==?????????????? 1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -??????===?????? --?????? 。 注:2 A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑, 则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约 为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1, 即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位 二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概 率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验 概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷 积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

矩阵与数值分析_大连理工大学2011试卷

2011级工科硕士研究生 《矩阵与数值分析》课程数值实验题目 一、 对于数列1111 1,,, ,,392781 ,有如下两种生成方式 1、首项为01a =,递推公式为11 ,1,2,3 n n a a n -== ; 2、前两项为011 1,3 a a ==,递推公式为1210,2,3,3n n n a a a n --=-= ; 给出利用上述两种递推公式生成的序列的第50项。 二、 利用迭代格式 1 0,1,2,k x k += = 及Aitken 加速后的新迭代格式求方程324100x x +-=在[1, 1.5]内的根 三、解线性方程组 1.分别Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组 12346212425027,208511 3270x x x x -?????? ? ? ? - ? ? ? = ? ? ? -- ? ? ? ???? ?? 迭代法计算停止的条件为:6)() 1(3 110max -+≤≤<-k j k j j x x . 2. 用Gauss 列主元消去法、QR 方法求解如下方程组: 1234221 2141312. 4201123 230x x x x ?????? ? ? ?- ? ? ? = ? ? ? -- ? ? ????? ?? 四、已知一组数据点,编写一程序求解三 次样条插值函数满足

并针对下面一组具体实验数据 求解,其中边界条件为. 五、编写程序构造区间上的以等分结点为插值结点的Newton插值公式,假设结点数为(包括两个端点),给定相应的函数值,插 值区间和等分的份数,该程序能快速计算出相应的插值公式。以 ,为例计算其对应的插值公式,分别取 不同的值并画出原函数的图像以及插值函数的图像,观察当增大 时的逼近效果. 实验须知: (1)所有的数值实验的题目要求用C语言或Matlab编程; (2)实验报告内容应包括问题、程序、计算结果及分析等; (3)12月26日前在本课程网站上提交实验报告; (4)本次实验成绩将占总成绩的10%。 (5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。电子版提交到课程网站ftp://202.118.75.63/中各自老师目录下的homework文件夹内,文件名用学号命名。 《矩阵与数值分析》课程教学组 2011年11月30日

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

大连理工大学矩阵与数值分析上机作业

矩阵与数值分析上机作业 学校:大连理工大学 学院: 班级: 姓名: 学号: 授课老师:

注:编程语言Matlab 程序: Norm.m函数 function s=Norm(x,m) %求向量x的范数 %m取1,2,inf分别表示1,2,无穷范数 n=length(x); s=0; switch m case 1 %1-范数 for i=1:n s=s+abs(x(i)); end case 2 %2-范数 for i=1:n s=s+x(i)^2; end s=sqrt(s); case inf %无穷-范数 s=max(abs(x)); end 计算向量x,y的范数 Test1.m clear all; clc; n1=10;n2=100;n3=1000; x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]'; y1=[1:n1]';y2=[1:n2]';y3=[1:n3]'; disp('n=10时'); disp('x的1-范数:');disp(Norm(x1,1)); disp('x的2-范数:');disp(Norm(x1,2)); disp('x的无穷-范数:');disp(Norm(x1,inf)); disp('y的1-范数:');disp(Norm(y1,1)); disp('y的2-范数:');disp(Norm(y1,2)); disp('y的无穷-范数:');disp(Norm(y1,inf)); disp('n=100时'); disp('x的1-范数:');disp(Norm(x2,1));

disp('x的2-范数:');disp(Norm(x2,2)); disp('x的无穷-范数:');disp(Norm(x2,inf)); disp('y的1-范数:');disp(Norm(y2,1)); disp('y的2-范数:');disp(Norm(y2,2)); disp('y的无穷-范数:');disp(Norm(y2,inf)); disp('n=1000时'); disp('x的1-范数:');disp(Norm(x3,1)); disp('x的2-范数:');disp(Norm(x3,2)); disp('x的无穷-范数:');disp(Norm(x3,inf)); disp('y的1-范数:');disp(Norm(y3,1)); disp('y的2-范数:');disp(Norm(y3,2)); disp('y的无穷-范数:');disp(Norm(y3,inf)); 运行结果: n=10时 x的1-范数:2.9290;x的2-范数:1.2449; x的无穷-范数:1 y的1-范数:55; y的2-范数:19.6214; y的无穷-范数:10 n=100时 x的1-范数:5.1874;x的2-范数: 1.2787; x的无穷-范数:1 y的1-范数:5050; y的2-范数:581.6786; y的无穷-范数:100 n=1000时 x的1-范数:7.4855; x的2-范数:1.2822; x的无穷-范数:1 y的1-范数: 500500; y的2-范数:1.8271e+004;y的无穷-范数:1000 程序 Test2.m clear all; clc; n=100;%区间 h=2*10^(-15)/n;%步长 x=-10^(-15):h:10^(-15); %第一种原函数

大连理工大学矩阵大作业

2013级工科硕士研究生 《矩阵与数值分析》课程数值实验报告 大连理工大学 Dalian University of Technology

一、设 6 2 2 10 1 N N j S j = = - ∑,分别编制从小到大和从大到小的顺序程序分别计算 100001000000 , S S 并指出两种方法计算结果的有效位数。 程序代码: 从小到大: function f=s(N); %定义函数s f=0; %初始值为0 for j=N:-1:3 %j从3到n循环(从小到大) ft=1000000/(j^2-1); %Sj f=f+ft; %SN end 从大到小: function f=s(N); %定义函数s f=0; %初始值为0 for j=N:-1:3 %j从3到n循环(从小到大) ft=1000000/(j^2-1); %Sj f=f+ft; %SN end 执行结果: 从小到大: s(10000) ans = 4.16566671666167e+05 s(1000000) ans =

4.166656666671731e+05 有效数字:16,16 从大到小: s(10000) ans = 4.165666716661668e+05 s(1000000) ans = 4.166656666671667e+05 有效数字:16,16 分析: 小数和大数相加时,按照从大到小的顺序和按照从小到大的顺序得出的结果不同,前者由 于舍入误差的影响而使结果不准确,所以应避免大数吃小数的现象。 二、解线性方程组 1.分别利用Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组Ax b =,其中常向量为()21n -维随机生成的列向量,系数矩阵A 具有如下形式 1111 11 1122n n n n n n n n T I I I A I I T I --------+-?? ?- ?= ? - ? -+? ? , 其中1 211112n T --?? ? - ?= ?- ? -? ? 为1n -阶矩阵,1n I -为1n -阶单位矩阵,迭代法计算停止的条件为:10 12 10k k x x -+-<,给出10,100,1000n =时的不同迭代步数. 程序代码:

上海交大研究生矩阵理论答案

n k r n n 1 2 习题 一 1.( 1)因 cosnx sin nx sin nx cosnx cosx sin x sin x = cosx cos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x ,故由归纳法知 cosnx sin nx A 。 sin nx cosnx ( 2)直接计算得 A 4 E ,故设 n 4 k r (r 0,1,2,3) ,则 A n A 4 k A r ( 1) A , 即 只需算出 A 2, A 3 即可。 0 1 0 1 ( 3 )记 J= ,则 , 1 0 n 1 n 1 2 n 2 n a C n a C n a C n a n C 1 a n 1 C n 1a A n (aE J ) n n C i a i J n i i 0 n n a n 。 C 1a n 1 a n 2. 设 A P 1 a 2 P 1(a 1,0),则由A 2 E 得 a 1时, 1 1 1 1 0 1 2 1 2 1 0 2 不可能。 1 而由 a 1 0时, 2 1 知 1 所以所求矩阵为 PB P 1 , 其中 P 为任意满秩矩阵,而 i i 2 2 2 1 0 1 0 1 0 B 1 , B 2 , B 3 。 0 1 0 1 1 注: A 2 E 无实解, A n E 的讨论雷同。 3. 设 A 为已给矩阵,由条件对任意 n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2 个未知数时线 性方程 AX XA=0 有 n 2 个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵, 1

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

第二章习题及参考解答 注:第27题(2)(3)错(可将“证明”改为证明或否定),第28题可不布置。第50题(含)以后属于附加内容,没有参考解答。 1.证明子空间判别法:设U是线性空间V的一个非空子集.则U是子空间??对任 意λ∈F,α,β∈U,有α+β∈U与λα∈U. 证明:必要性是显然的,下证充分性。设U关于加法“+”与数乘均封闭。则U中加法“+”的结合律与交换律以及数乘与“+”的分配律、1α=α均自动成立,因为U?V.由 于U关于数乘封闭,而0=0α∈U,?α=?1α∈U,因此U是子空间。 2.证明子空间的下述性质。(1)传递性:即若U是V的子空间,W是U的子空间,则W 也是V的子空间; (2)任意多个(可以无限)子空间的交集仍是子空间,且是含于这些子空间的最大子空间; 特别,两个子空间U与W的交U∩W仍是子空间. 证明:(1)由子空间判别法立即可得。 (2)由子空间判别法可知任意多个(可以无限)子空间的交集仍是子空间,且若某个子空 间含于所有这些子空间,则该子空间必然含于这些子空间的交。 3.(1)设V是线性空间,U与W是V的两个子空间.证明: dim(U+W)=(dim U+dim W)?dim(U∩W). (2)设V是有限维线性空间.证明并解释下面的维数公式: dim V=max{m|0=V0?V1?···?V m?1?V m=V,V i是V i+1的真子空间} 证明:(1)设dim U=s,dim W=t,dim(U∩W)=r.任取U∩W的一组基α1,α2,···,αr.由于U∩W是U与W的公共子空间,故U∩W的基是U与W的线性无关的向量组,因此 可以扩充成U或W的基.设 α1,α2,···,αr,βr+1,βr+2,···,βs(0.0.1) 与 α1,α2,···,αr,γr+1,γr+2,···,γt(0.0.2) 分别是U与W的基.我们证明 α1,α2,···,αr,βr+1,βr+2,···,βs,γr+1,γr+2,···,γt(0.0.3) 是U+W的一组基.为此需要证明该向量组线性无关,且U+W的任何向量均可由这些向量 线性表示. 设 k1α1+k2α2+···+k rαr+b r+1βr+1+···+b sβs+c r+1γr+1+···+c tγt=0.(0.0.4) 12

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

大连理工大学矩阵与数值分析大作业题目

2014级工科硕士研究生 《矩阵与数值分析》课程数值实验题目 1. 方程在x=3.0附近有根,试写出其三种不同的等价形式以构成两种不同的迭代格式,再用这两种迭代求根,并绘制误差下降曲线,观察这两种迭代是否收敛及收敛的快慢 2. 用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为 ,并将计算结果与精确解进行比较: (1) (2) 3. 使用带选主元的分解法求解线性方程组,其中,, 当时.对于的情况分别求解. 精确解为.对得到的结果与精确解的差异进行解释. 4. 用4阶Runge-kutta 法求解微分方程 t t t te e t u u u u u 22210 1)(,101)0(,2---+==-=' (1) 令1.0=h ,使用上述程序执行20步,然后令05.0=h ,使用上述程序执行40步 (2) 比较两个近似解与精确解 (3) 当h 减半时,(1)中的最终全局误差是否和预期相符? (4) 在同一坐标系上画出两个近似解与精确解.(提示输出矩阵R 包含近似解的x 和y 坐标,用命令plot(R(:,1),R(:,2))画出相应图形.) 5. 设 为阶的三对角方阵,是一个阶的对称正定矩阵 其中为阶单位矩阵。设为线性方程组的真解,右边的向量由这个真解给出。 (1) 用Cholesky 分解法求解该方程. (2) 用Jacobi 迭代法和Gauss-Seidel 迭代法求解该方程组,误差设为 . 其中取值为4,5,6. 6. 设

考虑空间的一个等距划分,分点为 设为插值于这些等分点上的Lagrange插值多项式。 (1)选择不断增大的分点数目画出原函数与插值多项式在的图像,并 比较分析实验结果。 (2)选择 重复上述的实验看其结果如何 实验须知: (1)所有的数值实验的题目要求用C语言或Matlab编程; (2)实验报告内容应包括问题、程序、计算结果及分析等; (3)考试前提交实验报告; (4)本次实验成绩将占总成绩的10%。 (5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。 《矩阵与数值分析》课程教学组

上海交大研究生矩阵理论答案

|讪 而由a = 0时, 〔0 其中P 为任意满秩矩阵,而 注:A = -E 无实解,A n =E 的讨论雷同。 性方程AX -XA=0有n 2 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵, 习题 -cosnx sin nx[ 1-("因[L sinnxcosnx 丄sin C0SX sin x = COs(n 1)x sin(n 1)x ,故由归纳法知 x cosx f-sin(n 1)x cos(n 1)x A n cosnx sin nx '-sinnx cosnx (2)直接计算得 A 4 - -E ,故设 n =4k r(r =0,1,2,3),则 A n = A 4k A r =(-1)k A r ,即 只需算出A 2, A 3即可。 (3 )记 J= ,则 a n C :a n n i i n _i_ A =(aE J) = 6 C n a J i =0 n 』亠2 n _2 C n a C ;a nJ n a III c :〕 III c^a C : a n 」 n a 2?设 A =P F a 1 -0 /一 2 _ P’yo),则由 A 2 =E 得 冷0 1 〔0 1 一 ,B 2 = 【0 -0] ,艮 0] 。 -1 i 0 -k 0 1 2 _0 所以所求矩阵为PB i P’ , 3?设A 为已给矩阵,由条件对任意 n 阶方阵 X 有AX=XA ,即把X 看作n 个未知数时线

通过直接检验即发现 A 为纯量矩阵。a n ? a n 1 ■ 11( ? = 0 5.先证A 或B 是初等到阵时有 AB *=B *A * ,从而当A 或B 为可逆阵时有 AB 、B *A *。 考虑到初等变换 A 对B 的n 阶子行列式的影响及 A 二A‘即可得前面提到的结果。 下设PAQ = E r 0 ,(这里P , Q 满秩),则由前讨论只需证下式成立即可: 〔0。」 6 .由 r(A)二 r(A —)及 AX 二 0= (AX)—AX = 0,即 AX = 0 与 A —AX = 0 同解,此即所 求证。 7.设其逆为 a j ,则当I 固定时由可逆阵的定义得 n 个方程 .i 1 . 1 2 . 1 n-1 ? a

有限元法理论及应用参考答案

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

矩阵理论试题

矩阵理论2007年考试 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> , 如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323121000a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵. ( ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ) 7、如果12(,,,) T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ) 8、0010140110620 118A ??????=?????? 至少有2个实特征值. ( ) 9、设,n n A C ?∈则矩阵范数m A ∞与向量的1-范数相容. ( ) 10、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||1 1||||1max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==, 1 1100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

相关文档
最新文档