九年级数学上册旋转单元测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 九级数学上册旋转单元测试题
一、选择题:
1、下列交通标志中既是中心对称图形,又是轴对称图形的是()
A. B. C. D.
2、下列图形中,既是轴对称图形又是中心对称图形的有()
A.4个 B.3个 C.2个 D.1个
3、下列图形既是轴对称图形,又是中心对称图形的是
A.B.C. D.
4、点B与点A(﹣2,3)关于原点对称,点B的坐标为()
A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)
5、如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为()
A.30° B.40° C.50° D.60°
6、如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()
A.55° B.65° C.75° D.85°
7、在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )
A.(3,-3)
B.(-3,3)
C.(3,3)或(-3,-3)
D.(3,-3)或(-3,3)
8、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C 的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()
A.70° B.80° C.60° D.50°
9、如图,已知在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130° B.150° C.160° D.170°
10、如图,边长为3的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为()
A. B. C. D.
11、如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()
A.(,) B.(,) C.(,) D.(,4)
12、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:
① AE=CF;②△EFP是等腰直角三角形;③ S四边形AEPF=S△ABC;
④当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),BE+CF=EF,
上述结论中始终正确的有()
A.1个 B.2个 C.3个 D.4个
二、填空题:
13、在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为.
14、已知点P(a-3,2b+4)与点Q(b+5,3a-7)关于原点对称,则a+b= .
15、如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB'C',点C'恰好落在斜边AB上,连接BB',则∠BB'C'=_______.
16、如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD 绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α= .
17、如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为.
18、如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到
线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;
③∠AOB=150°;④四边形AOBO′的面积为6+3;⑤S△AOC+S△AOB=6+.
其中正确的结论是____________
三、作图题:
19、在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+ P C1的最小值为__________.四、解答题:
20、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;
(3)若BC=8,则四边形AECF的面积为.(直接写结果)
21、、如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.求证:
(1)△ADC≌△CEB;
(2)DE=AD+BE.
(3)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.
22、已知,在等边△ABC中,AB=2,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.
(1)判断△BDE的形状;
(2)在图2中补全图形,
①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;
②求∠APC的度数;
(3)点P到BC所在直线的距离的最大值为.(直接填写结果)
23、在数学活动课上,小辉将边长为和3的两个正方形放置在直线l上,如图①,他连接AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?并说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.