旋转编码器与光栅尺说课讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转编码器与光栅尺
旋转编码器与光栅尺
旋转编码器与光栅尺
位置检测装置作为传动控制的重要组成部分,其作用就是检测位移量,并发出反馈信号与控制装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高机械装置的加工精度,必须提高检测元件和检测系统的精度。其中以旋转编码器,光栅尺(线性编码器),旋转变压器,测速发电机等比较普遍,其中编码器是各类机械最常用的检测装置之一,用编码器作为信号检测的方法,已经广泛用于数控机床、纺织机械、冶金机械、石油机械、矿山机械、印刷包装机械、塑料机械、试验机、电梯、伺服电机、航空、仪器仪表等工业自动化领域。编码器种类繁多,不同的行业用户对编码器的参数、规格要求各不相同。
编码器以读出方式来分,有接触式和非接触式两种。接触式采用电刷输出,电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。
编码器以检测原理来分,有光学式、磁式、感应式和电容式。
编码器以测量方式来分,有直线型编码器,角度编码器,旋转编码器。
编码器以信号原理(刻度方法及信号输出形式)来分,有增量型编码器,绝对型编码器和混合式三种。
一、增量型编码器(旋转型)
1、工作原理:
由一个中心有轴的光电码盘,其上有环形通、暗的刻线,当圆盘旋转一个节距时,在发光元件照射下,光敏元件得到A,B信号为具有90度相位差的正弦波,这组信号经放大器放大与整形,得到的输出方波,A相比B相导前90度,其电压幅值一般为5V。设A相导前B相时为正方向旋转,则B相导前A相时即为负方向旋转,利用A相与B相的相位关系可以判别编码器的的正转与反转,C相产生的脉冲为基准脉冲,又称零点脉冲,它是轴旋转一周在固定位置上产生一个脉冲,可获得编码器的零位参考位。AB相脉冲信号经频率—电压变换后,得到与转轴转速成比例的电压信号,便可测得速度值及位移量。
2、增量编码器的分辨率,倍频与细分技术
增量编码器码盘是由很多光栅刻线组成的,有两个(或4个,以后讨论4个光眼的)光眼读取A,B信号的,刻线的密度决定了这个增量型编码器的分辨率,也就是可以分辨读取的最小变化角度值。代表增量编码器的分辨率的参数是PPR,也就是每转脉冲数。
增量编码器的A/B输出的波形一般有两种,一种是有陡直上升沿和陡直下降沿的方波信号,一种是缓慢上升与下降,波形类似正弦曲线的Sin/Cos曲线波形信号输出,A与B相差1/4T周期90度相位,如果A是类正弦Sin曲线,那B就是类余弦Cos曲线。
对于方波信号,A,B两相相差90度相(1/4T),这样,在0度相位角,90度,180度,270度相位角,这四个位置有上升沿和下降沿,这样,实际上在1/4T方波周期就可以有角度变化的判断,这样1/4的T周期就是最小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取角度的变化,这就是方波的四倍频。这种判断,也可以用逻辑来做,0代表低,1代表高,A/B两相在一个周期内变化是0 0,0 1,1 1,1 0 。这种判断不仅可以4倍频,还可以判断旋转方向。
严格地讲,方波最高只能做4倍频,虽然有人用时差法可以分的更细,但那基本不是增量编码器推荐的,更高的分频要用增量脉冲信号是SIN/COS类正余弦的信号来做,后续电路可通过读取波形相位的变化,用模数转换电路来细分,5倍、10倍、20倍,甚至100倍以上,分好后再以方波波形输出(PPR)。分频的倍数实际是有限制的,首先,模数转换有时间响应问题,模数转换的速度与分辨的精确度是一对矛盾,不可能无限细分,分的过细,响应与精准度就有问题;其次,原编码器的刻线精度,输出的类正余弦信号本身一致性、波形完美度是有限的,分的过细,只会把原来码盘的误差暴露得更明显,而带来误差。细分做起来容易,但要做好却很难,其一方面取决于原始码盘的刻线精度与输出波形完美度,另一方面取决于细分电路的响应速度与分辨精准度。例如,德国的工业编码器,推荐的最佳细分是20倍,更高的细分是其推荐的精度更高的角度编码器,但旋转的速度是很低的。
一个增量编码器细分后输出A/B/Z方波的,还可以再次4倍频,但是请注意,细分对于编码器的旋转速度是有要求的,一般都较低。另外,如原始码盘的刻线精度不高、波形不完美,或细分电路本身的限制,细分也许会波形严重失真,大小步,丢步等,选用及使用时需注意。
有些增量编码器,其原始刻线可以是2048线(2的11次方,11位),通过16倍(4位)细分,得到15位PPR ,再次4倍频(2位),得到了17位(Bit)的分辨率,这就是有些日系编码器的17位高位数编码器的得来了,它一般就用“位,Bit”来表达分辨率了。这种日系的编码器在较快速度时,内部仍然要用未细分的低位信号来处理输出的,要不然响应就跟不上了,所以不要被它的“17位”迷惑了。
3、增量式编码器的特点:
增量型编码器的特点是:非接触式的,无摩擦和磨损,体积小,重量轻,机构紧凑,安装方便,维护简单,驱动力矩小,其具有高精度,大量程测量,反应快,数字化输出特点;
增量式编码器非常适合测速度,可无限累加测量。但是存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。
内置电池技术:
有一些编码器以内置电池来避免断电的信号丢失,也有一些编码器以单圈是绝对信号,而多圈圈数信号是内置电池与电路用增量计数的方法来获得,此为伪绝对型编码器,其受电池寿命、电池低温失效、受振电池触点不良等因数影响,而大大降低可靠性。
4、增量型编码器的一般应用:
测速,测转动方向,测移动角度、距离(相对)。
二、绝对型编码器(旋转型)
增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。
比如,打印机扫描仪的定位就用的是增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。