伺服电机讲解
伺服电机知识
伺服电机知识一、伺服电机的原理伺服电机的原理是应用反馈控制的技术来实现对电机的精确控制。
它通过对电机的位置、速度、加速度等参数进行实时监测,并将监测到的数据反馈给控制系统,从而实现对电机的精确控制。
根据反馈控制的原理,伺服电机可以分为位置伺服电机、速度伺服电机和力矩伺服电机等几种类型。
位置伺服电机是利用编码器等装置来实时监测电机的位置,并根据监测到的位置数据来控制电机的运动。
速度伺服电机是利用速度传感器等装置来监测电机的速度,并根据监测到的速度数据来控制电机的转速。
力矩伺服电机是利用力矩传感器等装置来监测电机的扭矩,并根据监测到的扭矩数据来控制电机的扭矩输出。
可以说,伺服电机的原理就是通过反馈控制技术来实现对电机的精确控制,以满足各种不同的运动要求。
二、伺服电机的结构伺服电机的结构主要包括电机本体、编码器、控制器等几个部分。
1. 电机本体:伺服电机的电机本体通常由定子和转子两部分组成。
定子是电机的静止部分,通常由铁芯、线圈等材料组成。
转子是电机的运动部分,通常由永磁体、转子铁芯等材料组成。
电机本体的结构设计直接影响着电机的性能和特性。
2. 编码器:编码器是伺服电机中的一个重要设备,它主要用于监测电机的位置、速度等参数,并将监测到的数据反馈给控制系统。
根据监测的参数不同,编码器可以分为位置编码器、速度编码器等几种类型。
3. 控制器:控制器是伺服电机中的核心部件,它主要用于接收编码器反馈的数据,并根据监测到的数据来控制电机的运动。
控制器的设计和性能直接影响着伺服电机的控制精度和稳定性。
以上是伺服电机的基本结构,不同的应用场合可能会有不同的结构设计。
例如,机器人中的伺服电机通常还会包括减速器、联轴器等辅助部件,以满足机器人对运动精度和可靠性的要求。
三、伺服电机的控制技术伺服电机的控制技术是实现对电机精确控制的关键。
目前,伺服电机的控制技术主要包括位置控制、速度控制和力矩控制等几种类型。
1. 位置控制:位置控制是伺服电机中最基本的控制技术,它主要用于控制电机的位置。
一文看懂伺服电机
一文看懂伺服电机本圈每月组织工厂改善实践活动,征寻合作工厂,有意请与编辑联系伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机的作用是将输入的电压信号(即控制电压)转换成轴上的角位移或角速度输出,在自动控制系统中常作为执行元件,所以伺服电动机又称为执行电动机,其最大特点是:有控制电压时转子立即旋转,无控制电压时转子立即停转。
转轴转向和转速是由控制电压的方向和大小决定的。
伺服电动机分为交流和直流两大类。
一、交流伺服电机1.基本结构交流伺服电机主要由定子和转子构成。
定子铁心通常用硅钢片叠压而成。
定子铁心表面的槽内嵌有两相绕组,其中一相绕组是励磁绕组,另一相绕组是控制绕组,两相绕组在空间位置上互差90°电角度。
工作时励磁绕组f与交流励磁电源相连,控制绕组k加控制信号电2.工作原理交流伺服电机在没有控制电压时,气隙中只有励磁绕组产生的脉动磁场,转子上没有启动转矩而静止不动。
当有控制电压且控制绕组电流和励磁绕组电流不同相时,则在气隙中产生一个旋转磁场并产生电磁转矩,使转子沿旋转磁场的方向旋转。
但是对伺服电动机要求不仅是在控制电压作用下就能启动,且电压消失后电动机应能立即停转。
如果伺服电动机控制电压消失后像一般单相异步电动机那样继续转动,则出现失控现象,我们把这种因失控而自行旋转的现象称为自转。
为消除交流伺服电机的自转现象,必须加大转子电阻r2,这是因为当控制电压消失后,伺服电机处于单相运行状态,若转子电阻很大,使临界转差率sm>1,这时正负序旋转磁场与转子作用所产生的两个转矩特性曲线以及合成转矩特性曲线如图所示。
由图中可看出,合成转矩的方向与电机旋转方向相反,是一个制动转矩,这就保证了当控制电压消失后转子仍转动时,电动机将被迅速制动而停下。
转子电阻加大后,不仅可以消除自转,还具有扩大调速范围、改善调节特性、提高反应速度等优点。
伺服电机概述
伺服电机概述2.1.1 伺服电机的用途与分类伺服电机(又称为执行电机)是一种应用于运动控制系统中的控制电机,它的输出参数,如位置、速度、加速度或转矩是可控的。
伺服电机在自动控制系统中作为执行元件,把输入的电压信号变换成转轴的角位移或角速度输出。
输入的电压信号又称为控制信号或控制电压,改变控制电压可以变更伺服电机的转速及转向。
伺服电机按其使用的电源性质不同,可分为直流伺服电机的交流伺服电机两大类。
交流伺服电机按结构和工作原理的不同,可分为交流异步伺服电机和交流同步伺服电机。
交流异步伺服电机又分为两相交流异步伺服电机和三相交流异步伺服电机,其中两相交流异步伺服电机又分为笼型转子两相伺服电机和空心杯形转子两相伺服电机等。
同步伺服电机又分为永磁式同步电机、磁阻式同步电机和磁滞式同步电机等。
直流伺服电机有传统型和低惯量型两大类。
直流伺服电机按励磁方式可分为永磁式和电磁式两种。
传统式直流伺服电机的结构形式和普通直流电机基本相同,传统式直流伺服电机按励磁方式可分为永磁式和电磁式两种。
常用的低惯量直流伺服电机有以下几种。
①盘形电枢直流伺服电机。
②空心杯形电枢永磁式直流伺服电机。
③无槽电枢直流伺服电机。
随着电子技术的飞速发展,又出现了采用电子器件换向的新型直流伺服电机。
此外,为了适应高精度低速伺服系统的需要,又出现了直流力矩电机。
在某些领域(例如数控机床),已经开始用直线伺服电机。
伺服电机正在向着大容量和微型化方向发展。
伺服电机的种类很多,本章介绍几种常用伺服电机的基本结构、工作原理、控制方式、静态特性和动态特性等。
2.1.2 自动控制系统对伺服电机的基本要求伺服电机的种类虽多,用途也很广泛,但自动控制系统对它们的基本要求可归结为以下几点。
①宽广的调速范围,即要求伺服电机的转速随着控制电压的改变能在宽广的范围内连续调节。
②机械特性和调节特性均为线性。
伺服电机的机械特性是指控制电压一定时,转速随转矩的变化关系;调节特性是指电机转矩一定时,转速随控制电压的变化关系。
伺服电机 基础知识
伺服电机基础知识
伺服电机是一种能够将输入的脉冲信号转换为相应的角位移或线性位移的装置,具有快速响应、精确控制和稳定性高等特点。
以下是伺服电机的基础知识:
1. 工作原理:伺服电机内部通常包括一个电机(如直流或交流电机)和一个编码器。
当输入一个脉冲信号时,电机会产生一定的角位移或线性位移,同时编码器会反馈电机的实际位置。
驱动器根据反馈值与目标值进行比较,调整电机转动的角度或距离,以达到精确控制的目的。
2. 分类:伺服电机主要分为直流伺服电机和交流伺服电机两大类。
此外,根据有无刷之分,直流伺服电机又可以分为有刷伺服电机和无刷伺服电机。
3. 特点:
精确控制:伺服电机能够精确地跟踪和定位目标值,实现高精度的位置和速度控制。
快速响应:伺服电机具有快速的动态响应,能够在短时间内达到设定速度并快速停止。
稳定性高:伺服电机具有较高的稳定性,能够连续工作而不会出现较大的误差。
噪声低:交流伺服电机通常采用无刷设计,运行时噪声较低。
维护方便:伺服电机的结构和维护都比较简单,便于使用和维护。
4. 应用领域:伺服电机广泛应用于各种需要精确控制和快速响应的场合,如数控机床、包装机械、纺织机械、机器人等领域。
5. 选型原则:在选择伺服电机时,需要考虑电机的规格、尺寸、转速、负载等参数,以及实际应用场景和工作环境等因素。
6. 日常维护:为了保持伺服电机的良好性能和使用寿命,需要定期进行清洁和维护,如检查电机表面是否有灰尘、油污等,检查电机的接线是否牢固等。
以上是关于伺服电机的基础知识,如需了解更多信息,建议咨询专业人士。
伺服电机停的时候会冲一下伺服电机中的使能作用讲解
伺服电机停的时候会冲一下伺服电机中的使能作用讲解在了解伺服使能时先简单的了解一下伺服电机的概念一:伺服电机的概念“伺服”的意思就是“奴隶”的意思。
服从控制信号的要求而动作。
在信号来到之前,转子静止不动;信号来到之后,转子立即转动;当信号消失,转子能即时自行停转。
因此而得名——伺服系统。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
二:伺服使能概念伺服使能就是通过给驱动器发信号,让驱动器对电机供电(励磁),也就是接到这个信号后,驱动器的电流环,速度环、位置环(到底是哪些环由驱动器控制模式决定)进入工作状态。
负责控制信号的输入和输出叫做使能,使能通俗点说就是一个“允许”信号,进给使能也就是允许进给的信号,也就是说当进给使能信号有效的时候电机才能转动。
励磁,使能就是励磁,随时准备按你的脉冲或者通信指令运行。
在没使能时电机轴是可以盘着玩的,编码器会正常计数,当一使能,驱动器发出高频丝丝声,这时候轴就不能盘了,说明励磁了,要随时准备干活了。
三:伺服使能的作用如下1)、伺服使能信号输入即进入伺服使能状态(电机通电);2)、伺服使能信号输入后,至少100ms以后再输入指令脉冲;3)、如果伺服使能信号断开,则伺服电机进入不使能状态(没有电流流入电机);4)、伺服使能信号在电源接通约2秒后输入才有效;四:以三菱伺服驱动器为例1)伺服开启SON :SON开启主电路中有电源进入,成为可以运行的状态。
(伺服ON状态)关闭时主电路被切断,伺服电机呈自由状态。
2)实例接线:。
伺服电机详解
固定子
电机结构 转子 :永磁型 定子 :3相
转 矩
電圧
N1
N2
转速
22
永磁交流伺服电机
伺服电机的基本构成方式 各种伺服电机的主要特点,电机框图 伺服电机电磁结构动向,鸣志M3伺服电机
23
伺服电机的基本构成方式
构成方式
直流有刷伺服电机
交流伺服电机
同步伺服电机 (SM)
异步伺服电机 (IM)
SM:synchronous motor IM:induction motor
电刷位置与转矩关系
转矩最大位置
磁钢的磁场
转矩为零位置 磁钢的磁场
电流的磁场
电流的磁场
电刷的设计:保证电流磁场HF的方向与磁钢的磁场成90关系
16
直流的稳态特性
電圧、電流、転速等均不随时间变化时的电机特性
特性方程:
V = Ra I + E
E = Ke ⋅ N
Tem = Kt I
N
=
V Ke
−
R KeKt
26
永磁交流伺服电机的结构
无刷电机加编码器即可构成伺服电机
伺服电机电磁结构最新动向
近年来,行业知名厂家的最新款电机纷纷采用12槽10极结构. 10极结构电机的经纬
2004年东方BX产品化, 是行业最早10极伺服 2011年安川推出SIGAM5 (10极) 2012年松下推出A5(10极) 之后台达,汇川(10极)已有产品 伺服计划2018年量产
35
无控制时的直流电机特性
直流电机框图
Ua(s) +
-
1 La s + Ra
Ia(s)
Td(s)
Tem(s)
伺服电机基础知识
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。
3、PI(比例积分)就是综合P和I的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。。。
4、单独的D(微分)就是根据差值的方向和大小进行调节的,调节器的输出与差值对于时间的导数成正比,微分环节只能起到辅助的调节作用,它可以与其他调节结合成PD和PID调节。。。它的好处是可以根据被调节量(差值)的变化速度来进行调节,而不要等到出现了很大的偏差后才开始动作,其实就是赋予了调节器以某种程度上的预见性,可以增加系统对微小变化的响应特性。。。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
《伺服电机精讲》课件
添加标题
添加标题
添加标题
添加标题
按照功率分类:大功率伺服电机、 小功率伺服电机
按照用途分类:通用伺服电机、 专用伺服电机
应用领域概述
工业自动化:用 于控制机械设备
的运动和位置
机器人技术:用 于控制机器人的
运动和位置
数控机床:用于 控制机床的加工
精度和速度
医疗设备:用于 控制医疗设备的
运动和位置
航空航天:用于 控制航天器的运
06
伺服电机的未来发展
伺服电机的发展趋势
智能化:通过人工智能技术实现伺服电机的自动控制和优化 节能化:提高伺服电机的能效比,降低能耗 微型化:减小伺服电机的体积和重量,提高其便携性和灵活性 集成化:将伺服电机与其他设备集成,提高系统的整体性能和可靠性
ቤተ መጻሕፍቲ ባይዱ
伺服电机的新技术发展
智能化:通过人 工智能技术实现 伺服电机的自动 控制和优化
转速范围:确定电机的转速范围,如低速、 中速、高速等
控制方式:确定电机的控制方式,如开环、 闭环、半闭环等
精度要求:确定电机的精度要求,如位置、 速度、力矩等
环境条件:考虑电机的工作环境,如温度、 湿度、振动等
成本预算:考虑电机的成本预算,选择合 适的品牌和型号
伺服电机的安装与调试
安装步骤:检查电机、安装底座、固定螺丝、连接电缆等 调试步骤:检查电机、设置参数、测试运行、调整参数等 注意事项:确保电机安装牢固、电缆连接正确、参数设置合理等 常见问题:电机无法启动、运行不稳定、噪音过大等及解决方法
伺服电机的维护与保养
清洁保养:定期清洁电机, 保持清洁,避免灰尘、油污 等影响电机性能
定期检查:检查电机的运行 状态,如温度、振动、噪音 等
伺服电机内部结构及其工作原理分解
伺服电机内部结构及其工作原理分解1. 介绍伺服电机伺服电机是一种能够精确控制位置、速度和加速度的电动机。
它通常由电机本体、编码器、减速器和控制器组成。
伺服电机广泛应用于工业自动化、机器人技术、数控机床和航空航天等领域。
2. 伺服电机的内部结构伺服电机的内部结构主要包括电机本体、编码器、减速器和控制器。
2.1 电机本体电机本体是伺服电机的核心部分,它由转子和定子组成。
转子是电机的旋转部分,由永磁体或电磁线圈组成。
定子是电机的固定部分,包含电磁线圈和铁芯。
2.2 编码器编码器是伺服电机的反馈装置,用于测量电机的转动角度和速度,并将这些信息反馈给控制器。
编码器通常由光电传感器和编码盘组成,光电传感器通过检测编码盘上的光栅来确定电机的位置和速度。
2.3 减速器减速器用于降低电机的转速,提高输出扭矩。
它通常由齿轮或带轮组成,通过减小电机转子的转速来增加输出扭矩。
2.4 控制器控制器是伺服电机的大脑,用于接收编码器的反馈信号,并根据设定的控制算法来控制电机的运动。
控制器通常由微处理器、驱动器和功率放大器组成。
3. 伺服电机的工作原理伺服电机的工作原理基于反馈控制系统。
当控制器接收到设定的位置或速度指令时,它会根据编码器的反馈信号来调整电机的转动角度和速度,使其达到设定值。
3.1 位置控制在位置控制模式下,控制器接收到设定的位置指令后,会计算电机的转动角度和速度,并通过驱动器将相应的电流输出到电机的定子线圈上,产生磁场。
这个磁场与电机转子上的永磁体或电磁线圈相互作用,使电机转动到设定的位置。
3.2 速度控制在速度控制模式下,控制器接收到设定的速度指令后,会计算电机的转动角度和速度,并通过驱动器将相应的电流输出到电机的定子线圈上,产生磁场。
这个磁场与电机转子上的永磁体或电磁线圈相互作用,使电机以设定的速度旋转。
3.3 加速度控制在加速度控制模式下,控制器接收到设定的加速度指令后,会计算电机的转动角度、速度和加速度,并通过驱动器将相应的电流输出到电机的定子线圈上,控制电机的加速度。
伺服电机控制程序讲解
伺服电机控制程序讲解摘要:1.伺服电机的概念和原理2.伺服电机控制程序的作用3.伺服电机控制程序的分类4.常见伺服电机控制程序的原理及应用5.伺服电机控制程序的发展趋势正文:伺服电机是一种可以精确控制转速和转矩的电机,其转速和转矩由输入信号控制。
伺服电机广泛应用于各种自动化设备中,如数控机床、机器人、自动化生产线等。
伺服电机控制程序是控制伺服电机运行的核心部分,它可以实现对伺服电机的精确控制,保证设备的稳定性和精度。
一、伺服电机的概念和原理伺服电机是一种闭环控制系统,其工作原理是:通过比较电机的实际转速和目标转速的差值,然后根据这个差值来调整电机的工作状态,从而使电机的转速和转矩达到预定的目标值。
二、伺服电机控制程序的作用伺服电机控制程序的主要作用是控制伺服电机的转速和转矩,使其达到预定的目标值。
它通过接收外部输入信号,然后根据预设的控制算法,生成相应的控制指令,从而控制伺服电机的运行。
三、伺服电机控制程序的分类根据控制方法的不同,伺服电机控制程序可以分为PID 控制、模糊控制、神经网络控制等。
1.PID 控制:PID 控制器是一种线性控制器,其结构简单,参数调节方便,因此在实际应用中得到广泛应用。
2.模糊控制:模糊控制器是一种非线性控制器,其可以根据实际情况进行智能化调整,因此在处理非线性、时变、不确定性系统中具有较好的性能。
3.神经网络控制:神经网络控制器是一种智能控制器,其可以通过学习自适应调整控制参数,因此在处理复杂的非线性系统中具有较好的性能。
四、常见伺服电机控制程序的原理及应用1.PID 控制:PID 控制器通过比例、积分、微分三个环节的组合,可以实现对系统的精确控制。
在伺服电机控制中,PID 控制器可以根据目标转速和转矩值,以及电机的实际转速和转矩值,生成相应的控制指令,从而实现对伺服电机的精确控制。
2.模糊控制:模糊控制器通过将连续的输入值转换为模糊集合,然后根据模糊规则进行推理,最后生成相应的控制指令。
伺服电机概述
伺服电机(Servo Motor)伺服电机定义转速和转矩受输入信号控制,并能快速反应,在自动控制系统中做执行元件的一种补助马达间接变速装置。
特点:控制信号消失,立即停止转动。
伺服电机分类直流伺服电机交流伺服电机直流伺服电机结构和工作原理伺服电机接收到一个脉冲,就会旋转相应的角度;伺服电机本身具备发出脉冲的功能,每旋转一定的角度,都会发出对应数量的脉冲。
通过对比发出和接受的脉冲可以实时控制监控调整伺服电机的转动。
这样,形成了闭环,就能够很精确的控制电机的转动,从而实现精确的定位。
交流伺服电机结构和工作原理内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
伺服电机产品高性能的电伺服系统大多采用永磁同步交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。
典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。
交流伺服系统的加速性能较好,从静止加速到其额定转速需几毫秒,可用于要求快速启停的控制场合。
伺服电机选型计算方法1、确认转速和编码器分辨率。
2、计算电机轴上负载力矩的折算和加减速力矩。
3、计算负载惯量,惯量的匹配。
4、再生电阻的计算和选择。
5、电缆选择。
伺服电机安装使用1、确保在安装和运转时加到伺服电机轴上的径向和轴向负载控制在每种型号的规定值以内。
2、在安装一个刚性联轴器时要格外小心,特别是过度的弯曲负载可能导致轴端和轴承的损坏或磨损。
最好用柔性联轴器,以便使径向负载低于允许值。
3、在安装/拆卸耦合部件到伺服电机轴端时,不要用锤子直接敲打。
4、竭力使轴端对齐到最佳状态(对不好可能导致振动或轴承损坏)。
伺服电机惯量匹配在伺服系统选型和调配过程中,要计算机械系统换算到伺服电机轴的转动惯量,选择合适的型号,调试时设置合适的惯量比参数。
伺服电机(教学版)
1)幅值控制:保持励磁电压的 幅值和相位不变,通过调节控制 电压的大小来调节电机的转速, 而Uc与Uf之间始终保持90度电 角度相位差。当Uc=0时,电机 停转;当控制电压反相时,电机 反转。
交流异步伺服电动机运行时,励磁绕组接至电压值恒定的励磁电源,而控制绕 组所加的控制电压Uc是变化的,一般来说得到的是椭圆形旋转磁场,由此产生 电磁转矩驱动电机旋转。若改变控制电压的大小或改变它相对于励磁电压之间 的相位差,就能改变气隙中旋转磁场的椭圆度,从而改变电磁转矩。
同的驱动方式,即根据电机绕组中的电流波形,把交流永磁伺服电机分为永磁方波伺服 电机和永磁正弦波伺服电机。方波电流驱动的交流伺服电机实际上就是无刷直流电机,
国外一般称为BLDCM。永磁正弦波伺服电机一般称作PMSM。这里主要介绍正弦波电流驱 动的交流伺服电机。
第十八页,共41页。
伺服电动机—4.交流永磁伺服系统
第十三页,共41页。
伺服电动机—3.交流异步伺服电动机
控制方式
4)双相控制:励磁绕 组与控制绕组间的相位 差固定为90度电角度, 而励磁绕组电压的幅值 随控制电压的改变而同 样改变。也就是说,不 论控制电压的大小如何, 伺服电机始终在圆形旋 转磁场下工作,获得的 输出功率和效率最大。
第十四页,共41页。
3)位置伺服:从位置伺服控制的定位要求来看,最好是将位置传感器直接安装在要定位
的机械上,实现全闭环控制,但在实际应用中多采用半闭环控制方式,通过测量电机轴的转角, 来间接测量负载的实际位移,从而实现位置伺服控制。目前应用较为普遍的位置传感器有各类 编码器和旋转变压器。
第二十页,共41页。
伺服电动机—4.交流永磁伺服系统
伺服电动机—3.交流异步伺服电动机
伺服电机知识点
伺服电机知识点伺服电机是一种常见的电动机类型,它具有精准的位置和速度控制能力。
在工业自动化和机器人领域广泛应用。
本文将介绍伺服电机的基本原理、组成结构以及工作过程,帮助读者了解伺服电机的知识点。
一、基本原理伺服电机基于反馈控制原理工作,通过测量电机输出的位置、速度或力矩等参数,并与期望值进行比较,控制电机输出以实现精确的位置和速度控制。
常见的反馈器件有编码器、光电开关和传感器等。
二、组成结构伺服电机由电机本体、减速器、编码器和控制器等组成。
1.电机本体:负责产生力矩和转动运动。
常见的电机类型有直流电机、步进电机和交流伺服电机等。
2.减速器:通常与电机本体相连接,用于降低输出速度并增加输出力矩。
不同应用场景需要不同的减速比。
3.编码器:安装在电机轴上,用于测量电机输出位置或速度。
编码器通常是光电编码器或磁编码器。
4.控制器:负责接收输入信号,处理反馈信号,并输出控制信号驱动电机。
控制器可以是单片机、PLC或专用伺服控制器等。
三、工作过程伺服电机的工作过程可以分为三个步骤:检测、比较和控制。
1.检测:通过编码器等反馈器件测量电机输出位置或速度,并将测量值传递给控制器。
2.比较:控制器将反馈值与期望值进行比较,计算出误差值。
3.控制:根据误差值,控制器输出控制信号调整电机输出,使误差值趋近于零。
控制信号通常是电压或电流信号,通过驱动电机实现位置或速度的调整。
伺服电机常见的应用场景包括机床加工、自动化生产线、机器人等。
伺服电机的优势在于其具有精准的位置和速度控制能力,可以满足高精度的运动要求。
此外,伺服电机还具有高可靠性、高效率和维护方便等优点。
总结:通过对伺服电机的基本原理、组成结构以及工作过程的介绍,我们对伺服电机有了更深入的了解。
伺服电机作为一种常见的电动机类型,广泛应用于工业自动化和机器人领域。
了解伺服电机的知识点,有助于我们更好地应用和理解伺服电机的工作原理和特点。
伺服电机基本知识
伺服电机中文名称:伺服电机英文名称:servo motor 定义:转子转速受输入信号控制,并能快速反应,在自动控制系统中作执行元件,且具有机电时间常数小、线性度高、始动电压所属学科:航空科技(一级学科) ;航空机电系统(二级学科)伺服电机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
伺服电机,可使控制速度,位置精度非常准确。
将电压信号转化为转矩和转速以驱动控制对象一:伺服电机工作原理1.伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
2.交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
3.伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
伺服电机相关知识点总结
伺服电机相关知识点总结一、工作原理1. 构成要素伺服电机主要由电机本体、编码器、控制器和电源组成。
其中电机本体是用来提供驱动力的核心部件,编码器用来测量电机转动的位置和速度,控制器通过对编码器反馈信号的处理和输入信号进行比较计算,控制电机输出所需的位置、速度和力,电源则为整个系统提供电能。
2. 工作原理伺服电机主要通过控制器对电机的输出信号进行监控和调节,使其按照要求的位置、速度和力进行运动。
当接收到输入信号后,控制器会根据编码器反馈的实际状态和输入信号进行计算,然后输出相应的控制信号给电机,以调整电机的转速和转动位置,从而达到控制所需的运动状态。
二、特点1. 高精度伺服电机具有高精度的运动控制能力,可以实现高速运动和高精度的定位。
这使得它在需要精准位置控制的场合下具有重要应用价值,比如数控机床、印刷设备等领域。
2. 高可靠性伺服电机采用闭环控制系统,具有良好的抗干扰能力和自动调节能力,可对系统的参数进行在线调整,能够保证系统在不同负载、速度和环境条件下都能稳定、可靠地工作。
3. 高响应速度伺服电机的响应速度很快,能够在微秒级的时间内对输入信号作出快速准确的反应,因此它适用于需要高速反应的控制系统,比如自动装配线、机器人等。
4. 高功率密度伺服电机的功率密度较高,具有较小的体积和重量,因此适用于限定空间内的应用场合。
5. 多种控制模式伺服电机支持位置控制、速度控制和力控制等多种控制模式,能够满足不同应用场合的需求。
三、应用领域1. 机器人伺服电机在工业机器人、服务机器人和特种机器人等各种类型的机器人中得到广泛应用,用于实现机器人的各种运动功能,如运动控制、夹持操作、轨迹规划等。
2. 自动化装配线伺服电机在汽车工业、电子工业、食品包装等领域的自动化装配线上得到广泛应用,用于控制输送带、机械手、夹具等设备的运动。
3. 数控机床伺服电机在数控机床的主轴、进给系统和切削运动等方面得到广泛应用,能够实现高速、高精度的工件加工。
伺服电机结构及工作原理
伺服电机结构及工作原理伺服电机是一种将电能转换为机械能的电动机,它通过控制电机运转的位置、速度和力矩,实现对机器设备的精密控制。
伺服电机一般由电机本体、编码器、控制器和驱动器组成,下面将详细介绍伺服电机的结构和工作原理。
一、伺服电机的结构伺服电机的结构一般包括电机本体、编码器、控制器和驱动器。
1.电机本体:伺服电机的核心部分是电机本体,它是将电能转换为机械能的关键组件。
根据不同的使用要求,伺服电机的电机本体可能是直流电机、交流电机或步进电机,其中最常用的是直流伺服电机和交流伺服电机。
2.编码器:编码器是伺服电机的反馈装置,用于实时感知电机转动的位置信息。
它可以将电机的转动角度或位置转换为电信号输出给控制器,以实时监测电机的运动状态。
3.控制器:控制器是伺服电机的核心控制部件,负责接收来自编码器的反馈信号,并根据设定的控制算法计算出电机的控制信号。
控制器通常由一个微处理器和相关的电路组成,可以实现复杂的控制算法,并且具备良好的实时性和稳定性。
4.驱动器:驱动器是控制器和电机之间的桥梁,将控制器输出的信号转换为适合电机驱动的电流或电压。
驱动器通常由功率放大电路和保护电路组成,能够根据控制信号的变化来控制电机的运转速度和力矩。
二、伺服电机的工作原理伺服电机的工作原理是通过控制器对电机的控制信号进行调整,实现电机的精确控制。
1.位置控制:伺服电机常用的控制方式之一是位置控制。
在位置控制中,控制器接收编码器的位置反馈信号,并根据设定的目标位置和控制算法计算出电机的控制信号。
驱动器将这个信号转换为适合电机驱动的电流或电压,使电机按设定的位置和速度进行运转。
2.速度控制:伺服电机的另一种常用控制方式是速度控制。
在速度控制中,控制器接收编码器的速度反馈信号,并根据设定的目标速度和控制算法计算出电机的控制信号。
驱动器根据这个信号调整电机的输入电压或电流,使电机保持稳定的运行速度。
3.力矩控制:伺服电机还可以通过力矩控制实现对机械设备的精密控制。
伺服电机 步进电机 通俗讲解
伺服电机和步进电机是现代工业中常见的两种电机类型,它们都有着广泛的应用领域,但是在工作原理、性能特点和适用场景上有着明显的区别。
在本文中,我们将对这两种电机进行通俗易懂的解释,帮助读者更好地理解它们的工作原理和特点。
一、伺服电机1.1 工作原理伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,以实现精准的运动控制。
通常情况下,伺服电机由电机、编码器、控制器和反馈系统等组成。
控制器接收指令并通过反馈系统获取实际运动状态,然后调节电机的输出来实现所需的运动控制。
1.2 特点(1)精准控制:伺服电机能够实现高精度的位置控制和速度控制,广泛应用于需要高精度运动控制的场合。
(2)响应速度快:由于采用了闭环控制系统,伺服电机的响应速度非常快,能够迅速响应外部指令并实现快速准确的运动。
(3)负载能力强:伺服电机能够承受较大的负载,在高速、高精度运动控制的情况下仍能保持稳定的输出。
1.3 应用领域伺服电机广泛应用于数控机床、工业机器人、印刷设备、纺织设备等需要高精度运动控制的领域,以及飞行器、导弹、船舶等需要快速响应和精准控制的领域。
二、步进电机2.1 工作原理步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。
步进电机的步距角和步距数与其结构有关,不同的步进电机有不同的步距角和步距数。
2.2 特点(1)结构简单:步进电机结构相对简单,通常由定子、转子、电磁线圈和控制电路组成,维护和安装相对方便。
(2)定位精度高:步进电机能够实现高精度的位置控制,适用于一些需要精准定位的场合。
(3)低速高扭矩:步进电机在低速情况下能够提供较大的输出扭矩,适合一些需要较大输出扭矩和低速运动的场合。
2.3 应用领域步进电机广泛应用于打印机、数码相机、纺织设备、医疗设备、自动售货机等需要精准定位和低速高扭矩输出的领域。
三、伺服电机和步进电机的比较3.1 工作原理对比伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,实现精准的运动控制;步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。
伺服电机工作原理及特点
伺服电机工作原理及特点伺服电机是一种能够根据控制信号来精确控制转速和位置的电动机。
它在工业自动化、机器人技术、航空航天以及医疗设备等领域有着广泛的应用。
伺服电机具有高精度、高效率、高可靠性等特点,下面将详细介绍伺服电机的工作原理和特点。
一、工作原理伺服电机的工作原理基于反馈控制系统。
它由电动机、编码器、控制器和电源等组成。
电动机是伺服电机的执行部分,负责转动输出。
编码器用于实时检测电机的转动角度和速度,并将反馈信号传输给控制器。
控制器接收编码器的反馈信号,并与输入信号进行比较,根据差异来调整电机的转速和位置。
电源为伺服电机提供电能。
伺服电机的工作过程如下:1. 控制信号输入:控制信号可以是模拟信号或数字信号,用于指示所需的转速和位置。
2. 编码器反馈:编码器实时检测电机的转动角度和速度,并将反馈信号传输给控制器。
3. 控制器处理:控制器接收编码器的反馈信号,并与输入信号进行比较,计算出电机当前的差异。
4. 调整输出:根据差异计算结果,控制器调整电机的转速和位置,使其接近或达到所需的状态。
5. 循环反馈:上述过程不断重复,以保持电机的稳定运行,并实现精确的转速和位置控制。
二、特点1. 高精度:伺服电机具有很高的转速和位置控制精度,一般可以达到0.01°的角度精度和1rpm的转速精度。
这使得伺服电机在需要精确控制的场景中得到广泛应用,例如机床、印刷设备等。
2. 高效率:伺服电机具有高效率的特点,能够在较低功率输入下输出较大的功率,提高能源利用效率。
这对于需要长时间运行或功耗要求较高的设备来说尤为重要。
3. 快速响应:伺服电机具有快速响应的特点,可以在短时间内达到所需的转速和位置。
这使得伺服电机在需要频繁变换工作状态的场景中得到广泛应用,例如机器人、自动化生产线等。
4. 广泛应用:伺服电机具有广泛的应用领域,包括工业自动化、机器人技术、航空航天、医疗设备等。
它可以用于实现精确控制、运动控制、定位控制等功能,满足不同领域的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6场合的应用
7
A
1 概述
1.5伺服电动机典型生产厂家
德国西门子,产品外形有:
伺服电机
伺服电机驱动器
8
A
1 概述
1.5伺服电动机典型生产厂家
美国科尔摩根,产品外形有:
伺服电机
9
伺服电机驱动器
A
1 概述
1.5伺服电动机典型生产厂家
日本松下及安川,产品外形有:
26
A
4.伺服电机的机械特性及控制方式
4.1伺服电机的机械特性
27
A
4.2 零信号时的机械特性和无“自转”现象
对于伺服电动机,还有一条很重要的机械特性,这就是零 信号时的机械特性,所谓零信号,就是控制电压UC=0,这时 磁场是脉振磁场,它可以分解为幅值相等、转向相反的两个圆 形旋转磁场,其作用可以想象为有两对相同大小的磁铁N—S和 N—S在空间以相反方向旋转。
控制绕组
励磁绕组
电气原理图
21
A
3 旋转磁场作用下的运行分析
3.1旋转磁场的产生
同时,又假定通入励磁 绕组的电流Uf与通入控
ic Im sint
if Im sint 90
if Ic
制绕组的电流UC相位上
彼此相差900幅值彼此相
等,这样的两个电流称
为两相对称电流,用数
学式表示为
22
A
3.1旋转磁场的产生
A
2 伺服电机基本结构及原理
2.2 转动原理
18
A
2 三相异步电动机的转动原理 2.2 转动原理
19
A
2 三相异步电动机的转动原理
2.2 转动原理
当磁铁旋转时,在空间形成一个旋转磁场。假设永久磁铁是顺 时纠方向以n0的转速旋转,那末它的磁力线也就以顺时针方向切 割转子导条,在转子导条中就产生感应电势。根据右手定则,N 极下导条的感应电势方向垂直地从纸面出来。而S极下导条的感 应电势方向垂直地进入纸面。由于鼠笼转子的导条都是通过短路 环连接起来的,因此在感应电势的作用下,在转子导条中就会有 电流流过,电流有功分量的方向和感应电势方向相同。再根据通 电导体在磁场中受力原理,转子载流导条又要与磁场相互作用产
6 伺服电机选择及主要性能指标
2
A
目的
了解伺服电机基本结构,掌握其工作原理、运 行特性及其特点、应用场合,以求正确选用和使用 它们。
3
A
1 概述 1.1 什么叫伺服电机
伺服电动机也称为执行电动机,在控制系统 中用作执行元件,将电信号转换为轴上的转角或 转速,以带动控制对象。
伺服电动机分为:
1、交流伺服电动机 2、直流伺服电动机
示的是一台两极的电机,即极对数P=1。对两极电机而言,电
流每变化一个周期,磁场旋转一圈,因而当
电源频率f=400 Hs,即每秒变化400个周期时,磁场每秒应当
转400圈,故对两极电机,即P=1而言,旋转磁场转速为
n0= 24000 r/min
f
60f
旋转磁场转速为的一般表达式为
n0
(r/s) p
(r/min) p
15
电气原理图
A
2 伺服电机基本结构及原理
2、 转子
(1) 笼型转子 铁芯槽内放铜条,端
部用短路环形成一体, 或铸铝形成转子绕组。
转 定子 子
壳体
笼型转子
铸铝的笼型转子
16
A
2 伺服电机基本结构及原理
(2) 杯型转子纲
薄壁园筒形,放于内外定 子之间。一般壁厚为0.3mm
转 定子 子
壳体
杯型转子
17
4
A
1 概述 1.2伺服电机最大特点
在有控制信号输入时,伺服电动机就转动;没 有控制信号输入,它就停止转动。改变控制电压的 大小和相位(或极性)就可改变伺服电动机的转速和 转向。
5
A
1 概述
1.3伺服电机与普通电机相比具有如下特点
(1)调速范围宽广。伺服电动机的转速随着控制电 压改变,能在宽广的范围内连续调节。 (2)转子的惯性小,即能实现迅速启动、停转。 (3)控制功率小,过载能力强,可靠性好。
伺服电机讲解
1
A
内容
由于我们是从事非标自动化设备设计与制造的, 主要是合理地选择和正确使用各种控制电机,因此本 次讲座着重阐述伺服电机的基本结构、工作原理、工 作特性和使用方法。具体内容如下:
1 概述 2 伺服电机基本结构及原理
3 旋转磁场作用下的运行分析
4 伺服电机的机械特性及控制方式
5 交流伺服电机的应用
生电磁力,这个电磁力F作用在转子上,并对转轴形成电磁转矩。
根据左手定则,转矩方向与磁铁转动的方向是一致的,也是顺时 针方向。因此,鼠笼转子便在电磁转矩作用下顺着磁铁旋转的方 向转动起来。
20
A
3 旋转磁场作用下的运行分析 3.1伺服电机旋转磁场的产生
为了分析方便,先假定 励磁绕组有效匝数Uf与 控制绕组有效匝数UC相 等。这种在空间上互差 900电角度,有效匝数又 相等的两个绕组称为对 称两相绕组。
控制绕组 励磁绕组
UF1
UC1
UC2
UF2
当两相对称电流通入两相对称绕组时,在电机内就产生一个旋 转磁场。当电流变化一个周期时23 ,旋转磁场在空间转了一圈。 A
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
24
A
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
25
A
3.3 伺服电机旋转磁场的速度
旋转磁场的转速决定于定子绕组极对数和电源的频率。图所表
2.1 结构
转
子
由定子和转子二
大部分组成
1、定子
由铁心和线圈组成
_
+_
+
e e e e 励磁绕组
控制绕组
+
_+
_
定子 壳体
•U1
U2
励磁电压
•U1
U2
控制电压
14
A
1.2 伺服电机基本结构及原理
1.2.1 结构
由定子和转子二大部分组成
1、定子
由铁心和线圈组成
转定 子子
壳 体
励磁绕组
控制绕组
控制绕组与励磁 绕组相差900
28
A
4.2 零信号时的机械特性和无“自转”现象
29
A
4.2 零信号时的机械特性和无“自转”现象
当电阻已增大到使临界转差率>1的程度时,合成转矩曲线与横 轴相交仅有一点(S=1处),而且在电机运行范围内,合成转矩均
为负值,即为制动转矩。因而当控制电压UC取消变为单相运行时,
电机就立刻产生制动转矩,与负载阻转矩一起促使电机迅速停转,
松下交流伺服电机及驱动器
10
安川伺服电机驱动器
A
2 伺服电机基本结构及原理
驱动器
交流伺服 电机器
交流伺服电机系统
11
A
2 伺服电机基本结构及原理
2.1 结构
交流电机
交流电机 电源线
编码器
12
编码器信 号输出线
A
2 伺服电机基本结构及原理
1.2.1 结构
交流电机
机械负载轴
减速齿轮
13
A
2 伺服电机基本结构及原理