自清洁超疏水涂层的研究
超疏水涂层原理
超疏水涂层原理
超疏水涂层是一种具有特殊表面性质的材料,其表面具有超疏水性,能够抵抗水和其他液体的附着,从而实现自清洁和自润滑的效果。
这种材料可以应用于许多领域,如汽车、电子、建筑、医疗等,具有广泛的应用前景。
超疏水涂层的原理是基于其表面微结构的特殊性质。
超疏水涂层的表面通常由微米级别的尺寸和纳米级别的结构组成,这些结构可以有效地减少液体与表面之间的接触面积,从而使液体在表面上形成球状,类似于荷叶上的水珠。
这种球状液体可以很容易地滑落,从而实现自清洁和自润滑的效果。
超疏水涂层的制备过程通常包括两个步骤:表面修饰和涂层制备。
表面修饰是为了增加表面的微结构和化学反应活性,通常采用等离子体处理、化学修饰和电化学氧化等方法。
涂层制备则是为了将修饰后的表面覆盖一层超疏水材料,通常采用溶液法、电化学沉积、喷涂和离子束沉积等方法。
超疏水涂层的应用非常广泛。
在汽车领域,超疏水涂层可以应用于车身、玻璃、轮毂等部位,可以有效地减少水珠和污垢的附着,从而提高车辆的安全性和运行效率。
在电子领域,超疏水涂层可以应用于电子器件表面,可以防止水和其他液体的进入,从而提高电子器件的稳定性和可靠性。
在建筑领域,超疏水涂层可以应用于建筑
墙面、屋顶和玻璃幕墙等部位,可以有效地防止水和污垢的滞留和污染,从而保持建筑物的美观和清洁。
在医疗领域,超疏水涂层可以应用于医疗器械表面,可以防止细菌和病毒的附着,从而提高医疗器械的安全性和卫生性。
超疏水涂层是一种具有特殊表面性质的材料,其应用领域广泛,具有很高的应用价值。
未来,随着材料科学和技术的不断发展,超疏水涂层的制备技术和应用领域将得到进一步拓展和深化。
超疏水涂层材料的制备及应用研究
超疏水涂层材料的制备及应用研究随着科学技术的不断发展,疏水性材料逐渐成为各个领域的研究热点。
特别是在材料科学和工程领域,疏水性材料的研究与应用受到广泛关注。
超疏水涂层材料是一种疏水性材料,能够在水面形成极为完美的水珠,被广泛用于自清洁、防水、污染防治等领域。
本文将探讨超疏水涂层材料的制备方法和应用研究情况。
一、超疏水涂层材料的制备方法超疏水涂层材料是利用材料表面形态和化学结构对水珠和污染物的吸附性能进行调控,在表面形态和化学结构上进行优化来实现水珠翻滚的目的。
目前较为流行的制备方法主要有以下几种:1.自组装法自组装法是将具有疏水性的有机物分子或金属氧化物纳米粒子通过自组装作用构筑在基底表面上,形成规整、有序排列的纳米结构而实现疏水性材料的制备。
自组装法的优点是制备简单,成本低廉,而且可以通过控制自组装过程来调整材料表面的化学结构和形态,进一步提高其疏水性能,但是,自组装法制备的材料存在稳定性和易剥落的问题。
2.溶胶-凝胶法溶胶-凝胶法是将一种溶胶溶解在一定比例的溶剂中,形成溶液,利用激发剂或热处理等方法将其凝胶化,形成含有大量孔隙和界面的凝胶体。
在凝胶体中加入具有疏水性的有机物分子或金属氧化物纳米粒子,通过热处理或光照等方法形成超疏水涂层材料。
溶胶-凝胶法制备的材料具有高度的疏水性和化学稳定性,在光学和电子器件、油墨、医疗设备等领域有广泛的应用。
3.化学还原法化学还原法是将含有镀银颗粒的材料与还原剂反应,使银颗粒还原成纳米级别的银质,形成一个超疏水的涂层。
化学还原法制备的材料具有很好的化学稳定性和可用性,可以在电子设备、生物医药、防水等领域中得到广泛应用。
二、超疏水涂层材料的应用研究超疏水涂层材料的应用领域非常广泛,下面我们将从自清洁、防水、污染防治等角度来具体探讨其应用研究情况。
1.自清洁超疏水涂层材料能够形成极为完美的水珠,水滴沿材料表面滚落时,可以带走表面的污染物,从而实现自清洁功能。
超疏水涂层材料的自清洁功能在玻璃、建筑材料、塑料等领域得到广泛应用。
具有超疏水性的纳米涂层材料的制备与应用研究
具有超疏水性的纳米涂层材料的制备与应用研究随着科技的飞速发展,纳米技术已经逐渐渗透到各个领域。
其中,具有超疏水性的纳米涂层材料备受关注。
这种材料不仅具有抗水性能,还具备自清洁、抗污渍和抗腐蚀等优异特性,被广泛应用于建筑、汽车、电子等领域。
一、纳米涂层材料的制备方法制备具有超疏水性的纳米涂层材料有多种方法,以下介绍其中两种主要方法。
1. 溶剂法制备溶剂法制备是通过溶剂中的有机小分子与纳米材料产生相互作用,形成一层疏水膜。
这种方法操作简单,成本低廉,常可在常温下完成。
适合大规模制备,但其对环境的影响需重视。
2. 原位合成法制备原位合成法通过在基材表面直接进行化学反应,使纳米材料在基材表面形成一层自组装膜。
这种方法能够在材料表面形成均匀、稳定的纳米层,并且具有良好的附着力,适合于复杂形状的基材。
二、超疏水性纳米涂层的应用超疏水性纳米涂层材料具有广泛的应用领域,以下分别从建筑、汽车和电子三个方面进行讨论。
1. 建筑领域超疏水性涂层在建筑领域中的应用正在逐渐增多。
在屋顶或墙体上涂布超疏水性材料,可以实现自洁效果,降低维护成本。
此外,超疏水性涂层还可以在建筑物表面形成一层保护膜,提高材料的抗腐蚀性和耐候性。
2. 汽车领域在汽车领域,超疏水性涂层可以应用于车身和玻璃等部位。
超疏水性涂层能够有效防止水珠在表面聚集,提高行驶视野。
此外,超疏水性涂层还可以减少水泥等污染物的沾附,保持车身的清洁。
3. 电子领域在电子领域,超疏水性涂层可以应用于电子设备的触控屏幕、电路板等部位。
超疏水性涂层能够有效提高电子设备的防水性能,减少液体渗入导致的损坏。
同时,超疏水性涂层还可以减少尘埃和油脂等污染物的附着,提高电子设备的使用寿命。
三、超疏水性纳米涂层的挑战与未来发展方向虽然超疏水性纳米涂层材料应用潜力巨大,但仍面临一些挑战。
例如,涂层的耐久性和稳定性需要进一步提高,涂层的制备方法仍需要简化和标准化。
此外,生产工艺的成本也是一个需要解决的问题。
超疏水涂层制备工艺的接触角与耐腐蚀性研究
超疏水涂层制备工艺的接触角与耐腐蚀性研究超疏水涂层是一种表面涂层技术,通过改变材料表面的化学结构和形貌,使其具有极低的液体粘附能力,从而形成类似莲叶叶面的疏水效果。
该涂层具有很多优点,如优异的自清洁性能、抗腐蚀性能和耐磨性能等,因此在各个领域广泛应用。
超疏水涂层的制备工艺通常包括两个步骤:表面改性和涂层形成。
首先是表面改性。
通过一系列的物理和化学方法,改变材料表面的化学结构和形貌,使其形成一层纳米级的微观结构。
常见的表面改性方法包括湿化技术、电化学氧化、沉积聚合物薄膜等。
这些方法可以根据不同的材料和需求进行选择和组合。
接下来是涂层形成。
通过溶液浸涂、电沉积、离子束沉积或气相沉积等方法,将改性后的材料表面形成一层超疏水涂层。
在涂层形成过程中,控制涂层的厚度和结构是非常重要的,通常需要通过调整溶液浓度、沉积速度和处理温度等参数来实现。
在超疏水涂层的研究中,接触角是一个重要的性能参数。
接触角是指液体与固体表面形成的接触面所形成的角度。
在超疏水涂层上,液滴在表面上形成的接触角较大,接近于180°,表明液滴几乎完全不与表面接触,具有很好的疏水性能。
接触角的大小与表面的化学结构和形貌密切相关,可以通过改变表面结构和化学组成来调控接触角。
除了接触角,超疏水涂层的耐腐蚀性也是一个重要的研究方向。
由于超疏水涂层通常用于防护金属材料,因此其抗腐蚀性能是一个关键指标。
通过改善涂层的结构和添加抗腐蚀剂等措施,可以提高超疏水涂层的耐腐蚀性能。
同时,超疏水涂层还可以作为防腐蚀涂层的一种补充,增加涂层的抗腐蚀能力。
总结起来,超疏水涂层制备工艺的研究主要包括表面改性和涂层形成两个步骤。
通过改变材料表面的化学结构和形貌,形成具有纳米级微观结构的疏水表面。
接触角和耐腐蚀性是超疏水涂层研究中的重要性能参数,可以通过调控表面结构和化学组成来实现良好的接触角和抗腐蚀性能。
超疏水涂层在防护材料和增加表面性能方面具有广阔的应用前景。
超疏水原理的自清洁表面
• 1.3.1 开发简单经济、环境友好的制备方法 • 1.3.2 提高超疏水表面的强度和持久性 • 1.3.3 开发超双疏表面
超疏水自清洁涂层虽已有工业化应用,但是超 疏水性能的稳定性和持久性还有待提高,特别是耐 水压冲击性能还有待研究,以防止经暴雨冲刷后破 坏表面结构(如将微尘嵌入微纳坑内),降低超疏 水性能。另外,现有的超疏水涂层功能比较单一, 如果能在其中掺杂其它功能性粒子,则可大大扩 大超疏水涂层的应用范围。
超疏水原理的自清洁表面
研究进展
1.1超疏水表面 自清洁原理
荷 叶 效 应
用十七氟癸基三甲氧基硅烷 改性过的纳米碳酸钙与聚乙烯溶 液混合涂覆于玻璃表面制得超疏 水涂层,接触角可达到155°,同 时研究了该表面的抗灰尘性能,发 现该超疏水表面具有很好的抗灰 尘能力,当黑烟末粉体粘在表面 时很容易被水滴带走。
Thank
You!
超 疏 水 表 面 自 清 洁 原 理 示 意 图
超 疏 水 表 面 自 清 洁 过 程 图
1.2 常见超疏水表面制备现状
1.2.1 超疏水薄膜
a.以多孔氧化铝为模板,以聚丙烯腈 为前体,利用模板挤压法得到阵列聚丙 烯腈纳米纤维膜,与水的接触角(CA) 达173°,将该阵列聚丙烯腈纳米纤维 膜进行热解处理,得到了在全pH 值范 围内具有超疏水性的纳米结构碳膜;以 微米- 亚微米- 纳米复合结构的聚二甲基 硅氧烷(PDMS)为软模板[8],制备聚 苯乙烯(PS)超疏水表面,该表面与水 的接触角高达161.2°。 b.以廉价的聚苯乙烯为原料,采用一 种简单的可控电纺技术,制备出具有新 颖结构的超疏水薄膜。
1.2.3 超疏水金属表面
采用位错刻蚀剂对铝、铜、 锌基体表面进行化学刻蚀,然 后用氟烷基硅烷对刻蚀后的表 面进行疏水化处理得到接触角 大于150°的超疏水金属表面。
超疏水原理的自清洁表面
1.3 超疏水表面研究存在的问题
• 1.3.1 开发简单经济、环境友好的制备方法 • 1.3.2 提高超疏水表面的强度和持久性 • 1.3.3 开发超双疏表面
超疏水自清洁涂层虽已有工业化应用,但是超 疏水性能的稳定性和持久性还有待提高,特别是耐 水压冲击性能还有待研究,以防止经暴雨冲刷后破 坏表面结构(如将微尘嵌入微纳坑内),降低超疏 水性能。另外,现有的超疏水涂层功能比较单一, 如果能在其中掺杂其它功能性粒子,则可大大扩 大超疏水涂层的应用范围。
1.2.3 超疏水金属表面
采用位错刻蚀剂对铝、铜、 锌基体表面进行化学刻蚀,然 后用氟烷基硅烷对刻蚀后的表 面进行疏水化处理得到接触角 大于150°的超疏水金属表面。
1.2.4 超疏水织物
a.用等离子体聚合的方法,在棉纤维上聚 合含氟烯烃,得到了具有超疏水性的表面。 b.用溶胶-凝胶法在聚酯(PET) 基材上制得透明的氧化铝薄膜,该薄膜经 沸水中浸泡、干燥和煅烧等工艺处理后可 得到具有花瓣状结构的粗糙表面,最后经 十七氟癸烷基三甲氧基硅烷修饰,制得透 明超疏水表面.
超 疏 水 表 面 自 清 洁 原 理 示 意 图
超 疏 水 表 面 自 清 洁 过 程 图
1.2 常见超疏水表面制备现状
1.2.1 超疏水薄膜
a.以多孔氧化铝为模板,以聚丙烯腈 为前体,利用模板挤压法得到阵列聚丙 烯腈纳米纤维膜,与水的接触角(CA) 达173°,将该阵列聚丙烯腈纳米纤维 膜进行热解处理,得到了在全pH 值范 围内具有超疏水性的纳米结构碳膜;以 微米- 亚微米- 纳米复合结构的聚二甲基 硅氧烷(PDMS)为软模板[8],制备聚 苯乙烯(PS)超疏水表面,该表面与水 的接触角高达161.2°。 b.以廉价的聚苯乙烯为原料,采用一 种简单的可控电纺技术,制备出具有新 颖结构的超疏水薄膜。
超疏水涂料实验报告(3篇)
第1篇一、实验目的1. 探究超疏水涂料的制备方法及其性能;2. 评估不同制备方法对超疏水性能的影响;3. 分析超疏水涂料的实际应用前景。
二、实验材料与仪器材料:1. 十八烷基三氯硅烷(OTS)2. 长链有机硅烷3. 硼酸4. 聚(二甲基硅氧烷)二醇(PDMS)5. 纳米SiO26. 氟蜡7. 石墨烯8. 工业溶剂仪器:1. 超声波发生器2. 真空干燥箱3. 滴定管4. 接触角测量仪5. 扫描电子显微镜(SEM)6. 透射电子显微镜(TEM)7. 中性盐雾试验箱8. 耐冲击试验机三、实验方法1. 超疏水涂料的制备(1)长链有机硅烷与水的单步化学计量控制反应:将一定量的长链有机硅烷与水按一定比例混合,在超声波作用下进行反应,得到微纳米级分层硅氧烷聚集体。
(2)超声喷涂法:将制备好的硅氧烷聚集体分散于工业溶剂中,通过超声波发生器将其雾化,喷涂于基材表面。
(3)低温固化法:将纳米SiO2、氟蜡、石墨烯等添加剂与基体材料混合,通过熔融挤出、磨粉等工艺制备低温固化超疏水防腐粉末涂料。
2. 性能测试(1)接触角测试:使用接触角测量仪测试涂层的接触角,以评估其疏水性。
(2)耐冲击测试:使用耐冲击试验机测试涂层的耐冲击性能。
(3)SEM、TEM分析:使用SEM、TEM观察涂层的微观结构。
(4)中性盐雾试验:在中性盐雾试验箱中测试涂层的耐腐蚀性能。
四、实验结果与分析1. 超疏水涂料的制备(1)长链有机硅烷与水的单步化学计量控制反应制备的硅氧烷聚集体具有良好的分散性,可均匀喷涂于基材表面。
(2)超声喷涂法制备的涂层具有优异的超疏水性,水接触角超过170°,滚动角小于1°。
(3)低温固化法制备的涂层具有优异的疏水性和防腐性能,可有效提高涂层的耐久性。
2. 性能测试结果(1)接触角测试结果显示,涂层具有优异的超疏水性,水接触角超过170°,滚动角小于1°。
(2)耐冲击测试结果显示,涂层具有较好的耐冲击性能。
超疏水涂层微纳米材料可控合成及应用研究
超疏水涂层微纳米材料可控合成及应用研究一、概述超疏水涂层微纳米材料是指在材料表面形成的一种具有极强疏水性能的特殊涂层,其表面能极低,使得水珠在其表面呈现出高度的球形,与其表面接触的接触角大于150°,使得水珠在其表面上几乎不会留下痕迹。
超疏水涂层具有优异的抗粘性和自清洁性,因此在汽车玻璃、建筑材料、纺织品等领域具有广阔的应用前景。
本文旨在介绍超疏水涂层微纳米材料可控合成的研究现状和应用前景。
二、超疏水涂层微纳米材料合成技术1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的超疏水涂层微纳米材料合成技术,通过将含有相应金属或氧化物前驱体的气体输入反应室,经过热解反应在基底表面沉积出纳米级的超疏水材料。
该方法可以实现对材料组分、结构和形貌的精确控制,形成具有特定性能的超疏水涂层微纳米材料。
2. 溶胶-凝胶法溶胶-凝胶法是一种将含有金属离子或其他前驱体的溶液先制备成溶胶,然后通过加热或化学反应促使其中的物质发生凝胶化,最终得到超疏水涂层微纳米材料的方法。
该方法简单易行,能够实现大面积均匀的涂层覆盖。
3. 电化学沉积法电化学沉积法是一种利用电解池在基底表面沉积出所需材料的方法,通过控制电极电势、电流密度以及电解液成分可以精确调控涂层的组分和结构,实现超疏水特性。
4. 其他新技术除了上述常用的合成技术,还有一些新的技术不断涌现,如等离子体辅助化学气相沉积法、模板法、离子束辅助沉积法等,这些新技术为超疏水涂层微纳米材料的合成提供了更多的选择和可能性。
三、超疏水涂层微纳米材料在汽车领域的应用超疏水涂层微纳米材料在汽车领域具有广泛的应用前景。
涂覆超疏水涂层微纳米材料的汽车玻璃可以有效抵抗雨水和污垢的侵蚀,使驾驶者在雨天视野更加清晰,提高行车安全性。
涂覆超疏水涂层微纳米材料的汽车车身可以减少灰尘、泥浆等污垢的附着,减少清洗和维护的频率和成本。
超疏水涂层还可以应用于汽车轮胎和底盘部件,减少泥浆和水花的粘附,延长汽车的使用寿命。
涂料的自清洁特性与应用研究
涂料的自清洁特性与应用研究在当今社会,涂料作为一种广泛应用于建筑、工业、交通等领域的材料,其性能和功能不断得到拓展和创新。
其中,自清洁涂料因其独特的特性和广泛的应用前景,受到了越来越多的关注和研究。
自清洁涂料是一种具有特殊表面性能的涂料,能够在自然环境中自动去除表面的污垢、灰尘、污染物等,保持表面的清洁和光洁。
这种特性使得自清洁涂料在许多领域具有重要的应用价值。
一、自清洁涂料的原理自清洁涂料的自清洁原理主要包括两个方面:一是超疏水/超亲水特性,二是光催化作用。
超疏水特性是指涂料表面具有极低的表面能,水在其表面形成球状,容易滚落并带走表面的污垢。
这种超疏水表面通常是通过特殊的表面结构和化学组成来实现的。
例如,表面具有微纳结构的粗糙度,同时涂层中含有低表面能的物质,如氟碳化合物、硅氧烷等。
超亲水特性则是指涂料表面能够迅速吸收水分,使水分在表面形成均匀的水膜,将污垢溶解并冲走。
这种超亲水表面通常是通过在涂层中引入亲水基团或纳米粒子来实现的。
光催化作用是另一种常见的自清洁原理。
常见的光催化剂如二氧化钛(TiO₂),在紫外线或可见光的照射下,能够产生强氧化性的自由基,将有机污染物分解为无害物质。
这种光催化自清洁涂料不仅能够去除表面的污垢,还能够降解空气中的有害气体。
二、自清洁涂料的类型根据自清洁原理的不同,自清洁涂料主要可以分为以下几种类型:1、超疏水自清洁涂料这类涂料主要利用超疏水特性实现自清洁。
其在建筑外墙、玻璃幕墙、汽车表面等领域有广泛应用。
例如,建筑外墙上的超疏水涂料可以减少雨水的残留,防止污垢和藻类的附着,保持建筑物外观的清洁和美观。
2、超亲水自清洁涂料超亲水自清洁涂料在玻璃、陶瓷等表面有较好的应用。
如自清洁玻璃,能够在雨水的冲刷下迅速清洁表面,提高玻璃的透明度和采光效果。
3、光催化自清洁涂料光催化自清洁涂料由于其能够同时去除表面污垢和降解空气中的污染物,在室内外环境净化方面具有很大的潜力。
例如,在医院、学校等公共场所的墙面涂料中使用光催化自清洁涂料,可以有效减少细菌和病毒的传播,改善室内空气质量。
《仿生超疏水纳米材料-聚氨酯涂层的研究》范文
《仿生超疏水纳米材料-聚氨酯涂层的研究》篇一仿生超疏水纳米材料-聚氨酯涂层的研究一、引言仿生超疏水材料作为一种新兴的表面功能材料,以其独特的自清洁、抗污染和抗生物黏附等性能引起了众多科学家的关注。
该领域的发展迅速,并在涂料、机械部件和建筑材料等领域得到了广泛应用。
而其中,以聚氨酯(PU)为基材的超疏水涂层因具有优异的机械性能和良好的环境适应性,受到了广泛的关注。
本文将对仿生超疏水纳米材料/聚氨酯(PU)涂层的研究进行探讨。
二、背景及意义仿生超疏水材料主要基于自然界中某些生物的疏水性表面特性进行模拟和改进。
如荷叶上的微纳米结构能使其表面具有超疏水性,即使沾上灰尘也难以粘附在表面。
通过仿生超疏水材料的制备技术,我们能够制备出具有类似功能的材料,如自清洁、抗污染等。
在众多基材中,聚氨酯因其良好的机械性能和可塑性,成为一种理想的选择。
在汽车、船舶等机械设备表面,利用PU 涂层形成的超疏水性能够有效降低流体摩擦和磨损,减少机械的维护成本。
在建筑领域,此类材料能够有效降低表面的灰尘粘附和保持其美观度。
三、实验内容与方法本文采用了仿生制备法来制备超疏水纳米材料/聚氨酯(PU)涂层。
具体实验步骤如下:1. 纳米材料的制备:采用物理或化学方法合成纳米颗粒,并通过特殊的处理方法形成微纳米结构。
2. 聚氨酯涂层的制备:首先制备PU基底,然后将其与纳米材料混合,形成混合溶液或混合物。
3. 涂层的制备:将混合溶液或混合物均匀地涂在基底上,然后进行干燥和固化处理。
4. 性能测试:对涂层的润湿性、附着力、硬度等性能进行测试,以及其对外部环境因素的耐受性进行评估。
四、实验结果与讨论1. 实验结果:(1)涂层具有优异的超疏水性,接触角大于150°,滚动角小于10°;(2)涂层具有较高的硬度、耐磨性和耐腐蚀性;(3)涂层对外部环境因素如温度、湿度等具有较强的耐受性。
2. 结果讨论:(1)纳米材料的引入显著提高了涂层的超疏水性能,其微纳米结构能够有效阻止液滴在表面的浸润和黏附;(2)涂层具有较高的机械性能和耐久性,使得其在实际应用中具有良好的稳定性和长期性;(3)聚氨酯作为基材具有很好的塑形能力,使其能适用于不同的表面形态和基材。
自清洁超疏水涂层的研究
自清洁超疏水涂层的研究摘要:本文综述了具有自清洁超疏水涂层的研究进展,介绍了实现自清洁目的的涂层所要具备的超疏水条件,并对超疏水的理论模型进行了综述。
此外,介绍了几种自清洁超疏水涂层的类型,如:“仿生荷叶”型、有机硅型、有机氟型、有机氟硅型。
关键词:自清洁超疏水理论模型一、前言自清洁涂层是能够不通过人工,而是自身可以通过外部环境保持洁净的表面。
例如,阳光的照射、风的作用以及雨水的冲洗。
此外,当水在这固体表面上表现出很明显的疏水性,水滴和涂层表面的接触角大于150°,并且滞后角不超过10°的涂层叫做超疏水涂层。
二、超疏水的理论模型对大自然中的超疏水表面研究后发现,表面能达到超疏水的两个条件,一是低的表面能,二是表面有粗糙的结构。
这里,简要介绍超疏水的理论模型。
1 Wenzel 模型在1936年,通过热力学定律,Wenzel计算出了液体和不平整表面相接触时产生的接触角,以及液滴和平整表面接触时所产生的接触角之间的关系[1]。
可以有效地运用仿生的方法来在表面构建粗糙度,Woo Kyung Cho和他的团队[3]通过将有机硅水解,然后通过有低表面性质的氟硅进行改性。
从而制备得到了有一定粗糙度的超疏水涂层。
经过测定发现,水滴在涂层表面的接触角达到了160°以上,并且滞后角为2.4°,这里的粗糙度主要是由于F-的作用。
另有团队[4]将γ-氨丙基三乙氧基硅烷(APS)添加在纳米级的SiO2溶胶中,反应之后,在基材表面经过浸渍提拉法涂层。
干燥后在SEM下能看到有微米级的颗粒团聚在一起,这和荷叶表面的结构十分的相似,如此所得的涂层水接触角能够达到156°,滞后角在3°以下,而且在整个过程中的稳定性好,能够在工业上进行推广。
现如今,欧美地区的各国以及我国香港等很多企业都开发出了此类涂料或助剂。
此类先进的研究和新的产品对今后自洁领域的进一步扩大有很大的帮助。
疏水涂层的研究现状
疏水涂层的研究现状疏水涂层是一种可以在物体表面形成疏水性能的涂层材料。
它可以使物体表面具有超级疏水性,使水滴在表面上形成极小的接触角,从而改善物体的耐水性和耐污性。
疏水涂层的研究和应用已经取得了显著的进展,下面将详细介绍疏水涂层的研究现状。
疏水涂层的研究起源于自然界中一些特殊表面的观察。
莲花叶子、蜻蜓翅膀等天然的超疏水表面激发了研究者们的兴趣。
研究人员发现,这些天然表面的超疏水性能是由于其表面微结构特征和化学成分所导致的。
在这些天然表面的微观结构上,存在许多微小的几何结构,如微米级的纳米线、纳米柱等,这些微小的结构能够增大物体表面的比表面积,从而增加表面与水接触的空隙。
除了表面微结构特征之外,表面的化学成分也会对疏水性能起到重要的作用。
通过改变表面的化学成分,可以调控物体表面的疏水性能。
在疏水涂层的研究中,最常见的材料是氟化物。
氟化物具有极高的疏水性能,可以使水滴在表面上形成接触角大于150度。
对于氟化物材料的研究,主要集中在两个方面:一是改善涂层的耐久性。
氟化物涂层的耐久性是其应用的一个关键问题,长时间的曝露在大气和温度变化环境中,会导致涂层的损坏和疏水性能的降低。
研究人员通过改善氟化物的结构和使用增强剂等方式,提高了涂层的耐久性。
二是提高涂层的透明性。
氟化物涂层通常是无色透明的,但是传统的氟化物涂层的透明性较差,会降低涂层所覆盖物体的可见光透过率。
为了解决这一问题,研究人员开发了一种新型的透明氟化物涂层。
除了氟化物材料之外,还有一些其他的材料也被用于疏水涂层的研究。
例如,石墨烯是一种新兴的二维材料,具有很高的导热性和导电性。
近年来,研究人员发现石墨烯在表面涂覆后也可以表现出良好的疏水性能。
此外,一些金属氧化物如二氧化钛、二氧化硅等也被用于疏水涂层的研究。
这些金属氧化物材料可以通过控制其纳米微米级的表面结构来实现疏水性能,表面结构的调控包括溶胶-凝胶法、电沉积法、阴离子溅射沉积等。
疏水涂层在实际应用中具有广泛的应用前景。
《仿生超疏水纳米材料-聚氨酯涂层的研究》范文
《仿生超疏水纳米材料-聚氨酯涂层的研究》篇一仿生超疏水纳米材料-聚氨酯涂层的研究一、引言随着科技的不断进步,材料科学领域的研究日益深入,其中仿生超疏水材料因其独特的表面性能和广泛的应用前景,受到了广泛的关注。
仿生超疏水材料模仿自然界中生物的疏水特性,如荷叶表面的自清洁效应,这种材料不仅具有优异的防水性能,还能应用于防污、防腐蚀、防冰等多个领域。
近年来,纳米技术与聚氨酯涂层的结合,为仿生超疏水材料的研究提供了新的方向。
本文将重点探讨仿生超疏水纳米材料/聚氨酯涂层的研究进展、制备方法、性能及其应用前景。
二、仿生超疏水纳米材料的制备方法仿生超疏水纳米材料的制备主要依赖于纳米技术和表面工程。
首先,通过纳米技术制备出具有特定形貌和结构的纳米粒子,如纳米管、纳米线等。
其次,利用表面工程对纳米粒子进行表面改性,使其具有低表面能,从而实现超疏水性能。
此外,还可以通过模板法、溶胶-凝胶法、化学气相沉积法等方法制备仿生超疏水纳米材料。
三、聚氨酯涂层的优势与应用聚氨酯涂层因其优异的耐磨性、耐候性、抗冲击性等特性,在众多领域得到广泛应用。
将仿生超疏水纳米材料与聚氨酯涂层相结合,可以进一步提高涂层的性能。
聚氨酯涂层具有良好的附着力和柔韧性,能够有效地将纳米粒子固定在基材表面,形成稳定的超疏水层。
此外,聚氨酯涂层还具有优异的耐化学腐蚀性能和抗污染性能,使其在恶劣环境下仍能保持良好的超疏水性能。
四、仿生超疏水纳米材料/聚氨酯涂层的制备与性能仿生超疏水纳米材料/聚氨酯涂层的制备主要涉及纳米粒子的制备、表面改性以及与聚氨酯涂层的复合。
首先,通过适当的制备方法得到具有特定形貌和结构的纳米粒子。
然后,对纳米粒子进行表面改性,降低其表面能。
最后,将改性后的纳米粒子与聚氨酯涂层进行复合,形成具有超疏水性能的涂层。
该涂层具有优异的防水、防污、防腐蚀和防冰性能。
在防水方面,超疏水涂层能使水滴迅速滚落,防止水分渗透到基材内部。
在防污方面,超疏水涂层具有自清洁效应,能有效地抵抗污垢和油脂的附着。
超疏水涂层的制备与性能研究
超疏水涂层的制备与性能研究一、引言在当今科技迅速发展的时代,超疏水涂层因其独特的性能引起了广泛的关注和研究。
超疏水涂层是指表面与水的接触角大于 150°,滚动角小于 10°的涂层。
这种特殊的表面性能赋予了材料自清洁、防腐蚀、抗结冰等诸多优异特性,在航空航天、船舶、建筑、医疗等领域具有广阔的应用前景。
二、超疏水涂层的制备方法(一)溶胶凝胶法溶胶凝胶法是一种常见的制备超疏水涂层的方法。
其基本原理是通过将金属醇盐或无机盐在溶剂中水解和缩聚,形成溶胶,然后经过凝胶化、干燥和热处理等过程得到涂层。
在制备过程中,可以通过控制反应物的浓度、反应条件以及添加表面改性剂等手段来调控涂层的表面粗糙度和化学组成,从而实现超疏水性能。
(二)化学气相沉积法化学气相沉积法(CVD)是将含有涂层组成元素的气态物质在一定的温度和压力条件下发生化学反应,在基底表面沉积形成涂层。
该方法可以制备出均匀、致密的超疏水涂层,但设备成本较高,操作复杂。
(三)静电纺丝法静电纺丝法是利用高压电场将聚合物溶液或熔体拉伸成纳米级纤维,然后将这些纤维收集在基底上形成涂层。
通过选择合适的聚合物和调整纺丝参数,可以控制涂层的微观结构和表面性能,实现超疏水效果。
(四)层层自组装法层层自组装法是基于分子间的相互作用力,如静电引力、氢键、范德华力等,将带相反电荷或具有互补官能团的物质交替沉积在基底表面形成多层结构的涂层。
通过合理设计组装的分子和层数,可以调节涂层的粗糙度和化学组成,达到超疏水的目的。
三、超疏水涂层的性能(一)自清洁性能超疏水涂层的自清洁性能是其最为显著的特点之一。
当水滴在涂层表面滚落时,能够带走表面的灰尘和污染物,使表面保持清洁。
这一性能在建筑外墙、太阳能电池板等领域具有重要的应用价值,可以减少人工清洁的成本和时间。
(二)防腐蚀性能超疏水涂层可以有效地阻止水和腐蚀性介质与基底的接触,从而提高材料的耐腐蚀性能。
涂层表面的微小空气囊可以隔绝外界的氧气和水分,减缓腐蚀反应的发生。
自清洁超疏水涂膜的研究与应用
离子 交换与吸附, 2 0 1 3 , 2 9 ( 4 ) : 3 7 7—3 8 4
I ON EXCHANGE AND ADS 0RP T【 ON
文章编号 :1 0 0 1 . 5 4 9 3 ( 2 0 1 3 ) 0 4 - 0 3 7 7 — 0 8
自清洁超疏 水涂膜 的研 究与应用
Q i a n F e n g X u等[ 5 】 在颗粒直径为 6 0 n m 的硅溶 胶中加入 y . 氨 丙基三 乙氧基硅烷 ( AP S ) ,缩聚后在玻璃基片 上镀膜 、干燥 ,硅凝胶颗粒聚集 为微米突起 ,形成类似于荷 叶的表面结构,涂膜 的静态接触角大于 1 5 5 。 ,
在涂膜表面的滚动带走污染物从 而达 到 自清洁的 目的。 2 O世纪 9 0年代, 德国波恩大学教授 Ne i n h u i s C . 和
B a r t h l o t t W. 对植物表 面的超疏水性能进行 了系统地研究,揭示了表 面 自清洁现象的 内在理论【 l 】 ,并提 出 了形成 自清洁超疏 水性涂膜 的必 要条件 ,即具有适 宜的粗糙度和低 的表 面能 。 自此 ,随着超疏水理论 的 日渐成熟 ,基于超 疏水理论 的 自清洁涂膜 以其独特 的表面微观 结构和优 异的超疏水性 能,在科 学研 究和 生产 、生活等诸 多领域 中具有极 为广泛 的应用 。本文主要介 绍了 目前 自清洁超疏水涂膜 的类型 、制备方
・ 3 7 8  ̄
I o n E x c h a n g e nd a Ad s o r p t i o n
2 0 1 3年 8月
自清洁涂料的制备与应用研究
自清洁涂料的制备与应用研究在当今社会,随着科技的不断进步和人们对生活品质要求的提高,自清洁涂料作为一种具有创新性和实用性的材料,受到了广泛的关注和研究。
自清洁涂料能够在不借助外力的情况下,自动去除表面的污垢、灰尘和污染物,保持物体表面的清洁和光亮。
这种涂料不仅可以减少清洁工作的频率和成本,还能够延长物体的使用寿命,具有重要的经济和环保意义。
一、自清洁涂料的原理自清洁涂料的自清洁效果主要基于两种原理:一种是超疏水原理,另一种是光催化原理。
超疏水原理是指涂料表面具有极高的疏水性能,水在其表面形成球状,容易滚落并带走污垢。
这种超疏水性能通常是通过在涂料表面构建微纳米结构来实现的。
这些微纳米结构使得表面具有粗糙的形貌,从而减少了水与表面的接触面积,增大了接触角,实现超疏水效果。
光催化原理则是利用某些半导体材料(如二氧化钛)在光照条件下产生的强氧化能力,将表面的有机物分解为二氧化碳和水等无害物质。
当光线照射到涂有光催化涂料的表面时,半导体材料被激发,产生电子空穴对,这些电子和空穴与表面的氧气和水分子反应,生成具有强氧化性的自由基,从而分解污垢和污染物。
二、自清洁涂料的制备方法(一)超疏水自清洁涂料的制备1、模板法模板法是一种常用的制备超疏水表面的方法。
通过使用具有特定结构的模板,如纳米级的硅模板或聚合物模板,在涂料表面复制出与模板相似的微纳米结构。
然后,再对表面进行低表面能物质的修饰,如氟硅烷,以获得超疏水性能。
2、溶胶凝胶法溶胶凝胶法是将金属醇盐或无机盐经过水解和缩聚反应形成溶胶,然后经过干燥和热处理转化为凝胶。
在这个过程中,可以通过控制反应条件和添加适当的表面活性剂来调控表面的微纳米结构,从而实现超疏水性能。
3、化学气相沉积法化学气相沉积法是将含有反应物质的气体引入反应室,在一定的温度和压力条件下,发生化学反应并在基底表面沉积出所需的薄膜。
通过选择合适的反应气体和控制沉积条件,可以制备出具有超疏水性能的涂层。
金属材料表面超疏水涂层的研究进展
金属材料表面超疏水涂层的研究进展目录一、内容描述 (2)1. 超疏水涂层的定义与意义 (3)2. 金属材料表面处理技术的发展背景 (4)二、超疏水涂层材料的研究进展 (5)1. 纳米材料在超疏水涂层中的应用 (6)纳米TiO2、SiO2等颗粒的制备与应用 (7)纳米复合材料的设计与性能优化 (9)2. 有机高分子材料在超疏水涂层中的应用 (10)涂层材料的表面接枝改性技术 (11)自组装单分子层的构筑与性能研究 (12)3. 生物启发型超疏水涂层的研究 (13)蜡烛蜡、硅酮等生物启发材料的模仿与应用 (14)生物矿化原理在涂层设计中的应用 (15)三、超疏水涂层制备方法的研究进展 (17)1. 化学气相沉积法 (18)2. 动力学激光沉积法 (19)3. 离子束溅射法 (20)4. 溶液沉积法 (21)5. 微纳加工技术 (22)四、超疏水涂层性能评价及优化策略 (23)1. 表面张力与接触角测量 (24)2. 耐磨性、耐腐蚀性等性能评估 (26)3. 涂层稳定性与耐久性分析 (27)4. 性能优化策略与实验方法 (28)五、超疏水涂层在特定领域的应用研究进展 (29)1. 抗生物污染涂层的研发与应用 (30)2. 防腐蚀保护涂层的性能研究 (32)3. 光学性能改进的超疏水涂层设计 (33)4. 涂层在航空航天、电子电气等领域的应用探索 (34)六、结论与展望 (35)1. 超疏水涂层技术的发展趋势 (36)2. 存在的问题与挑战 (38)3. 未来研究方向与应用前景展望 (39)一、内容描述随着科技的不断发展,材料科学领域对于表面性能的要求日益提高,尤其是在防水、防污、自清洁等方面具有特殊需求的材料。
金属材料作为现代工业的重要基础材料,其表面性能的优劣直接影响到产品的使用寿命和可靠性。
对金属材料表面进行超疏水涂层的研发和应用成为了当前研究的热点。
超疏水涂层是一种具有特殊表面性能的涂层,其表面的水接触角大于150,表现出“荷叶效应”,即水滴在涂层表面上能够迅速滚落,而不会附着和渗透。
具备超疏水性的新型涂层材料的研究
具备超疏水性的新型涂层材料的研究现代科技的发展给我们带来了很多的惊喜和便利,从智能手机到高速列车,从航空飞机到高楼大厦,无不渗透着科学技术的力量。
然而,在我们研究和创造的过程中,我们还远未触及科技的极限。
这篇文章将讨论一个与日常生活息息相关的材料研究领域——具备超疏水性的新型涂层材料。
超疏水性,即水滴在其表面上无法附着,犹如小球般滚落,这是许多人熟知的现象。
换句话说,这种涂层具备了自清洁的能力。
在日常生活中,我们经常为不小心洒出的咖啡或红酒而感到烦恼。
如果我们的桌子、衣物或沙发涂有这种超疏水性的涂层,这些担心和烦恼将成为过去。
目前,已知的具备超疏水性的涂层主要包括两类:疏水涂层和超疏水涂层。
疏水涂层使水滴在其表面上有一定的接触角,但水滴仍然能够附着在其表面上。
而超疏水涂层则使水滴在其表面上形成非常高的接触角,达到几乎无法附着的程度。
近年来,科学家们在超疏水涂层方面取得了一系列的突破,并且开发出了一些实用的超疏水涂层材料。
首先,让我们来了解超疏水涂层的原理。
超疏水涂层的疏水性是通过表面微纳米结构的设计实现的。
这些微纳米结构使得表面非常光滑,并且具有很小的接触面积。
水滴在这样的表面上接触的点几乎可以忽略不计,因此,水滴无法在其上附着。
戴森富兰克尔法则告诉我们,当一滴液体滚动在超疏水表面时,它会携带走表面上的污垢和颗粒,实现了自我清洁的效果。
目前,常见的超疏水涂层材料主要包括氧化铝、氟碳聚合物和硅基材料等。
这些材料不仅具备超疏水性,还具有优异的耐热、耐化学腐蚀和耐磨损等性能。
例如,氟碳聚合物可以在高温下保持超疏水性,氧化铝具有良好的化学稳定性,而硅基材料具有优秀的耐磨性。
这些材料的特性在工业、医疗和日常生活中都有广泛的应用前景。
超疏水涂层材料的研究不仅仅停留在实验室阶段,许多科技公司已经将其应用于产品的开发中。
例如,有些手机厂商将超疏水涂层应用于手机屏幕上,使其具备了防水的功能。
此外,一些服装品牌也将超疏水涂层应用于衣物中,使其具备了防水和防油的特性。
超疏水表面的制备与性能研究
超疏水表面的制备与性能研究在当今科技不断发展的时代,超疏水表面因其独特的性能引起了广泛的关注和研究。
超疏水表面通常是指与水的接触角大于 150°,滚动角小于10°的表面。
这种表面具有自清洁、防腐蚀、抗结冰等优异性能,在许多领域都有着广阔的应用前景,如航空航天、建筑、生物医学等。
超疏水表面的制备方法多种多样,常见的有以下几种:化学刻蚀法是一种较为传统的制备方法。
通过使用强酸、强碱等化学试剂对材料表面进行刻蚀处理,从而形成微观粗糙结构。
例如,使用氢氟酸刻蚀硅表面,可以得到具有一定粗糙度的结构。
但这种方法往往存在环境污染和对材料本身性能可能造成损害的问题。
模板法是利用具有特定结构的模板来制备超疏水表面。
例如,以多孔氧化铝模板为基础,通过电沉积或化学沉积等方法在模板的孔隙中填充材料,然后去除模板,就可以得到具有规则微观结构的超疏水表面。
这种方法能够精确控制表面结构,但模板的制备和去除过程较为复杂。
溶胶凝胶法是一种制备超疏水涂层的常用方法。
将前驱体在溶液中进行水解和缩合反应,形成溶胶,然后通过涂覆、干燥等工艺在基底表面形成凝胶涂层。
通过调整反应条件和添加适当的改性剂,可以控制涂层的粗糙度和化学组成,从而实现超疏水性能。
另外,还有一些新兴的制备方法,如激光刻蚀法、等离子体处理法等。
激光刻蚀法利用激光的高能量对材料表面进行加工,能够快速、精确地制备出具有特定形貌的超疏水表面。
等离子体处理法则通过等离子体中的活性粒子与材料表面发生反应,改变表面的化学组成和粗糙度。
在超疏水表面的性能研究方面,其自清洁性能是一个重要的研究方向。
当水滴在超疏水表面上时,由于表面的低粘附性,水滴很容易滚落,并带走表面的污染物,从而实现自清洁效果。
这种自清洁性能在太阳能电池板、建筑外墙等领域具有很大的应用潜力,可以减少人工清洁的成本和工作量。
防腐蚀性能也是超疏水表面的一个显著特点。
由于水难以在超疏水表面停留和渗透,能够有效地阻止腐蚀介质与基底材料的接触,从而提高材料的耐腐蚀性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自清洁超疏水涂层的研究
摘要:本文综述了具有自清洁超疏水涂层的研究进展,介绍了实现自清洁目的的涂层所要具备的超疏水条件,并对超疏水的理论模型进行了综述。
此外,介绍了几种自清洁超疏水涂层的类型,如:“仿生荷叶”型、有机硅型、有机氟型、有机氟硅型。
关键词:自清洁超疏水理论模型
一、前言
自清洁涂层是能够不通过人工,而是自身可以通过外部环境保持洁净的表面。
例如,阳光的照射、风的作用以及雨水的冲洗。
此外,当水在这固体表面上表现出很明显的疏水性,水滴和涂层表面的接触角大于150°,并且滞后角不超过10°的涂层叫做超疏水涂层。
二、超疏水的理论模型
对大自然中的超疏水表面研究后发现,表面能达到超疏水的两个条件,一是低的表面能,二是表面有粗糙的结构。
这里,简要介绍超疏水的理论模型。
1 Wenzel 模型
在1936年,通过热力学定律,Wenzel计算出了液体和不平整表面相接触时产生的接触角,以及液滴和平整表面接触时所产生的接触角之间的关系[1]。
可以有效地运用仿生的方法来在表面构建粗糙度,Woo Kyung Cho和他的团队[3]通过将有机硅水解,然后通过有低表面性质的氟硅进行改性。
从而制备得到了有一定粗糙度的超疏水涂层。
经过测定发现,水滴在涂层表面的接触角达到了160°以上,并且滞后角为2.4°,这里的粗糙度主要是由于F-的作用。
另有团队[4]将γ-氨丙基三乙氧基硅烷(APS)添加在纳米级的SiO2溶胶中,反应之后,在基材表面经过浸渍提拉法涂层。
干燥后在SEM下能看到有微米级的颗粒团聚在一起,这和荷叶表面的结构十分的相似,如此所得的涂层水接触角能够达到156°,滞后角在3°以下,而且在整个过程中的稳定性好,能够在工业上进行推广。
现如今,欧美地区的各国以及我国香港等很多企业都开发出了此类涂料或助剂。
此类先进的研究和新的产品对今后自洁领域的进一步扩大有很大的帮助。
而基于这一理念的涂层仍是研究的热点。
2 基于超疏水理论的自清洁涂层
在超疏水表面上的水滴能自动收缩成球状,使得其与表面的接触面积在很大程度上减小。
如果污染物的表面能高于涂层的表面能,这样,污染物想要附着在
涂层表面就变得十分困难,至今,这是一种多数人认可的耐污染的机理。
依据这样的一个机理。
人即涂层表面的表面能低,超疏水涂层可以分为以下几类:
2.1 有机硅超疏水涂层
目前市场中能够见到的有机硅涂料种类十分多,有机硅不仅显示出好的低表面能性质,并且它的价格比较低。
在有机硅氧烷结构中,硅氧键之间有着比较长的键,并且键角也较大,很容易向内转动,这样的结构能让-CH3基团分布在聚合物外侧,使得有机硅展现出独特的疏水性。
使用甲基三甲氧基硅烷(MTMS)作为有机硅单体,在实验室中Hulya Budunoglu[5]通过溶胶凝胶法。
使得MTMS水解缩聚之后,在玻璃表面上的涂层接触角为178.9°,这一接触角近乎180°,不仅如此,以此所得的涂层的透明度高,并且热稳定性好。
通过在高温下进行测试,当温度高达400℃时,这一超疏水性能仍旧可以很好的保持,继续升温,疏水性不断降低。
当这一温度达到700℃时,涂层表面展现出超亲水的特点。
这样的涂层表面有着纳米级的孔,并且其折射率十分低。
这一发现对新兴发展的电子产品有重大意义,同时,在特殊要求的高温环境下能够使用。
有机硅烷单独使用时能体现出好的疏水性,如果复配上纳米二氧化钛粒子,不但不会消弱超疏水性能,而且还能提高表面的平整性以及表面的机械强度。
2.2 有机氟超疏水涂层
在所有被发现的低表面能物质当中,具有最低表面能的是有机氟。
含有氟基团的物质,其表面能是不同的,这其中含有三个氟原子的氟碳基团的表面能是最小的,能够低至 6.760mJ/m2,它的结构是按照一定有序的规则排列的,这样的结构能够很明显地使涂层表面的自由能减小,含有-CF3基团的平整面。
水接触角在121°[6]以上。
疏水性很明显。
有文献报道了[7]采用两种丙烯酸树脂,一种带有-CH3基团,一种含有低表面能物质F。
这两种物质会聚合成双嵌段聚合物,在基材表面涂覆后,干燥的过程中溶剂会逐渐挥发,这样使得嵌段聚合物上的含氟段排列在涂层最外部,因此得到了这样的超疏水涂层。
在很多金属表面运用超疏水表面能提高其防腐蚀性能。
使用静电纺丝技术。
在金属铝的表面涂上了含氟双嵌段聚合物。
之后喷涂了厚度不一,并且有多种粗糙度的涂层。
随着涂层厚度的增加,涂层越能抵抗外部的腐蚀。
这是由于嵌段聚合物中含有—COOH基团,而其中的丙烯腈可以提高整体的稳定性。
2.3 氟硅超疏水涂层
经过一系列大量的研究工作,两个都体现出好的低表面能性质的物质,如果能复合起来使用。
即有机硅以及有机氟复配,不但能节省经济资源,也能展现更
好的疏水性,研究发现,这两者结合,在疏水性能方面表现良好,此外,涂层的疏油性也十分明显。
呈现着双疏的特点。
有研究以氟代硅烷作为疏水试剂,采用正硅酸乙酯(TEOS)水解形成二氧化硅颗粒。
这两者相结合,制备出了含有氟基团的介孔超疏水涂层[8]。
很多低表面能的物质虽然能显示出好的疏水性,但是由于不能在玻璃表面很好的附着,从而限制了其应用。
为了解决这一问题,何易等[9]在合成含氟有机物改性硅溶胶的过程中,添加了聚乙烯醇。
这一物质的加入不但能使两种物质很好的分散,同时,这样的使用增加了涂层在玻璃表面上的附着力。
四、结论
现如今国内持续的空气污染状况使得人们对于环境友好型产品青睐有加。
因此,开发自清洁超疏水涂层在实际的应用中有着十分可观的前景。
此类涂层符合环保低碳的理念,但在涂层的耐久性方面还存在一定的问题急需解决。
这也是今后自清洁超疏水涂层研究的重点。
参考文献
[1]WenzelR.N.Surface roughness and contact angle[J]. J.Phys.Colloid Chem.1949,53:1466-1467
[2] Cassie A.B.D.,Baxter S.Wettability of porous surface[J].Trans.Faraday Soc..1944,40:546-551
[3]Woo K C,Sung M K,Dong J K,et al. Formation of Superhydrophobic Surfaces by Biomimetic Silicification and Fluorination[J]. Langmuir. 2006,22(2):11208-11213
[4]Xu Q F,Wang J N,Kevin D S. Organic or Inorganic Composite Nanocoatings with Superhydrophobicity,Good Transparency,and Thermal Stability[J]. ACS Nano. 2010,4(4):2201-2209
[5] 孙旭东,张子勇.自清洁涂料的发展[J].涂料工业.2010,40(12):65-71.
研究方向:高分子材料。