非线性电路的工程分析方法
非线性电路及其分析方法
![非线性电路及其分析方法](https://img.taocdn.com/s3/m/b45517e26edb6f1afe001f52.png)
3.非线性器件频率变换作用的分析
这部分的内容,主要介绍当给定一个非线性器件的伏安 特性幂级数多项式和输入信号的频率成分,来判断输出量中 会产生哪些频率分量。
假设某非线性器件在工作点VQ 附近的伏安特性曲线为
i a0 a1 (v VQ ) a2 (v VQ )2 a3 (v VQ )3
线性电路:输出与输入波形相似,频率成分相同 非线性电路:输出与输入波形失真,基频相同, 频率成分不同
第4章非线性电路及其分析方法-9
下面,我们定量分析频率变换
设 i av2 vi V1m cos1t V2m cos2t
i aV12m cos2 1t aV22m cos2 2t 2aV1mV2m cos1t cos2t
其中,0 为直流项;1(V1m cos1t V2m cos2t) 为线性项,
包含频率分量1 和2 ;平方项包含的频率分量有直流 21 、 22 、1 2 和1 2 ;
第4章非线性电路及其分析方法-14
i 利用三角公式 将三次项展开整理后, 中的频率成分如下
3 (V1m cos1t V2m cos2t)3 3 (V13m cos3 1t 3V12mV2m cos2 1t cos2t 3V1mV22m cos1t cos2 2t V23m cos3 2t)
静态电感:
LQ IQ
动态电感: L(i) d di
第4章非线性电路及其分析方法-6
4.2.2 非线性电路特点
由线性元件组成的电路叫做线性电路,如无源滤波器,低频和高频小 信号放大器等;由非线性元件组成的电路叫做非线性电路,如本课程中 之后要讲的功率放大器,振荡器,及各种调制解调电路等。非线性电路 的实质是输出产生了新的频率。
第2章 非线性电路的分析
![第2章 非线性电路的分析](https://img.taocdn.com/s3/m/01905a3f0912a216147929f0.png)
第2章 非线性电路的分析方法 章
线性放大电路的特点是其输出信号与输入信号具有 时域上讲, 输出信号波形与输 某种特定的线性关系。从时域 时域 入信号波形相同, 只是在幅度上进行了放大; 从频域 频域 上讲, 输出信号的频率分量与输入信号的频率分量相 同。 然而, 在通信系统和其它一些电子设备中, 需要 一些能实现频率变换 频率变换的电路。这些电路的特点是其输出 频率变换 信号的频谱中产生 产生了一些输入信号频谱中没有的频率分 产生 输入信号频谱中没有的频率分 频率分量的变换, 量 , 即发生了频率分量的变换 故称为频率变换电路。 频率分量的变换
非线性电路分析法
![非线性电路分析法](https://img.taocdn.com/s3/m/e6ea8b6065ce05087732136f.png)
1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。
第5章 非线性电路的一般的分析方法
![第5章 非线性电路的一般的分析方法](https://img.taocdn.com/s3/m/43d7804e852458fb770b5606.png)
三次谐波及组合频率: 1 22 , 1 22 ,21 2 ,21 2
b 的振幅均只与 b3 有关,而与 b0 、 2无关。 b b 直流成分均只与 b0 、 2有关,而与 b1、 3 无关。
二次谐波以及组合频率1 2 , 1 2 的振幅均只与 b2 有关, 而与 b1 、b3无关。
2 3
该幂级数各系数分别由下式确定,即:
b0 b 1 b2 b n f (U Q ) I 0 di u U Q g du 1 d 2i u U Q 2 du 2 1 d ni n! du n
i
Io
Q
0
UQ
u
u U Q
b0 I 0为静态工作点电流,b1 g是静态工作点处的电导, 即动态电阻r的倒数。
ex 1 x 若 则
i Is[
1 U Q U s cosst n ] n!U T
频率分析:
输入信号频率分量:直 流、s 输出信号频率分量: s,n=0,2, n 1,
2、幂级数分析法
将非线性电阻电路的输出输入特性用一个N阶幂级数近 似表示,借助幂级数的性质,实现对电路的解析分析。
四)、非线性元件的特征
1、特点(与线性电路比较) 非线性,不满足叠加定理,具有频率变换功能。 2、几个概念 A、伏安特性曲线 B、直流电阻 C、动态电阻或交流电阻
3、非线性元件的频率变换作用
非线性器件的频率变换作用
i k 2
1 2 V1m sin1 t V2m sin 2 t
n 1
可求得:ic I 00 I 0 n cosn1t [ g 0 g n cos n1t ]U m 2 cos2t
非线性电路特性及分析方法
![非线性电路特性及分析方法](https://img.taocdn.com/s3/m/28501043a8956bec0975e3af.png)
ic
gC
ICEO
uห้องสมุดไป่ตู้E
O
uCE
范围很大, 例:(以晶体管三极管 转移特性为例)当晶体 管的转移特性曲线运用 范围很大, :(以晶体管三极管 转移特性为例) 来近似, 如图示的 AOC ,可用 AB 和 BC 两直线段所构成的折线 来近似, ( i = 0 v B < V BZ ) 折线的数学表达式为: c 折线的数学表达式为: ic = g c ( v B − V BZ ) B > V BZ ) (v 式中, 截止电压; 跨导, 的斜率。 式中, V BZ-特性曲线折线化后的 截止电压; g c-跨导,即直线 BC 的斜率。 设基极输入端加入反向 直流偏置电压 − V BB 及余弦信号 Vbm cos ω t,则 基极输入电压为: 基极输入电压为: v B = −V BB + Vbm cos ω t 此时, 时三极管导通, 此时,只有 v B > V BZ 时三极管导通,其余时 间 截止, 变成余弦脉冲波形。 截止,即 ic变成余弦脉冲波形。电 流流通时间 对应的相角以 2θ c 表示, θ c简称导通角。 表示, 简称导通角。
3、折线法:大信号作用下 、折线法:
大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 此时元件的非特性的突出表现是截止、导通、 此时元件的非特性的突出表现是截止、导通、饱和几种不同状态之间的 轮换,特性曲线上一些局部弯曲的非线性影响可忽略, 轮换,特性曲线上一些局部弯曲的非线性影响可忽略,元件的伏安特性 可用分段折线逼近(折线特性本质是一种开关特性) 可用分段折线逼近(折线特性本质是一种开关特性)
第5章 非线性电路特性及分析方法
非线性电路分析技巧
![非线性电路分析技巧](https://img.taocdn.com/s3/m/39a27a10f11dc281e53a580216fc700abb6852ed.png)
非线性电路分析技巧在电子领域中,非线性电路的分析是十分重要的。
与线性电路不同,非线性电路的元件特性与电压和电流之间的关系不是线性的。
因此,针对非线性电路的分析方法需要更为复杂和精确。
本文将介绍一些非线性电路分析的技巧,帮助读者更好地理解和应用于实践。
一、利用近似法分析非线性电路中,非线性元件的特性曲线通常很复杂,很难直接得到解析解。
此时,我们可以利用近似法来简化问题,使其更易于分析。
最常用的近似方法之一是泰勒级数展开。
通过将非线性特性曲线在某个工作点处展开,可以得到一个线性近似,进而使用线性分析方法进行求解。
其他常用的近似方法还包括小信号模型和大信号模型等。
二、使用等效电路模型为了更方便地分析非线性电路,我们可以将其等效为线性电路。
这样,我们就可以使用线性电路的分析方法进行求解。
等效电路模型可以通过查找手册、仿真软件或实验数据来获取。
常见的等效电路模型包括二极管的小信号模型、伏安特性曲线拟合模型等。
通过将非线性元件替换为等效线性元件,可以将问题简化并应用线性电路分析法。
三、使用迭代法对于复杂的非线性电路,我们可以使用迭代法逐步逼近真实解。
迭代法通常结合着近似法和等效电路模型。
步骤如下:首先,根据近似法建立初始的线性近似电路;然后,通过求解线性近似电路得到数值解;接着,将数值解代入非线性元件中得到新的特性曲线;最后,根据新的特性曲线更新线性近似电路,并重复上述步骤直到收敛为止。
四、考虑非线性电路的稳定性非线性电路的稳定性问题是在分析时需要特别关注的。
由于非线性电路的元件特性会随着电压和电流变化,系统可能会失去稳定性。
为了确保电路正常工作,我们需要对非线性电路进行稳定性分析。
常见的稳定性判断方法包括利用极点分布法、利用Bode图分析法和利用Lyapunov稳定性判据等。
五、利用仿真软件进行分析随着计算机技术的不断发展,仿真软件已经成为非线性电路分析的重要工具。
利用仿真软件,我们可以建立电路的数学模型,并模拟其电压、电流和功率等参数的变化。
1.4 非线性电路的分析方法
![1.4 非线性电路的分析方法](https://img.taocdn.com/s3/m/9f63d1b4770bf78a65295493.png)
1.4 非线性电路的分析方法
2020/5/28
1
非线性电路的分析方法
1. 三种分析方法 (1)解析分析法
求解方程组,得出待求的电流和电压值。 (2)图解分析法
在非线性器件的伏安特性曲线上作图分析。 (3)等效电路分析法
建立线性模型
直流等效模型
微变等效模型
确定Q点坐标,
计算交流指标,
弥补“图解法”不足
如 、R i、Ro
2020/5/28
2
非线性电路的分析方法
2. 分析方法的应用 (1)图解法
回路电压方程
该式确定的直线与二极管伏安曲线交点为Q。
图解法避免“解析法”求解超越方程 确定Q点的困难。
2020/5/28
3
非线性电路的分析方法
(通
截止
2020/5/28
6
理想开关 正向导通UD = 0 反向截止 Is = 0
正向导通 硅管:0.7V 锗管:0.2或0.3V
反向截止 Is = 0
4
非线性电路的分析方法 ② 微变等效模型
可用一个动态电阻rd来等效。
式中,(T=300K时) UT 26mV ,IDQ为Q点处的 静态电流值。
2020/5/28
5
非线性电路的分析方法
非线性动态电路的分析
![非线性动态电路的分析](https://img.taocdn.com/s3/m/4576860fde80d4d8d15a4f36.png)
~ u hf (u ) u k 1 k k
~ )] u k 1 u k 0.5h[ f (u k ) f (u k 1
% 赋初值、设定步长。 % 循环体控制。起始时刻:步长:终止时刻。
fk=(-0.1*uk-0.01*uk^2); uk1=uk+h*fk; % 用前向欧拉法进行预报。
C
au bu 2 ,求 t 0 时的电压uC。
S (t 0 )
t 0 时的电流为
du 2 i C C au bu 2 auC buC dt
两边除以-C
uC
u
a b 2 uC uC dt C C
2 两边除以 uC
伯努利 方程
图12.4 例题12.1
q
q
电压电荷 关系曲线
O
uC
O
uC
O
uC
(a)
(b)
(c)
非线性电容
压控型 : 电荷是电压 的单值函数,而电压 是电荷的多值函数 须以电压 为控制量
荷控型:电压是电荷的 单值函数,而电荷是电 压的多值函数 须以电荷 为控制量
单调型 : 电荷与电压之间 是严格单调关系 , 电压与 电荷均可作为控制量 可记作
i4 f 4 (u4 ) f 4 (u1 )
u u u2 Ψ 2 1 3
i2 f 2 (Ψ 2 )
u3 R3i2 R3 f 2 (Ψ 2 )
u1 [ f 2 (Ψ 2 ) f 4 (u1 ) iS ]/ C Ψ 2 u1 R3 f 2 (Ψ 2 )
-1.7763 -1.6793 -1.5897 -1.5067
非线性电路分析
![非线性电路分析](https://img.taocdn.com/s3/m/0a0645ab83d049649b665843.png)
18
3. 非线性电路不满足叠加原理
对于非线性电路来说,叠加原理不再适用了。 例如,将式v = v1 + v2 = V1m sin1t + V2m sin2t 作 用于式i = k v2 所表示的非线性元件时,得到如式(4) 所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
15
若设非线性电阻的伏安特性曲线具有抛物 线形状,即 i = k v2 (2)
式中,k 为常数。
当该元件上加有两个正弦电压 v1 = V1m sin1t和 v2 = V2m sin2t时,即 v = v1 + v2 = V1m sin1t + V2m sin2t(3)
16
可求出通过元件的电流为
5
若满足f[vi1(t)]+f[vi2(t)]= f[vi1(t)+vi2(t)], avo2(t)= f [avi2(t)],则称为具有均匀性,这里 a是常数。若同时具有叠加性和均匀性,即 a1*f[vi1(t)]+a2*f[vi2(t)]=
f[a1*vi1(t)+a2*vi2(t)], 则称函数关系f所描述的系统为线性系统。
k 2 k 2 V1m cos 21t V2m cos 22t 2 2
(5)
17
上式说明,电流中不仅出现了输入电压频率的 二次谐波21和22,而且还出现了由1和2组 成的和频(1+ 2)与差频(1 – 2)以及直流 k 2 2 成 V中所没包含的。 V1。这些都是输入电压 V m 2m 2
非线性电路分析与设计原理
![非线性电路分析与设计原理](https://img.taocdn.com/s3/m/d337cea9b9f67c1cfad6195f312b3169a551ea4f.png)
非线性电路分析与设计原理非线性电路是电子电路中一种重要的电路类型,它具有非线性的特性。
非线性电路在很多电子设备和系统中起着至关重要的作用。
本文将介绍非线性电路的分析与设计原理,包括基本概念、数学模型、常见的非线性电路元件和方法。
1. 非线性电路的基本概念非线性电路是指输出电流或电压与输入电流或电压不呈线性关系的电路。
与线性电路不同,非线性电路的输出信号与输入信号之间存在非线性关系,因此分析和设计非线性电路需要一种不同的方法。
2. 非线性电路的数学模型非线性电路的数学模型可以通过曲线拟合、泰勒级数展开等方法得到。
其中,最常用的数学模型是非线性电路的伏安特性曲线。
伏安特性曲线描述了电路元件的电流与电压之间的关系,是分析和设计非线性电路的基础。
对于复杂的非线性电路,可以使用数值方法或仿真软件进行模拟和分析。
3. 常见的非线性电路元件常见的非线性电路元件包括二极管、晶体管、场效应管、变阻器等。
这些元件在电子设备中广泛应用,在放大、调制、开关等方面起着重要作用。
了解非线性电路元件的特性、参数和使用方法是进行非线性电路分析与设计的基础。
4. 非线性电路的分析方法非线性电路的分析方法有很多种,常用的有直流分析和交流分析。
直流分析主要研究电路在恒定直流条件下的特性,包括电流、电压、功率等。
交流分析则考虑了电路中的频率响应和增益等参数,用于研究电路在变化的交流信号下的工作情况。
5. 非线性电路的设计原理非线性电路的设计原理在很大程度上依赖于具体应用的需求。
设计原理包括选择合适的非线性元件、确定电路拓扑结构、计算电路参数和进行性能优化等。
同时,还需要考虑电路的稳定性、可靠性、功耗等因素。
6. 非线性电路的实际应用非线性电路在电子设备和系统中有广泛的应用。
例如在无线通信中的功放电路、音频放大器、调制电路等。
非线性电路的分析与设计是实现这些应用的关键,有助于提高电路性能和系统的可靠性。
结语非线性电路分析与设计是电子工程领域中的重要课题。
非线性电路分析方法
![非线性电路分析方法](https://img.taocdn.com/s3/m/937bfa44591b6bd97f192279168884868762b88e.png)
在非线性电路中,基尔霍夫电流定律(KCL)和基尔霍夫 电压定律(KVL)仍然适用,用于建立节点电流方程和回 路电压方程。
状态变量的引入
对于含有记忆元件(如电容、电感)的非线性电路,需要 引入状态变量,建立状态方程。
数值求解方法
迭代法
有限差分法
有限元法
通过设定初值,采用迭代算法(如牛 顿-拉夫逊法、雅可比迭代法等)逐 步逼近方程的解。
实验设计思路及步骤
实验目的
01
明确实验的目标和意义,如验证非线性电路模型的正确性、探
究非线性电路的特性等。
实验器材
02
列出进行实验所需的设备和器材,如信号发生器、示波器、电
阻、电容、电感等。
实验步骤
03
详细阐述实验的操作过程,包括搭建电路、设置实验参数、记
录实验数据等。
实验结果分析与讨论
数据处理
描述函数法
通过描述函数将非线性元件的特性线性化,构造一个等效的线性化模型,再根据奈奎斯特稳定判据等方法判断稳 定性。
大信号稳定性分析方法
相平面法
在相平面上绘制非线性电路的状态轨迹,通过观察轨迹的形状和趋势来判断电 路的稳定性。
李雅普诺夫法
利用李雅普诺夫稳定性定理及其推论,构造适当的李雅普诺夫函数,通过分析 函数的性质来判断非线性电路的稳定性。
非线性电路分析方法
• 引言 • 非线性元件特性 • 非线性电路方程的建立与求解 • 非线性电路的时域分析 • 非线性电路的频域分析 • 非线性电路的稳定性分析 • 非线性电路仿真与实验验证
01
引言
非线性电路的定义与特点
定义:非线性电路是指电路中至少有一 个元件的电压与电流之间呈现非线性关 系的电路。
笫4章非线性电路及其分析方法ppt课件
![笫4章非线性电路及其分析方法ppt课件](https://img.taocdn.com/s3/m/013b30617275a417866fb84ae45c3b3567ecdd0b.png)
I0
1
2
i(t) cos )
I1
1
i(t
)
costdt
I
m
sin (1
cos cos )
In
1
i(t) cos ntdt
Im
2(sin
n cos n cos n n (n2 1)(1 cos
sin )
)
2、折线分析法(续4)
上图
▪ 各式等号右边部分除电流峰值 I m 外,其余为流通角
非线性电阻电路的近似解析分析
1、幂级数分析法(输入为小信号)
▪ 将非线性电阻电路的输出输入特性用一个N阶幂级数近似表 示,借助幂级数的性质,实现对电路的解析分析。
例如,设非线性元件的特性用非线性函数i f (v) 来描述。
• 如果 f (v) 的各阶导数存在,则该函数可以展开成以下幂
级数: i a0 a1v a2v2 a3v3
非线性电路与线性电路分析方法的异同点
▪ 基尔霍夫电流和电压定律对非线性电路和线性电路均适用。
▪ 线性电路具有叠加性和均匀性。 非线性电路不具有叠加性和均匀性。
▪ 线性系统传输特性只由系统本身决定,与激励信号无关。 而非线性电路的输出输入特性则不仅与系统本身有关, 而且与激励信号有关。
▪ 线性电路可以用线性微分方程求解并可以方便地进行电路 的频域分析。 而非线性电路要用非线性微分方程表示,因此对 非线性电路进行频域分析与是比较困难的。 ▪对非线性电路(非线性电阻电路)工程上一般采用近似 分析手段--图解法和解析法。
i b0 b2vi2 b3vi3
加在该元件上的电压为:
vi 5cos1t 2 cos2t
(v)
电流 i 中所包含的频谱成份中含有下述频率中的那
非线性电路特性及分析方法
![非线性电路特性及分析方法](https://img.taocdn.com/s3/m/049e245925c52cc58ad6be11.png)
常数
k 2
V1m 2
c
os21t
k 2
V2 m 2
c
os22t
新产生的频率分量
3、非线性电路不满足叠加原理
见上例:若符合叠加定理,输入应为: i kv12 kv22
非线性电路:非线性元件+选频网络
5.3 非线性电路分析法
1、幂级数分析法:小信号时较适用
任 何 非 线 性 元 件 特 性 曲线i f (v), 只 要 该 曲 线 在 某 区 间内 任 意 点VQ附 近
直流电导:又称静态电导,指非线性电阻器件伏安特性曲线上任一点与
原点之间连线的斜率,如图OQ线,表示为: 很显然,go值与外加VQ的大小有关。
go
IQ VQ
tg
交流电导:又称增量电导或微分电导,指伏安特性曲线上任一点的斜率
或近似为该点上增量电流与增量电压的比值,表为:
gd 值也是VQ (或IQ )的非线性函数。
gd
lim
v0
i v
di dv
Q
tg
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较
大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜
率是不同的,故引入平均电导的概念。
g I1m
g除与工作点VQ有关外,还随v(t)幅度的不同而变化。
Vm
2、非线性元件的频率变换作用
式 中 , 各 系 数 为 处 的 各阶 导 数
b0 f (v) vVQ b0 I0 , 是 静 态 工 作 点 电 流 ;
b1
f '(VQ ) 1!
b1 gd , 是 静 态 工 作 点 处 的 电导 , 动 态 电 阻 的 倒 数
非线性电阻电路的分析方法
![非线性电阻电路的分析方法](https://img.taocdn.com/s3/m/9548f5b905a1b0717fd5360cba1aa81144318fbd.png)
目录
• 非线性电阻电路概述 • 非线性电阻电路的分析方法 • 非线性电阻电路的特性分析 • 非线性电阻电路的仿真分析 • 非线性电阻电路的设计优化
01
非线性电阻电路概述
定义与特点
定义
非线性电阻电路是指电路中存在非线性电阻元件的电路。非线性电阻元件是指 其伏安特性曲线不呈线性的电阻元件,即电阻值随电压或电流的变化而变化。
动态响应特性
总结词
动态响应特性描述了非线性电阻电路对 输入信号变化的响应速度和动态过程。
VS
详细描述
非线性电阻电路的动态响应特性与其内部 元件的物理特性和电路结构有关。了解这 一特性有助于分析非线性电阻电路在不同 工作条件下的瞬态行为和稳定性,对于电 路设计和优化具有重要意义。
04
非线性电阻电路的仿真分析
作状态。
图解法适用于具有单一非线性 电阻的简单电路,如单个二极 管或晶体管。
图解法直观易懂,但仅适用于 特定类型的电路,且无法处理 多个非线性电阻的复杂电路。
数值法
数值法是通过数值计算的 方式求解非线性电阻电路 的方法。
数值法适用于具有任意非 线性电阻特性的复杂电路 ,如多个二极管或晶体管 的组合。
解析法适用于具有简单非线性电阻特性的电路,如分段 线性、幂函数等。
它基于电路的数学模型,通过求解代数方程或微分方程 来获得电路的电压和电流。
解析法可以提供精确的解,但求解过程可能较为复杂, 需要一定的数学技巧和计算能力。
图解法
图解法是通过作图的方式直观 地分析非线性电阻电路的方法
。
它通过绘制电压-电流曲线来展 示非线性电阻的特性,并根据 电路的连接关系判断电路的工
可扩展性
设计应具备可扩展性, 便于未来升级和改进。
第10讲非线性电路分析方法
![第10讲非线性电路分析方法](https://img.taocdn.com/s3/m/20ee794fe97101f69e3143323968011ca300f7a5.png)
非线性电路分析方法
g(t)与u1的乘积也会产生频率组合,
nω2±ω1,n=0,1,2,…。
特别的, u1当为低频信号时,频率组 合中频差加大,便于滤波。
注意 线性时变分析的关键是u1足够小。
非线性电路分析方法
10.4 单向开关函数
VD
iD
+
+
u1
-
+ u2
uD u1 u2
H(j)
uo
-
-
图10-2 单二极管电路
f ( EQ u2 )
an
u 2n 2
n0
unan u2n 1
n 1
f (时E变Q 系数u2 ) 2!
时C变nm参 2量an u2n 2
n2
非线性电路分析方法
i I0(t) g(t)u1
I0(t):u1 =0时的电流,
称时变静态电流。
g(t):增量电导在u1 =0时的数值
(2n+1)ω2±ω1,n=0,1,2,…。
非线性电路分析方法
减少输出信号中无用的组合频率分量
思路 (1)从非线性器件的特性考虑。 (2)从电路结构考虑。 (3)从输入信号的大小考虑。
非线性电路分析方法
① 采用具有平方律特性的场效应管代替晶体管。 ② 采用多个晶体管组成平衡电路。 ③ 使晶体管工作在线性时变状态或开关状态,
1 2
2
cos2t
2
3
cos 32t
2
5
cos 52t
(1)n1
(2n
2
1)
cos(2n
1)2t
iD
gD[
1 2
2
cos2t
2
3
cos
32t
非线性电路分析法
![非线性电路分析法](https://img.taocdn.com/s3/m/4876e59e710abb68a98271fe910ef12d2af9a986.png)
工程上,非线性电阻电路除了作用有直流电源外,往往同时作用有时变电源,因此在非线性电阻的响应中除了有直流分量外,还有时变分量。例如:半导体放大电路中,直流电源是其工作电源,时变电源是要放大的信号,它的有效值相对于直流电源小得多(10-3),一般称之为小信号(small-sigal)。对含有小信号的非线性电阻电路的分析在工程上是经常遇到的。
第六章 非线性电路
非线性电路:电路中元件性质(R的伏安特性、L的韦安特性、C的库伏特性)不再是线性关系,即其参数不再是常量。含有非线性元件的电路称为非线性电路。
第一节 非线性元件
一、电阻元件:VAR不符合欧姆定律的电阻元件。
①流控型电阻(CCR):电阻两端的电压是通过其电流的单值函数。VAR如图。
②压控型电阻(VCR):通过电阻的电流是其两端电压的单值函数。VAR如图。
例:用图解法示求电路中的电流i
+-
2)DP图法和TC图法
① DP图法:若某非线性一端口网络的端口伏安关系也称为驱动点(drive point)特性曲线DP确定,则已知端口的激励波形,通过图解法可求得响应的波形。
t
②TC图法:输入与输出是不同端口的电压、电流,其关系曲线称为转移特性(transmission character )TC曲线。已知TC曲线和激励波形,通过图解法可求得响应的波形。见P170
将其在工作点处展开为泰勒级数:
在小信号作用时非线性电阻可看作线性电阻,参数为其在工作点处的动态电阻。
画出小信号等效电路如图:
~
据线性电路的分析方法求出非线性电阻的电压电流增量。
总结以上过程的小信号法步骤:
①只有直流电源作用求解非线性元件的电压电流即静态工作点Q( UQ,IQ)
14非线性电路的分析方法
![14非线性电路的分析方法](https://img.taocdn.com/s3/m/75f42a35ec630b1c59eef8c75fbfc77da2699769.png)
1.4 非线性电路的分析方法如前所述,在小信号放大器的分析和设计中, 通常是采用等效电路法,以便采用经典电路理论来进行分析、计算。
线性电路中,通常信号幅度小,整个信号的动态范围在元器件特性的线性范围内,所以器件的参数均视为常量,可以借助于公式计算电路的性能指标。
“模拟电子技术基础”课程中“低频小信号放大器”以及本课程中 “高频小信号谐振放大器”的分析中都涉及线性电路的分析。
在通信电子线路中,除了小信号放大电路外,有源器件还常工作在大信号或非线性状态。
与线性电路相比,非线性电路的分析和计算要复杂得多。
在非线性电路中,信号的幅度较大时,信号的动态范围涉及元器件特性的整个范围,半导体器件工作在非线性状态。
它们的参数不再是常数而是变量了。
因此,难以用等效电路和简单的公式计算电路了。
此外,在线性、非线性频谱搬移电路中,都涉及非线性电路的分析方法。
非线性电路的分析是本课程中的重要内容。
分析非线性电路时,常用幂级数分析法、指数函数分析法、折线分析法、开关函数分析法和时变参数分析法等。
1.4.1 幂级数分析法常用的非线性元器件的特性曲线大都可以用幂级数来表示。
在小信号运用的条件下,可以将一些非线性元器件的特性曲线用幂级数近似表示,使问题简化。
用这种方法分析非线性电路,虽然存在一定的准确性问题,但可以较好地说明非线性器件的频率变换作用。
因此在小信号检波、小信号调幅等电路分析时常常采用。
下面以图1.4.1所示电路为例,介绍幂级数分析法。
图中二极管是非线性器件,所加信号电压u 的幅度较小,称为小信号;L R 为负载, 0U 是静态工作点电压。
设流过二极管的电流i 函数关系为:)(u f i =若该函数)(u f 的各阶导数存在,则这个函数可以在静态工作点0U 处展开成幂级数(或称为泰勒级数)。
+-+-+-+=300///200//00/0)(!3)()(!2)())(()(U u U f U u U f U u U f U f i +-+-+-+=303202010)()()(U u b U u b U u b b (1-4-1)式中 0)(00U u i U f b ===为工作点处的电流u LR 图 1.4.1 二极管及其伏安特性(a)o(b)Id d )(0/1U u u iU f b === 为过静态工作点切线的斜率,即跨导;220//2d d !21)(U u u iU f b ===kk 0kk d d !1)(U u u iK U f b ===如果取00=U ,即静态工作点选在原点,则式(1-4-1)可写为 ++++=332210u b u b u b b i (1-4-2)从数学分析来看,上述幂级数展开式是一收敛函数,幂次越高的项其系数越小。
非线性电路及其分析方法
![非线性电路及其分析方法](https://img.taocdn.com/s3/m/88c8a87ccfc789eb162dc81b.png)
非线性元件的基本特性
非线性电阻 :二极管、三极管、场效应管
非线性元件
非线性电抗 :磁芯电感、钛酸钡介质电容
这里以非线性电阻(半导体二极管)为例,讨论非线性元件的特性
非线性元件的基本特性
非线性元件的工作特性
线性电阻的伏安特性曲线
半导体二极管的伏安特性曲线
与线性电阻不同,非线性电阻的伏安特性曲线不是直线。
非线性电路的分析方法
分析原则:
对于电路的分析,应当基于其所包含的电子元器件的基本物 理特性及其相互作用关系
在电路的分析与计算中,基尔霍夫定律对于线性电路和非线 性电路均适用,对于非线性电路的求解最终要归结于求应用 基尔霍夫定律得到的非线性方程或方程组的解的问题
非线性电路的分析方法
分析方法:
对非线性电路的分析没有统一的方法。对非线性电路的分析 只能针对某一类型的非线性电路采用适合这种电路的分析方 法。 常见的非线性电路分析方法有:直接分析法、数值分析法、 图解分析法、微变等效电路分析法、分段线性分析法、小信 号分析法等
非线性元件的基本特性
非线性元件的频率变换作用
线性电阻上的电压
正弦电压作用于二极管
与电流波形
产生非正弦周期电流
非线性电阻的输出电流与输入电压相比,波形不同,周期相同。
可知,电流中包含电压中没有的频率成分。
非线性元件的基本特性
例:设非线性电阻的伏安特性曲线具有抛物线形状,即:i kv2 ,式中 k 为常数。
非线性电路的分析方法
数值分析法——应用“牛顿法”求解非线性电阻电路
牛顿法: 对于含有一个非线性电阻元件的电路应用基尔霍夫电压定律可 以得到一个一元非线性方程 f( x) = 0, x 为待求解的变量,一 般为电压或者电流。牛顿法是将f( x) = 0 逐步归结为某种线性 方程来求解。设已知方程 f( x) = 0 有近似根 xk, 将 f( x) = 0 在点 xk处泰勒展开:
第四章、非线性电路及其分析方法
![第四章、非线性电路及其分析方法](https://img.taocdn.com/s3/m/e8a97f0c52ea551810a687bc.png)
q
C= q v
c v v
静态电容: 静态电容:C=q/v
16
高 频 电 子 线 路
16
变容二极管
c=
c0
V 1 + ϕ
γ
c
非线性电容
c0
v
17
动态电容: 动态电容:C=dq/dv
高 频 电 子 线 路
17
线性电感和非线性电感
线性电感 铁芯电感
ϕ
L=
ϕ
i
ϕ
i
i
动态电感: 动态电感:L=dϕ/di ϕ
求解非线性函数方程一般不用解析方法, 求解非线性函数方程一般不用解析方法,可利 用计算机获得数值解, 用计算机获得数值解,但不利于对电路工作物 理过程的了解。 理过程的了解。 对简单非线性电阻电路,采用幂级数或折线法 对简单非线性电阻电路,采用幂级数或折线法 进行近似的解析分析,精度稍差, 进行近似的解析分析,精度稍差,但对电路工 作机理的了解是有利的。 作机理的了解是有利的。
26
高 频 电 子 线 路
26
4.3.2.1 幂级数分析法
如果函数f在静态工作点V 处的各阶导数存在, 如果函数f在静态工作点V0处的各阶导数存在, 则可展开为幂级数, 则可展开为幂级数,即泰勒级数
a0 = f (V0 ) = I 0
a1 = f ′(V0 ) = g
1 dn f an = n! dv n
25
高 频 电 子 线 路
25
4.3.2 非线性电阻电路的近似解析方法 非线性电阻电路的近似解析方法
对非线性电路的分析没有统一的方法。 对非线性电路的分析没有统一的方法。
对非线性电路的分析是困难的, 对非线性电路的分析是困难的,难于找到统一的方 只能针对某一类型的非线性电路, 法,只能针对某一类型的非线性电路,采用适合这 种电路的分析方法。 种电路的分析方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 非线性电路的工程分析方法
(1)幂级数分析法
①外加一个电压信号时
设电压为,则
设电压为,且,则
2.2.1 非线性电路的工程分析方法
(2)折线近似分析法
用一组直线段来代替实际特性曲线。
放大区()截止区()
①转移特性曲线
②
输出特性曲线
2.2.1 非线性电路的工程分析方法
(3)线性时变电路分析法
假设,,且。
泰勒级数:
将在时变工作点
处展开为
减少组合频率分量,加大频率分量的间隔,易于选频。
假设,,且。
2.2.1 非线性电路的工程分析方法
式中,为回路电导。
无用组合频率分量进一步减少,有用信号的能量相对集中。