青海师范大学附属中学数学三角形解答题达标检测(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青海师范大学附属中学数学三角形解答题达标检测(Word版含解析)
一、八年级数学三角形解答题压轴题(难)
1.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).
(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,
①当∠ABO=60°时,求∠AEB的度数;
②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;
(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.
【答案】(1)①135°②∠AEB的大小不会发生变化,∠AEB=135°,详见解析(2)
∠ABO=60°或45°
【解析】
【分析】
(1)①根据三角形内角和定理、角分线定义,即可求解;
②方法同①,只是把度数转化为角表示出来,即可解答;
(2)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果,要对谁是谁的3倍分类讨论..
【详解】
(1)如图1,①∵MN⊥PQ,
∴∠AOB=90°,
∵∠ABO=60°,
∴∠BAO=30°,
∵AE、BE分别是∠BAO和∠ABO的角平分线,
∴∠ABE=1
2
∠ABO=30°,∠BAE=
1
2
∠BAO=15°,
∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.②∠AEB的大小不会发生变化.理由如下:
同①,得∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣1
2
∠ABO﹣
1
2
∠BAO
=180°﹣1
2
(∠ABO+∠BAO)=180°﹣
1
2
×90°=135°.
(2)∠ABO的度数为60°.理由如下:如图2,
∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,
∴∠OAE+∠OAF=1
2
(∠BAO+∠GAO)=90°,即∠EAF=90°,
又∵∠BOA=90°,∴∠GAO>90°,
①∵∠E=1
3
∠EAF=30°,
∠EOQ=45°,∠OAE+∠E=∠EOQ=45°,∴∠OAE=15°,
∠OAE=1
2
∠BAO=
1
2
(90﹣∠ABO)
∴∠ABO=60°.
②∵∠F=3∠E,∠EAF=90°
∴∠E+∠F=90°
∴∠E=22.5°
∴∠EFA=90-22.5°=67.5°
∵∠EOQ=∠EOM= ∠AOE= 45°,
∴∠BAO=180°-(180°-45°-67.5°)×2=45°
∴∠ABO=90°-45°=45°
【点睛】
本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是灵活运用三角形内角和外角的关系.
2.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.
如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为
端点作射线AD,交线段OB于点C(规定0°< ∠OAC < 90°).
(1)∠ABO的度数为°,△AOB(填“是”或“不是”灵动三角形);(2)若∠BAC=60°,求证:△AOC为“灵动三角形”;
(3)当△ABC为“灵动三角形”时,求∠OAC的度数.
【答案】(1)30°;(2)详见解析;(3)∠OAC=80°或52.5°或30°.
【解析】
【分析】
(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“智慧三角形”的概念判断;
(2)根据“智慧三角形”的概念证明即可;
(3)分点C在线段OB和线段OB的延长线上两种情况,根据“智慧三角形”的定义计算.【详解】
(1)答案为:30°;是;
(2)∵AB⊥OM
∴∠B AO=90°
∵∠BAC=60°
∴∠OAC=∠B AO-∠BAC=30°
∵∠MON=60°
∴∠ACO=180°-∠OAC-∠MON=90°
∴∠ACO=3∠OAC,
∴△AOC为“灵动三角形”;
(3)设∠OAC= x°则∠BAC=90-x, ∠ACB=60+x ,∠ABC=30°
∵△ABC为“智慧三角形”,
Ⅰ、当∠ABC=3∠BAC时,°,
∴30=3(90-x),∴x=80
Ⅱ、当∠ABC=3∠ACB时,
∴30=3(60+x)∴x= -50 (舍去)
∴此种情况不存在,
Ⅲ、当∠BCA=3∠BAC时,
∴60+x=3(90-x),
∴x=52.5°,
Ⅳ、当∠BCA=3∠ABC时,
∴60+x=90°,
∴x =30°,
Ⅴ、当∠BAC =3∠ABC 时,
∴90-x =90°,
∴x =0°(舍去)
Ⅵ、当∠BAC =3∠ACB 时,
∴90-x =3(60+x ),
∴x= -22.5(舍去),
∴此种情况不存在,
∴综上所述:∠OAC=80°或52.5°或30°。
【点睛】
考查的是三角形内角和定理、“智慧三角形”的概念,用分类讨论的思想解决问题是解本题的关键.
3.如图①,在△ABC 中,CD 、CE 分别是△ABC 的高和角平分线,∠BAC =α,∠B =β(α>β).
(1)若α=70°,β=40°,求∠DCE 的度数;
(2)试用α、β的代数式表示∠DCE 的度数(直接写出结果);
(3)如图②,若CE 是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α﹣β=30°,求∠DCE 的度数.
【答案】(1)15°;(2)DCE 2αβ-∠=
;(3)75°. 【解析】
【分析】
(1)三角形的内角和是180°,已知∠BAC 与∠ABC 的度数,则可求出∠BAC 的度数,然后根据角平分线的性质求出∠BCE ,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC 的度数,进而求出∠DCE 的度数;
(2)∠DCE =2αβ
- .
(3)作∠ACB 的内角平分线CE′,根据角平分线的性质求出
∠ECE′=∠ACE+∠ACE′=
12∠ACB+12
∠ACF=90°,进而求出∠DCE 的度数. 【详解】
解:(1)因为∠ACB =180°﹣(∠BAC+∠B )=180°﹣(70°+40°)=70°,
又因为CE 是∠ACB 的平分线,