数学建模期末复习

数学建模期末复习
数学建模期末复习

一、 线性规划

1.求解下列线性规划问题: 共20分 max z=2x 1+7x 2-3 x 3

x 1+3x 2+4x 3≤30 (第一种资源限制约束)

x 1+4x 2- x 3≤10 (第二种资源限制约束)

x 1、x 2、x 3≥0

(1) 求出该问题的最优解和最优值;

(2) 第二种资源限量由10变为20,最优解是否改变;若改变请求出新的最优解; (3) 增加一个新变量x 6,其目标函数系数为3,技术消耗系数为???

?

??=????

??212616a a ,最优解是否改变;若改变请求出新的最优解。

解:(1)lingo 程序 max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=10;

最优解(x1 x2 x3)=(10 0 0) 最优值=20

(2) max =2*x1+7*x2-3*x3;

x1+3*x2+4*x3<=30; x1+4*x2-x3<=20;

最优解(x1 x2 x3)=(20 0 0) 最优值=40

或对第一题进行灵敏度分析(第二种资源限量可以在0到30范围内变化,

最优基解不变最优解(x1 x2 x3)=(20 0 0)最优值=40)

(3)max =2*x1+7*x2-3*x3+3*x4; x1+3*x2+4*x3+x4<=30; x1+4*x2-x3+2*x4<=10;

求解得到 最优解(x1 x2 x3 x4)=(10 0 0 0) 最优值=20

2.某校基金会有一笔数额为5000万元的基金,打算将其存入银行。当前银行存款的利率见下表2。取款政策与银行的现行政策相同,定期存款不提前取,活期存款可任意支取。

校基金会计划在5年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在5年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会设计一个基金最佳使用方案,试建立其模型。(15分)

3、某公司打算在三个不同的地区设置4个销售点,根据市场预测部门估计,在不同的地区设置不同的数量的销售点,每月可得到的利润如表2所示。试问在各个地区应如何设置销售点,才能使每月获得的总利润最大?其最大利润是多少?并给出最优方案。(15分)

表2

解:变量 ij x 为0,1变量x ij ≥0,(i =1,2, 3;j=1,2,3,4,5)

目标函数:Max 3

5

1

1

ij ij i j z x c ===

∑∑

约束条件:

5

13

5

11

1,1,2,3

[*(1)]4

ij j ij

i j x i x

j =====-=∑

∑∑

Cij=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17

程序: model : sets :

s/1..3/; d/1..5/; link(s,d):c,x; Endsets

max =@sum (link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j))); ! 同上面相同的目标函数 ; @for (s(i ):@sum (d(j):x(i,j))=1);

@sum (s(i):@sum (d(j):(j-1)*x(i,j)))=4; data :

c=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17; Enddata

结果:Global optimal solution found.

Objective value: 47.00000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

X( 1, 3) 1.000000 0.000000

X( 2, 2) 1.000000 0.000000

X( 3, 2) 1.000000 0.000000

答:地区1设2个销售点,地区2、3个设1个销售点,最大利润为47

4.一个木材储运公司有很大的仓库用以储运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后出售。已知该公司仓库的最大储存量为20万米3,储存费用为(70+100u)千元/万米3,u为存储时间(季度数)。已知每季度的买进卖出价及预计的销售量如表1所示。表1

由于木材不宜久贮,所有库存木材应于每年秋末售完。为使售后利润最大,试建立这个问题的线性规划模型。(15分)

解:xij:第i季度买进,第j季度卖出,(i<=j)

目标函数:Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465-460)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1)*0.1-x13* (70+100*2)*0.1-x14*(70+100*3)*0.1-x23*(70+100*1)*0.1-x24*(70+100*2)*0.1-x34*(70+100* 1)*0.1

约束条件:

X11=100

X12+x22=140

X13+x23+x33=200

X14+x24+x34+x44=160

X12+x13+x14<=20

X13+x14+x23+x24<=20

X14+x24+x34<=20

模型:

Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465-460)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1)*0.1-x13* (70+100*2)*0.1-x14*(70+100*3)*0.1-x23*(70+100*1)*0.1-x24*(70+100*2)*0.1-x34*(70+100* 1)*0.1;

X11=100;

X12+x22=140;

X13+x23+x33=200;

X14+x24+x34+x44=160;

X12+x13+x14<=20;

X13+x14+x23+x24<=20;

X14+x24+x34<=20;

结果:Global optimal solution found.

Objective value: 5160.000

Infeasibilities: 0.000000

Total solver iterations: 0

Variable Value Reduced Cost

X11 100.0000 0.000000

X12 0.000000 0.000000

X22 140.0000 0.000000

X13 20.00000 0.000000

X23 0.000000 7.000000

X33 180.0000 0.000000

X14 0.000000 20.00000

X24 0.000000 27.00000

X34 0.000000 27.00000

X44 160.0000 0.000000

Row Slack or Surplus Dual Price

1 5160.000 1.000000

2 0.000000 15.00000

3 0.000000 10.00000

4 0.000000 5.000000

5 0.000000 5.000000

6 0.000000 3.000000

7 0.000000 20.00000

8 20.00000 0.000000

答:最大利润为:5160,季度冬买进120,本季度卖出100,等到季度夏卖出20 季度春买进140,本季度卖出140 季度秋买进180本季度卖出140 季度秋买进160本季度卖出160

二、 对偶分析

1、求解下列线性规划问题: 共25分 max z=4x 1+x 2+2x 3

8x 1+3x 2+x 3≤2 (第一种资源限制约束)

6x 1+x 2+x 3≤8 (第二种资源限制约束) x 1、x 2、、x 3≥0 (1) 求出该问题的最优解和最优值;

(2) 第一种资源限量由2变为4,最优解是否改变,若改变请求出新的最优解;

(3) 现有新产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,问

该产品的售价至少为多少时才值得生产?

(4) 由于资源缺乏,现有第三种原来并不受约束资源现在受到限制,限制方程为:

10x 4x 3x 2321≤++,问此时最优解是否受到影响,若需要改变,请求出新的最

优解

解:(1)最优解x1=x2=0,x3=2,最优值为4 程序:max =4*x 1+x 2+2*x 3;

8*x 1+3*x 2+x 3<=2 ; 6*x 1+x 2+x 3<=8 ;

结果:Global optimal solution found.

Objective value: 4.000000 Infeasibilities: 0.000000 Total solver iterations: 2

Variable Value Reduced Cost X3 2.000000 0.000000

Row Slack or Surplus Dual Price 2 0.000000 2.000000

(2)

法一:第一题进行灵敏度分析(第二种资源限量可以在0到8范围内变化,最优基解不变最优解(x1 x2 x3)= 0 0 4)最优值=8)

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable Variable Coefficient Increase Decrease X1 4.000000 12.00000 INFINITY X2 1.000000 5.000000 INFINITY X3 2.000000 INFINITY 1.500000

Righthand Side Ranges

Row Current Allowable Allowable RHS Increase Decrease

2 2.000000 6.000000 2.000000

3 8.000000 INFINITY 6.000000

法二:

程序:max =4*x1+x2+2*x3;

8*x1+3*x2+x3<=4;

6*x1+x2+x3<=8 ;

结果:Global optimal solution found.

Objective value: 8.000000

Infeasibilities: 0.000000

Total solver iterations: 2

Variable Value Reduced Cost

X1 0.000000 12.00000

X2 0.000000 5.000000

X3 4.000000 0.000000

Row Slack or Surplus Dual Price

1 8.000000 1.000000

2 0.000000 2.000000

3 4.000000 0.000000

(3)

程序:

max=4*x1+x2+2*x3+x4;

8*x1+3*x2+x3+2*x4<=2;

6*x1+x2+x3+3*x4<=8;

灵敏度分析:x4可由一个单位增加3个单位,即当x4>4时生产,故售价至少大于4

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

Current Allowable Allowable Variable Coefficient Increase Decrease X1 4.000000 12.00000 INFINITY X2 1.000000 5.000000 INFINITY X3 2.000000 INFINITY 1.500000 X4 1.000000 3.000000 INFINITY

Righthand Side Ranges

Row Current Allowable Allowable RHS Increase Decrease

2 2.000000 6.000000 2.000000

3 8.000000 INFINITY 6.000000

(4)最优基解不变,最优解为(x1 x2 x3)= 0 0 2)最优值=4)

程序:max=4*x1+x2+2*x3;

8*x1+3*x2+x3<=2;

6*x1+x2+x3<=8;

2*x1+3*x2+4*x3<=10;

结果:Global optimal solution found.

Objective value: 4.000000

Infeasibilities: 0.000000

Total solver iterations: 1

Variable Value Reduced Cost

X1 0.000000 12.00000

X2 0.000000 5.000000

X3 2.000000 0.000000

Row Slack or Surplus Dual Price

1 4.000000 1.000000

2 0.000000 2.000000

3 6.000000 0.000000

4 2.000000 0.000000

2. 某厂的二种产品I、II分别在四种设备A1 、A2 、A3 、A4上加工。产品所需的机器台时、设备在计划内的有效台时、每件产品利润如下表所示:

(1)请制定一份最佳生产计划,使其总收入达到最大。试建立此问题的数学模型。

(2)求解此问题。(3)若把机器台时出租, 问应如何定价? (20%)解:设生产1型x1 ,生产2型x2,

目标函数:max z=2*x1+3*x2

约束条件:2*x1+2*x2<=12

X1+2*x2<=8

4*x1<=16

4*x2<=12

程序:max =2*x1+3*x2;

2*x1+2*x2<=12;

x1+2*x2<=8;

4*x1<=16;

4*x2<=12;

解得:(x1 x2)=(4 2)

最优值=14

(2)

三、运输问题及整数规划

1.某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表3所示:(共10分)

表3

项目

A B C D

投标者

甲15 18 21 24

乙19 23 22 18

丙26 17 16 19

丁19 21 23 17

解:

程序:model:

sets:

s/1..4/;

d/1..4/;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数;

@for(s(i):@sum(d(j):x(i,j))=1);

@for(d(j):@sum(s(i):x(i,j))=1);

data:

c=15 18 21 24

19 23 22 18

26 17 16 19

19 21 23 17;

Enddata

结果:Global optimal solution found.

Objective value: 70.00000

Infeasibilities: 0.000000

Total solver iterations: 7

Variable Value Reduced Cost

X( 1, 2) 1.000000 0.000000

X( 2, 1) 1.000000 0.000000

X( 3, 3) 1.000000 0.000000

X( 4, 4) 1.000000 0.000000

答:甲承包B乙承包A丙承包C 丁承包D

总费用:为70

2.已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共10分)。(用

结果如下:

程序:model:

sets:

s/1..3/:a;

d/1..3/:b;

link(s,d):c,x;

Endsets

min=@sum(link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j)));! 同上面相同的目标函数;

@for(s(i):@sum(d(j):x(i,j))<=a(i));

@for(d(j):@sum(s(i):x(i,j))=b(j));

data:

a=15 18 17;

b=18 12 16;

c=5 9 2

3 1 7

6 2 8;

Enddata

end

结果:Global optimal solution found.

Objective value: 116.0000

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost X( 1, 1) 0.000000 7.000000 X( 1, 2) 0.000000 13.00000

X( 1, 3) 15.00000 0.000000

X( 2, 1) 18.00000 0.000000

X( 2, 2) 0.000000 0.000000

X( 2, 3) 0.000000 0.000000

X( 3, 1) 0.000000 2.000000

X( 3, 2) 12.00000 0.000000

X( 3, 3) 1.000000 0.000000

答:A1运15个单位到B3 A2运18个单位到B1 A3运16个单位到B2 A3运1个单位到B3

总费用:124

3、石油公司有三个石油贮存点,四个石油需求点。其容量和单位运价如表所示:

制定一个贮存点到需求点的运输计划,使总的运输费用最小。试建立此问题的数学模型并且求解。(10%)

4. 许多非洲国家由于恶劣气候而使农业蒙受损害,联合国组织决定派5位农业专家去帮助5个非洲不发达国家,以提高他们的粮食供应。,每位专家能帮助不同国家提高粮食供应达到不同水平,提高的期望值如下表:

专家\国家 A B C D E

1 1

2 15 1

3 1

4 17

2 11 17 14 16 19

3 1

4 1

5 11 18 18

4 1

5 13 12 17 16

5 13 15 12 15 14

假定每个国家有同样的人口,试提出一个专家指派计划,使粮食供应的增长达到极大。试建立此问题的数学模型并且求解。(10%)

5. 某汽车厂与一些单位签订了生产70辆汽车的合同,按合同规定明年每季度末分别提供10,15,25和20台汽车。该厂各季度的生产能力及生产每辆汽车的成本如表所示:

根据生产能力,该厂能提前完成合同,但因此要付出相应的贮存费。现规定每辆汽车积压一个季度需付0.15万元贮存费。试问该厂应怎样安排各季的生产计划,使总的生产费用最少?试建立此问题的数学模型并且求解。(15%)

解:xij:第i季度生产第j季度交的车辆

目标函数:min=x11*10.8+x12*(10.8+0.15)+x22*11.1+x13*(10.8+0.3)+x23*(0.15+11.1)+x33*11+x14*(0 .45+10.8)+x24*(0.3+11.1)+x34*(0.15+11)+x44*11.3

X11=10

X12+x22=15

X13+x23+x33=25

X14+x24+x34+x44=20

X11+x12+x13+x14<=25

X22+x23+x24<=35

X33+x34<=30

X44<=10

程序:min=x11*10.8+x12*(10.8+0.15)+x22*11.1+x13*(10.8+0.3)+x23*(0.15+11.1)+x33*11+x14*(0 .45+10.8)+x24*(0.3+11.1)+x34*(0.15+11)+x44*11.3;

X11=10;

X12+x22=15;

X13+x23+x33=25;

X14+x24+x34+x44=20;

X11+x12+x13+x14<=25;

X22+x23+x24<=35;

X33+x34<=30;

X44<=10;

结果:Global optimal solution found.

Objective value: 773.0000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

X11 10.00000 0.000000

X12 15.00000 0.000000

X33 25.00000 0.000000

X24 5.000000 0.000000

X34 5.000000 0.000000

X44 10.00000 0.000000

Row Slack or Surplus Dual Price

2 0.000000 -10.95000

3 0.000000 -11.10000

4 0.000000 -11.25000

5 0.000000 -11.40000

6 0.000000 0.1500000

8 0.000000 0.2500000

9 0.000000 0.1000000

答:最小费用为773,第一季度生产25,本季度交10,等到第二季度交15

第二季度生产25,等到第4季度交5

第三季度生产30,本季度交25,等到第4季度交5

第4季度生产10

6. 某服务公司有4名技术员(A1,A2,A3,A4)为四位顾客(B1,B2,B3,B4)提供服务,由于技术员专长不同其服务时间随顾客而变化。具体服务时间由下表给出:

服务时间B1B2B3B4

A1 3 6 7 10

A2 5 6 3 8

A3 2 8 4 16

A48 6 5 9

试为该公司制定一份指派计划,使其总服务时间达到最小。试建立此问题的数学模型并求解。(10%)

解:xij:i技术员服务j顾客,为0,1变量

Cij=3 6 7 10

5 6 3 8

2 8 4 16

精选文库

8 6 5 9

目标函数:4

4

1

1

min *ij ij i j x c ===

∑∑

约束条件:

4

14

1

1,1,2,3,4

1,1,2,3,4

ij j ij i x i x j ======∑

程序:model : sets : s/1..4/;

d/1..4/; link(s,d):c,x; Endsets

min =@sum (link:c*x);

!min=@sum(s(i):@sum(d(j):c(i,j)*x(i,j))); ! 同上面相同的目标函数 ; @for (s(i):@sum (d(j):x(i,j))=1); @for (d(j):@sum (s(i):x(i,j))>=1); data : c=3 6 7 10 5 6 3 8 2 8 4 16 8 6 5 9;

Enddata end

结果:Global optimal solution found.

Objective value: 20.00000 Infeasibilities: 0.000000 Total solver iterations: 8

Variable Value Reduced Cost X( 1, 2) 1.000000 0.000000 X( 2, 3) 1.000000 0.000000 X( 3, 1) 1.000000 0.000000 X( 4, 4) 1.000000 0.000000

答:A1服务B2 A2服务B23 A3服务B1 A4服务B4

四、 目标规划

1、设有一纺织厂可生产衣料和窗帘布共两种产品。该厂两班生产,每周的生产时间为80小时,无论生产哪种产品,该厂每小时的产量都是1千米。据市场预测,每周窗帘布的销售量为70千米,而衣料的销售量为45千米。假定窗帘布和衣料的单位利润分别为2.5千元/千米和1.5千元/千米,上级主管部门对该厂提出了以下四个顺序目标:

(1)尽可能避免开工不足;

(2)尽可能限制每周加班时间不超过10小时;

(3)尽可能满足市场需求;

(4)尽可能减少加班时间。

问该厂应如何安排生产才能使这些目标依序实现,试建立其数学模型。(15分)

解:

约束条件:

11

22

33

44

12800

12900

1700

2450

x x d d

x x d d

x d d

x d d

-+

-+

-+

-+

+-+-=

+-+-=

-+-=

-+-=

QSB---Goal programming

一级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

二级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

三级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

四级目标:min=0,x1=45,x2=45,d1+=10,d3+=30

2、求解如下目标规划的满意解:

?

?

?

?

?

?

?

?

?

=

-

+

=

-

+

+

=

-

+

+

+

+

=

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

,

,

,

,

,

,

,

7

1000

100

100

40

15

10

)

(

)

(

3

3

2

2

1

1

2

1

3

3

2

2

2

2

1

1

1

2

1

3

2

2

1

1

d

d

d

d

d

d

x

x

d

d

x

d

d

x

x

d

d

x

x

d

P

d

d

P

Minw

3.某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物。各种作物每亩需施肥

料分别为0.12吨、0.2吨、0.15吨。预计秋后玉米每亩可收获500千克,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克。农场年初规划时依次考虑以下的几个方面:

P1:年终收益不低于350万元;

P2:总产量不低于1.25万吨;

P3:小麦产量以0.5万吨为宜;

P4:大豆产量不少于0.2万吨;

P5;玉米产量不超过0.6万吨;

P6:农场现能提供5000吨化肥,若不够,可在市场高价购买,但希望高价采购量愈少愈好。试建立该目标规划问题的数学模型(不需要求解)。(16分

五、图与网络及关键路线

六、1.已知四个城市间的距离如下表所示,求从A城市出发,经其余城市一次且仅一

次,最后返回到A城市的最短路径与距离。(18分)

A B C D

A -- 11 20 28

B 12 -- 18 25

C 23 9 -- 10

D 34 32 6 --

解:

2.某企业拟开发一新产品,该新产品投产前工序资料如下表(15分):

工序 A B C D E F G H I J K L 工序

紧前关系/ / A A D C,E F B,G B,G H G I,J,K 紧前关系工时(周) 4 10 3 6 8 2 3 2 8 5 2 1 工时(周)

试求:1、绘制网络图;

2、计算时间参数;

3、确定关键线路。

2.某石油公司其输油管网如下图所示,试求该网络中的最大流(15分)。

.

结果为:

MODEL:

精选文库

sets:

nodes/s,1,2,3,4,t/;

arcs(nodes,nodes)/

s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;

endsets

data:

c= 8 7 5 9 9 2 5 6 10;

enddata

max = flow;

@for(nodes(i)|i #ne# 1 #and# i #ne# @size(nodes):

@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);

@sum(arcs(i,j)|i #eq# 1:

f(i,j)) = flow;

@for(arcs:@bnd(0,f,c));

END

Global optimal solution found.

Objective value: 14.00000

Infeasibilities: 0.000000

Total solver iterations: 4

Variable Value Reduced Cost

FLOW 14.00000 0.000000

C( S, 1) 8.000000 0.000000

C( S, 2) 7.000000 0.000000

C( 1, 2) 5.000000 0.000000

C( 1, 3) 9.000000 0.000000

C( 2, 4) 9.000000 0.000000

C( 3, 2) 2.000000 0.000000

C( 3, T) 5.000000 0.000000

C( 4, 3) 6.000000 0.000000

C( 4, T) 10.00000 0.000000

F( S, 1) 8.000000 0.000000

F( S, 2) 6.000000 0.000000

F( 1, 2) 3.000000 0.000000

F( 1, 3) 5.000000 0.000000

F( 2, 4) 9.000000 -1.000000

F( 3, 2) 0.000000 0.000000

F( 3, T) 5.000000 -1.000000

F( 4, 3) 0.000000 1.000000

F( 4, T) 9.000000 0.000000

Row Slack or Surplus Dual Price

1 14.00000 1.000000

2 0.000000 -1.000000

3 0.000000 -1.000000

4 0.000000 -1.000000

5 0.000000 0.000000

6 0.000000 -1.000000

3、某公司一新产品投产前全部准备工作如下表所示,试绘制网络图、计算时间参数和确定关键路线(25分)。

工作工作内容紧前工作工时(周)

A 市场调查/ 4

B 资金筹备/ 10

C 需求分析 A 3

D 产品设计 A 6

E 产品研制 D 8

F 制定成本计划C、E 2

G 制定生产计划 F 3

H 筹备设备B、G 2

I 筹备原材料B、G 8

J 安装设备H 5

K 调集人员G 2

L 准备开工投产I、J、K 1

QSB---PERT-CPM

高中数学建模论文精选

关于北京市按机动车尾号限行的合理性 北京四中初一年级:胡思行 摘要 本论文就奥运会后,市政府颁布的机动车限行措施,通过数据整理,用函数来表示出限行对环境的好处,对节约能源的好处,另外还有因限行导致的汽油收入的减少。通过函数比较、数据举例,从环保和经济的角度,阐述限行的合理性。 关键词:减少车辆、减少排放、汽油减收。 正文 1、背景:从奥运会前夕开始,北京市实行了单双号限行政策。从效果来看,奥运会期间,北京蓝天比例达到了100%,交通状况明显改善,这些是显而易见的。当然,在限行背后,部分开车族的出行受到了限制,北京市加油站的收入也有所下降。奥运会后,北京继续实施尾号限行措施。这究竟是有利还是无利呢?利显然是有的,而不利也不能忽视。在到达利最大时,也应该尽量减小不利,这才是最佳的决策。 2、提出问题:如何限行,才能既考虑到节能环保,又考虑到经济?政府为什么这样限行? 3、论文概述:用一次函数y=ax+b ,表示出污染物排放与限制车辆数量的关系,汽油减少量与限制车辆数量的关系,汽油收入的减少与限制车辆数量的关系。再在直角坐标系中表示出各个函数,讨论如何限行最好。 4、研究 设减少行驶的车辆数是C ,减少污染物排放量是G ,减少汽油使用量是P ,减少汽油收入是M ;限行比例是x ;油价是P 0元/升。 (1)奥运期间 背景:奥运会期间,北京市共有机动车335万辆,其中公车60万辆、公交车2万多辆,出租车4万多辆。 限行措施:公车减少50%,社会车辆按尾号单号在单日行驶、双号在双日行驶。公交车、出租车、紧急车辆不受限制。 C 日≈50%×60+50%×(335-60-2-4)=164.5(万辆) 相关资料:“好运北京”体育赛事空气质量测试结果昨天公布。专家组经过测算,8月17日至20日采取的交通限行措施,对氮氧化物、一氧化碳、可吸入颗粒物排放的削减量,平均每天减排量分别为87吨、1362吨、4.8吨,这意味着4天限行减排污染物约5815吨。 平均每辆每天汽车排放污染物G 0=5815吨÷50%(298-60-2-4)÷4≈1.25(千克) G 日≈G 0C=1.25×164.5=205.625(万千克) 1.29620100 9 5.1641000=??==S P C P 日(万升) 相关调查: 车型:奥拓都市贝贝 在市区内行驶是5.5L /100 km 城市里6 L /100 km 夏季使用空调在市区内行驶大概9-10 L /100 km ” 普遍百公里油耗量:大概5.5升到7升左右 车型:吉利豪情 在高速路上行驶6.8L /100km

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

高中数学建模论文

数学建模之观影的最佳位置 山东省茌平县第一中学高二(9)班李成真 指导老师于海霞摘要 当今这个时代,电影是一种喜闻乐见的大众艺术,人们喜欢在闲暇时间走进影院,体验其中的喜怒哀乐。而同时,作为一种消费,人们总是希望自己能坐在电影院的最佳位置,使得视觉,听觉得到最好的享受,本文章从看电影时观众的舒适度出发,对影院的座位设计进行了探讨,而我也专门到电影院采集了相关的一些数据,比如大屏幕的长宽,地板倾角θ等,通过查阅文献,我了解到影院座位的舒适程度主要取决于视角α.和仰角β,视角是观众眼睛到屏幕上下边缘的视线的夹角, 越大越好; 仰角是观众眼睛到屏幕上边缘视线与水平线的夹角, 太大使人的头部过分上仰, 引起不适, 一般要求仰角β不超过30。【1】在了解了这些之后,并通过非线性规划,自学了Matlab软件,利用其进行了计算。 关键词 电影院最佳位置仰角视角 Matlab 前言 电影是一种表演艺术、视觉艺术及听觉艺术,利用胶卷、录像带或数位媒体将影像和声音捕捉,再加上后期的编辑工作而成。电影艺术诞生于1895年12月28日。电影于1896年8月传入中国上海。随着人们生活质量的提高,更高的生活品质成为人们的追求,电影作为一个雅俗共赏的消遣方式,越来越受到人们的关注,而中国的票房也逐年升高,除了引进的外国大片获得很高的票房,如《阿凡达》、《泰坦尼克号》等,国产影片也令人刮目相看,《泰囧》、《大闹天宫》、《私人定制》等创造了一个又一个票房奇迹。从中我们看到电影在人们生活中的重要性,也因此,为吸引观众,影院开始引入高科技,如3D

技术、曲面屏幕、IMAX大屏,除此之外,在设计时影院也充分考虑了观众看电影时的舒适度,对于影院的地板倾角,前后排椅子之间的距离,以及观众离屏幕的距离都进行了精心设计。可是尽管如此,不同的位置看电影,感受肯定会有很大差异,根据这个想法,我们进行了数学建模。 建模构想 看电影时的舒适感取决于视角α和仰角β,所以在选取最佳位置时要综合考虑两者,视角是观众眼睛到屏幕上下边缘的视线的夹角, 越大越好; 仰角是观众眼睛到屏幕上边缘视线与水平线的夹角, 太大使人的头部过分上仰, 引起不适,一般要求仰角β不超过30。所以如果坐的太靠前,导致仰角太大,除了脖子会感到酸痛外,视野及画面感也不好,甚至会感到头晕。而坐的太靠后,又可能会觉得画面不是那么的清晰,甚至被前面的观众挡住视线,看不到屏幕的最下面。所以,看电影挑选位置是一门学问。 设影院的屏幕高为h,上边缘距离地面高为H,影院的地板线通常与水平线有一个倾角θ,第一排和最后一排与屏幕水平距离分别为d, D, 观众的平均座高为c (指眼睛到地面的距离), 为了得到这些基本参数,我专门来到电影院采集数据,询问了电影院工作人员,在说明来意之后,她热心的为我解答甚至专门拿出了电影院建设之初的相关材料,而我也得知了参数h = 1.8, H= 5, d= 4.5, D= 19,c = 1.1(单位m )。地板线的倾角θ= ,并且查出电影院一般的中等

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

高中数学建模与教学设想

高中数学建模与教学设想 "text-align:center;"> [摘要]为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应 用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。 论文关键字:数学建模数学应用意识数学建模教学 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中, 一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻 辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21 世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济 和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。 目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我 国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通 高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本 身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多 重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学 建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必 要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题 的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建 模活动,将有效地培养学生的能力,提高学生的综合素质。 数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多 学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性"; "数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对 于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

[实用参考]高中常见数学模型案例.doc

高中常见数学模型案例 中华人民共和国教育部20KK 年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数P 与按新价让利总额P 之间的函数关系是___________。 分析:欲求货物数P 与按新价让利总额P 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 4 5=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路P (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程P 和时间t 得函数关系式P (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离Pkm 与时间th 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间th 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。 解:设小矩形长为P ,宽为P ,则由图形条件可得:l y x x =++911π ∴x l y )11(9π+-= 要使窗所通过的光线最多,即要窗框面积最大,则: )44(32)442(644])11([322622 222 2ππππππ+++-+-=+-+=+=l l x x lx x xy x s

全国大学生数学建模竞赛模版(完整版)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 内容要点: 关键词:结合问题、方法、理论、概念等

一、问题重述 内容要点: 1、问题背景:结合时代、社会、民生等 2、需要解决的问题 问题一: 问题二: 问题三: 二、问题分析 内容要点:什么问题、需要建立什么样的模型、用什么方法来求解 三、模型假设与约定 内容要点: 1、根据题目中条件作出假设 2、根据题目中要求作出假设 写作要求: 细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。将一些问题理想化、简单化。 1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解 2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考 3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容 四、符号说明及名词定义 内容要点:包括建立方程符号、及编程中用到的符号等

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模做题步骤及注意事项【数模经验谈】

拿到建模题目以后,按照一下流程去分工合作 红色表示步骤蓝色表示注意事项 一、第一天上午 1. 各自对立思考1个小时,主要分析题目的问题背景,已知条件,建模目的等问题。至少每人必须提出10到15个问题,并回答自己的问题。 2. 重点用语言的形式表述清楚问题的结构,即用语言描述自己的初步模型。(要自己提出的模型,可能就会产生一些假设。) 3. 再和队友讨论。讨论1个小时。形成自己团队的初步模型,同样是以语言形式描述的。 4. 接下来查找一些文献,讨论修改团队的模型,形成一个最终较完整的模型。并根据讨论最后形成对问题的统一认识,形成问题重述部分的内容。 注:1)如果问题有好几问,可以重点讨论第一个问题,但是也要考虑其他问题与第一问的关系!(一般建模中的几问都是有一定联系得);也可以同时考虑,同时建模。 2)注意参考文献的处理,参考别人的方法一定要在文中注明!这也是要求一直留意查找文献的目的。【随时记录】 二、第一天下午 将自己团队的模型数学化,用数学符号和数学语言公式的形式,表述自己的模型。此时会继续需要查文献,产生一些假设条件,并产生自己论文中的符号说明。

三、第二天上午 一个人开始写文章,语言重在逻辑清晰,叙述简洁明了!图、表准确。文章格式正确、内容完整。(问题重述,问题分析,模型假设,符号说明,模型形式,以及参考文献都已经在第一天的讨论中有了一定的共识。) 其余两个人(在不清楚时3人讨论),开始考虑第一个问题的模型的求解,即研究模型的解法。查找文献或者自己提出对模型的求解方法。此时可能需要继续对第一天建立的模型进行修改,简化等处理。(讨论后,及时告诉写文章的队友)。 四、第二天下午 写文章的继续。 编程的开始编程计算模型。此时,可能需要根据所采取的算法对模型的表述重新修改。 另一人帮忙编程,并开始考虑第二个、第三个问题的模型及求解方法。并一起讨论,形成共识,写进文章中。(此时,同样可能需要查文献,符号表示,产生假设)【注意是两个人求解,一个MATLAB,一个MATHEMATICA】 五、第三天上午 应该给出所有问题的计算结果了(最迟下午6点前)。 产生论文初稿。 六、第三天下午 进行模型的分析。主要是分析编程计算出的解的现实意义等,通过图、

相关文档
最新文档