近世代数试卷教学内容

合集下载

近世代数杨子胥最新版题解_答教学文案

近世代数杨子胥最新版题解_答教学文案

近世代数第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如AοB=E与AοB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解1)略2)例如规定4.5.略近世代数题解§1. 51. 解1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.a,对G 定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下. 例2 设G 是四元数群.则显然 是G 的两个子群且易知反之亦然.三、习题2.3解答 1.证 赂.2.证 必要性显然,下证充分性.设子集H 对群G 的乘法封闭,则对H 中任意元素a 和任意正整数m 都有a m ∈H . 由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知 ⎪⎪⎭⎫⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b 的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证由高等代数知,与所有n阶可逆方阵可换的方阵为全体纯量方阵,由此即得证.5.证因为(m,n)=1,故存在整数s,t使ms十n t=1.由此可得6.7.§2. 4 循环群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a有且仅有一个k 阶子群kna.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有两个生成元,n 阶循环群a 有)(n ϕ个生成元而且a k 是生成元⇔(k οn )=1);2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n (n =1,2,…)阶循环群,都与n 次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答 1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群 G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M 上的变换群G 含有M 的单射或满射变换.则G 必为M 上的一个双射变换群,即G 中的变换必全是双射变换)比有些书上相应的定理(若集合M 上由变换作成的群G 含有M 的恒等变换,则G 中的变换必全为双射变换)大为推广.因为后者要求G 包含恒等变换(一个特殊的双射变换),而前者仅要求G 包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M 上的任何一个非双射变换群不仅不能包含恒等变换,而且连M 的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M 上的任何双射变换群G 的单位元必是M 的恒等变换.3.集合M 上的全体变换作成的集合T (M ),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M >1时T (M )只能作成半群,而不能作成群.三、习题§2. 5解答1. 解 作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解 G 作成群:因为易知4月15号4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k —循环与A 有相反奇偶性.2)k —循环的阶为k .又(i 1,i 2…i k )-1=(i k ,…,i 2,i 1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换σ,τ求置换στσ-1的方法.n次对称群s n的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1)置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2)在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3)置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

近世代数第三版课程设计

近世代数第三版课程设计

近世代数第三版课程设计简介近世代数是现代数学的一个重要分支,它涉及到很多方面,如群论、环论、域论等等。

而近世代数第三版课程则主要讲解了开放群的基本概念、同态、同构以及群等基础知识,并讨论了有限群的结构。

这门课程旨在培养学生对群、环、域的具体概念、基础理论,以及其应用的深刻认识和熟练运用能力。

本文档将对近世代数第三版课程的教学设计和实施进行详细阐述。

教学目标本课程的教学目标主要包括以下方面:1.熟悉开放群的定义及其基本性质;2.掌握同态、同构的概念及其在开放群中的应用;3.熟练掌握有限群的分类及其内部结构;4.培养学生运用代数学工具解决实际问题的能力。

教学内容本课程将涵盖以下主要内容:1.群的基本概念:群、子群、商群、正规子群、左余元、右余元、循环群。

2.开放群的基本性质:陪集、拉格朗日定理、同余原理、群同态、群同构。

3.有限群的分类:Sylow定理、Cauchy定理、Frattini定理、群的自同构。

4.代数学的应用:密码学、群论在物理、化学领域的应用。

教学方法1.讲授法:讲授法是本课程教学中的主要方法,教师将对内容进行讲解,帮助学生明确概念和原理。

2.解题法:这种方法通过例题和习题的讲解和引导,帮助学生掌握具体的解题方法及技巧,提高能力。

3.讨论法:讨论法是一种较为灵活的教学方法,它可以促进学生自主学习和探究,培养其独立思考和创新能力。

4.实验法:通过实验和模拟实践的方法,帮助学生更加深入理解和应用所学知识。

教学评价本课程的教学评价主要包括以下方面:1.作业:作业的设计将有助于学生巩固和深化所学内容,提升其应用能力和解决问题的能力。

2.考试:考试旨在检验学生对所学知识的掌握程度和应用能力,既考察知识点的掌握,也注重习题应用能力。

3.评估方式:教师将综合考虑作业、考试等方面的表现,结合学生平时表现,以及思维能力、创新能力等方面的考虑,进行综合评估。

总结本文档主要对近世代数第三版课程的教学设计和实施进行了详细阐述,包括教学目标、教学内容、教学方法、教学评价等方面。

《近世代数(I)》教学大纲

《近世代数(I)》教学大纲

安徽师范大学近世代数精品课程内容简介教学大纲教学队伍讲义教案电子课件习题试题教学录像历史资料网文精选分支学科教学资源返回首页《近世代数(I)》教学大纲课程性质:专业基础课先修课程:高等代数总学时:51 学时学分: 3理论学时:51 学时实验或讨论学时:无开课学院:数学计算机科学学院适用专业:数学与应用数学大纲执笔人:吴俊大纲编写时间:2006年8月教研室主任审核:教学院长审定:一、说明1. 课程的性质、地位和任务近世代数(又名抽象代数)是现代数学的重要基础,也是高等代数的一门后续课程。

近世代数不仅在数学中占有极其重要的地位,而且具有丰富的实际应用背景,在相关学科中有着广泛的应用,对其他学科产生了越来越大的影响,如计算机科学、信息科学、近代论物理与近代化学等。

理解和掌握近世代数的基本内容、方法和理论,对于学生加深理解数学的基本思想和方法,提高抽象思维能力,培养数学修养都有重要意义。

近世代数的基本概念、理论和方法,是基础数学和应用数学的重要基础,是每一个数学工作者所必须的基本数学素养之一。

2. 课程教学的基本要求近世代数的基本内容包括群、环、域等代数系统的基本结构,要求学生能了解群的各种定义,循环群,n阶对称群,变换群,陪集,不变子群的定义及其性质,了解环、域、理想、唯一分解环的定义。

能够计算群的元素的阶,环中可逆元,零因子、素元,掌握Lagrange定理,群、环同态和同构基本定理,掌握判别唯一分解环的方法。

通过本课程的学习,可以为其它近代数学知识提供必须的代数学基础,进一步提高学生的抽象思维能力、逻辑思维能力、运用代数方法解决实际问题的能力。

3. 本课程的重点与难点重点是群、环、域的概念与性质。

由于本课程是理论性较强的学科,且教学时数所限,学生接受与掌握群、环、域的概念较为困难。

二、课堂教学时数及课后作业题型分配(含数量)章目教学内容教学时数教学方式或手段课后作业思考题练习题第一章基本概念 6 讲授√第二章群论18 讲授√√第三章环与域15 讲授√√第四章整环里的因子分解12 讲授√√合计51三、正文•基本概念【教学目的】•使学生掌握集合的基本概念;•使学生掌握代数运算的概念;•使学生掌握映射、单射、满射、一一映射以及变换的概念;•使学生掌握同态、同构、自同构的概念;•使学生掌握等价关系与分类的概念与思想。

《近世代数》教案1

《近世代数》教案1

《近世代数》教案1《近世代数》教案1教案一:近世代数概述一、教学目标1.了解近世代数的起源和发展历程;2.理解近世代数的基本概念和基本运算;3.掌握近世代数的基本定理和性质;4.培养学生的逻辑推理和证明能力。

二、教学内容1.近世代数的起源和发展历程;2.近世代数的基本概念和基本运算;3.近世代数的基本定理和性质。

三、教学重点和难点1.理解近世代数的基本概念;2.掌握近世代数的基本运算;3.理解和运用近世代数的基本定理和性质。

四、教学方法1.前置知识导入:利用历史故事或问题引入近世代数的起源;2.概念解释与讨论:通过引导学生,共同探讨近世代数的基本概念;3.理解和运用:通过实际问题,让学生理解和运用近世代数的基本定理和性质;4.案例分析和练习:通过案例分析和练习,巩固学生对近世代数的理解和应用能力;5.归纳总结:通过归纳总结,整理和进一步理解所学的知识。

五、教学过程1.前置知识导入(10分钟)-引入:《近世代数》是一门重要的数学学科,它是现代数学的基石之一、那么,你们以为近世代数是从什么时候开始出现的呢?我们来听听关于近世代数起源的故事吧。

-故事:公元16世纪,意大利的一位数学家卡尔达诺被人请到一个庄园解决一个心理障碍的问题,他最终发现了它的根源与代数方程式求解有关。

这个故事揭示了近世代数起源的一部分,下面我们一起来探索更多关于近世代数的知识。

2.概念解释与讨论(20分钟)-定义:近世代数是一门研究代数结构及其性质的学科,它主要研究了代数系统的运算规则和代数方程式的求解方法。

-基本概念:群、环、域是近世代数中的基本概念。

群是指一个非空集合和一个在这个集合上的运算,满足封闭性、结合律、单位元和逆元的性质;环是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性和结合律;域是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性、结合律、单位元和可逆性。

近世代数教学大纲

近世代数教学大纲

混凝土加气块标准
1、砌块砌筑时,应上下错缝,搭接长度不宜小于砌块长度的1/3。

2、砌块内外墙墙体应同时咬槎砌筑,临时间断时可留成斜槎,不得留“马牙槎”。

灰缝应横平竖直,水平缝砂浆饱满度不应小于90%。

垂直缝砂浆饱满度不应小于80%。

如砌块表面太干,砌筑前可适量浇水。

3、地震区砌块应采用专用砂浆砌筑,其水平缝和垂直缝的厚度均不宜大于15mm。

非地震区如采用普通砂浆砌筑,应采取有效措施,使砌块之间粘结良好,灰缝饱满。

当采用精确砌块和专用砂浆薄层砌筑方法时,其灰缝不宜大于3mm。

4、后砌填充砌块墙,当砌筑到梁(板)底面位置时,应留出缝隙,并应等待7d后,方可对该缝隙做柔性处理。

5、切锯砌块应采用专用工具,不得用斧子或瓦刀任意砍劈。

洞口两侧,应选用规格整齐的砌块砌筑。

6、砌筑外墙时,不得在墙上留脚手眼,可采用里脚手或双排外脚手。

7、砌体结构尺寸和位置允许偏差。

近世代数教学PPT(精品)

近世代数教学PPT(精品)

两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
近世代数是在19世纪末至20世纪初发展起来的 数学分支。 1930年荷兰数学家范德瓦尔登(B.Lvan der Wearden 1930-1996) 根据该学科领域几位创始 人的演讲报告,综合了当时近世代数的研究成果, 编 著了《近世代数学》(Moderne Algebra)一书,这 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。
近世代数理论的三个来源

《近世代数》教案1(含绪论)

《近世代数》教案1(含绪论)

韶关学院课程教学设计( 2 学时)教学过程、内容(含教与学的方法)绪论一、抽象代数发展简史1、代数的组成代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分.初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程(组)是否可解,如何求出方程所有的根(包括近似根),以及方程的根有何性质等问题.抽象代数又称近世代数,它产生于十九世纪.抽象代数是研究各种抽象的公理化代数系统的数学学科.由于代数可处理实数与复数以外的集合,例如向量、矩阵超数、变换等,这些集合分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数.抽象代数,包含有群论、环论、域论、模论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科.抽象代数已经成了当代大部分数学的通用语言.2、高次方程的根式解问题什么叫代数?代数的基本问题是什么呢?代数就是字母运算学,这是法国数学家韦达的观点,也是关于代数的第一种观点.到了15-16世纪,代数学的中心问题开始转移到代数方程理论上来了,(关于代数的观点发生了变化,将代数定义为代数方程理论).我们知道,一次、二次的方程有根式解,三次和三次以上的方程是否有根式解呢?经过数学家们的努力,1542年意大利数学家卡当给出了三次方程的求根公式.这个公式实际上是泰塔格利亚发现的,卡当恳切要求泰塔格利亚把求解公式告诉他,并发誓对他保密.但卡当不顾自己的誓言,把这个方法的叙述发表在他的《重要的艺术》里.所以这个公式不应该叫卡当公式,而应叫泰塔格利亚公式.在三次方程成功地解出之后,接着卡当的学生费拉里成功的解出了四次方程.三次、四次方程有求根公式,那么五次和五次以上的方程是否有公式解呢?世界上许多数学家试图找出五次和五次以上的方程的公式解,经过了三百年没有成功.在这期间,德国数学家高斯在1799年他的博士论文中作出了代数基本定理的证明.“每个次数 1的复系数多项式在复数域中有一个根.”探求四次以上的方程的求解问题,多少数学家作了努力,但都失败了.直到1824年轻的数学家阿贝尔证明了“高于四次的一般方程用根式求解的不可能性”.这样,代数的这个问题才告一个段落.阿贝尔(1802-1829)是一个挪威的数学家,出生(1802.8.5)于一个穷牧师家里,兄弟姐妹七个,他排行第二,小学教育基本上是由父亲完成的.中学时是一个比阿贝尔大七岁的数学教师,名叫洪波义.此人学过一些纯粹数学,对中学数学很熟,他采取让学生发挥独立的工作能力的教学方法,给一些适合他们的数学问题鼓励学生们去解决.第一学年来,洪波义在学生的报告书上对阿贝尔的评语是:“一个优秀的数学天才”.他私人教阿贝尔高等数学.在中学读书的最后一年,他开始考虑当时著名的难题:五次方程的一般解问题.他按高斯对二次方程的处理方法,起初,阿贝尔以为他已经解决了用根式解一般的五次方程的问题.他的方法洪波义看不懂,也不知道有什么地方错,因此便拿去找教授看,结果也没有人了解他的东西.一位叫达根的教授劝告阿贝尔研究一些椭圆积分.后来阿贝尔用实际例子来验证,证明他的发现是错误的.当阿贝尔18岁时父亲去世了,大哥精神不正常,家庭生活十分贫困.阿贝尔上大学是由洪波义出面,希望几个教授帮忙,结果教授们和朋友们都把薪水分出一点,凑起来给阿贝尔作为学习和生活的经济来源.阿贝尔自己还写信给当局提出要求,幸运地获得了免费的宿舍.1824年,阿贝尔重新考虑了一元五次方程的根式解问题.他试图证明这个解答是不可能的.首先他成功的证明了下述定理:“可用根式求解的方程的根能以这样的形式给出,出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理函数.”然后阿贝尔用这个定理证明了高于四次的一般方程用根式求解的不可能性.阿贝尔的家境贫困,大学毕业后,他靠为一些学生补习功课而生活,好心的朋友克勤为了替阿贝尔谋求一个职业而尽力奔走,终于在1828.10.8写信告诉阿贝尔“职业是肯定有了”.但克勤不知道,我们的阿贝尔在三月肺结核病病情恶化了,4月6日,这世上少有的天才就这样怀着沉重的心情,在他未婚妻旁离开了人间.克勤的消息来迟了.“阿贝尔留下的工作,可以使以后的数学家足够忙碌150年!”法国数学家厄米特说:这话并不夸张.在和阿贝尔同时代的一个法国青年伽罗华读到了阿贝尔的著作,不到20岁,就在代数方程论上作出了卓越的贡献,创立了“伽罗华理论”.他使阿贝尔的思想得到了更好的发展.3、伽罗华和他的理论的兴起法国数学家伽罗瓦〔1811-1832〕在1832年运用“群”的思想彻底解决了用根式求解代数方程的可能性问题.他是第一个提出“群”的思想的数学家,一般称他为近世代数的创始人.伽罗瓦使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期.伽罗瓦是巴黎附近一个小镇镇长的儿子,他积极参加学生运动.伽罗华在中学时遇到了一位叫里沙的好老师(数学家),在里沙的指导下开始学习阿贝尔的著作,给出5次及5次以上方程有根式解的充要条件.他的论文三次交到法兰西科学院评审(柯西、付里叶、波松).最后是波松“完全不能理解!”.伽罗瓦是1832年5月31日死于爱情决斗.伽罗瓦提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念.后来凯莱对群作了抽象定义(Cayley,1821-1895).他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响.“过早的抽象落到了聋子的耳朵里”.直到1878年,凯莱又写了抽象群的四篇文章才引起注意.1874年,挪威数学家索甫斯·李(Sophus Lie, 1842-1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群.1882年,英国的冯·戴克(von Dyck,1856-1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念.1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体.20世纪初给出了群的抽象公理系统.群论的研究在20世纪沿着各个不同方向展开.例如,找出给定阶的有限群的全体.群分解为单群、可解群等问题一直被研究着.有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决.伯恩赛德(Burnside,1852-1927年)曾提出过许多问题和猜想.如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的.前者至今尚未解决,后者于1963年解决.舒尔(Schur,1875-1941)于1901年提出有限群表示的问题.群特征标的研究由弗罗贝尼乌斯首先提出.庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学.”这当然是过分夸大了.1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数.第二年,Grassmann推演出更有一般性的几类代数.1857年,Cayley设计出另一种不可交换的代数——矩阵代数.1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义.4、诺特和抽象代数学的兴起有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是爱米·诺特(1882-1935), 1882年3月23日生于德国埃尔朗根,其父亲麦克斯是一位大数学家,1900年入埃朗根大学(上千名学生中只有两位女生),1907年在数学家哥尔丹指导下获博士学位.诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响.1907-1919年,她主要研究代数不变式及微分不变式.她在博士论文中给出三元四次型的不变式的完全组.还解决了有理函数域的有限有理基的存在问题.对有限群的不变式具有有限基给出一个构造性证明.她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起. 1922年,诺特终于被聘为教授,但政府不承认.1920-1927年间她主要研究交换代数与“交换算术”.1916年后,她开始由古典代数学向抽象代数学过渡.1920年,她已引入“左模”、“右模”的概念.1921年写出的《整环的理想理论》是交换代数发展的里程碑.建立了交换诺特环理论,证明了准素分解定理.1926年发表《代数数域及代数函数域的理想理论的抽象构造》,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件.诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变.诺特当之无愧地被人们誉为抽象代数的奠基人之一.1927-1935年,诺特研究非交换代数与“非交换算术”.她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上.后又引进交叉积的概念并用决定有限维伽罗瓦扩张的布饶尔群.最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数.诺特的学生范.德.瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构.这就发生了质变.由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支.人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展.诺特的思想通过《近世代数学》得到广泛的传播.她的主要论文收在《诺特全集》(1982年)中. 1955年范.德.瓦尔登的《近世代数学》改版为《代数学》(一、二册)(瓦尔登后来研究数学史).抽象代数的另一部分是域论.1910年施泰尼茨(Steinitz,1871-1928)发表《域的代数理论》,成为抽象代数的重要里程碑.他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得.环论是抽象代数中较晚成熟的.尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物.韦德伯恩(Wedderburn,1882-1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环.环和理想的系统理论由诺特给出.她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论.诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础.诺特对环和理想作了十分深刻的研究.人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年.1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论.到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子.这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映.到了20世纪60年代,美国代数学家贾柯勃逊编著的《抽象代数学》(一、二、三册)代替了瓦尔登的《代数学》,到了20世纪70-80年代贾柯勃逊改版为《基础代数学》(一、二册)分别于1974年和1980年出版.5、代数是研究代数系统的科学抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响.抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展.经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位.而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响.泛代数、同调代数、范畴等新领域也被建立和发展起来.中国数学家在抽象代数学的研究始于30年代.当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著.现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的.在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量.可以说,代数已经发展成为一门关于形式运算的一般学说了.一个带有形式运算的集合称为代数系统,因此,代数是研究一般代数系统的一门科学.现代数学的基础课程正在更新.50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体.时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析.现代数学理论是由这三根支柱撑着的.现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视21世纪数学的特征.参考文献:[1] 乐秀成, 刘宁. 青年数学家、战士和人:E.伽罗瓦[J]. 自然辩证法通讯, 1980,(06)[2] 胡作玄. 爱米·诺特与抽象代数学的兴起[J]. 自然辩证法通讯, 1983,(02)二、近世代数的特点、意义与学习方法1、近世代数的特点代数学经历了两个转变,它有三种观点:第一种观点:代数是字母运算学(这是韦达的观点);第二种观点:代数是代数方程理论;第三种观点:代数是研究各种代数系统(即研究群、环、域等的结构与性质).第一、第二是具体的,第三是抽象的,它的对象不一定是数,如向量、矩阵、线性变换等.由于它理论的抽象,对象的广泛,因而就带来应用的广泛性.近世代数的大多数概念是采取公理化定义,这就使它的理论更严谨,许多学科都用到近世代数的思想和方法.近世代数具有以下特点:概念的抽象性、理论的严谨性、应用的广泛性.2、学习近世代数的意义一是数学类专业的基础课程,后继课程学习的需要,更高一级学校学习的准备;二是指导中学教学与实践,处理好中学数学的有关教材内容,能在高观点下看清中学数学的来龙去脉;三是培养同学的科学思维、逻辑推理和运算的能力,以及辩证唯物论观点.3、学习方法与要求学习的四步曲:预习、听课(笔记)、复习、练习;①预习:认真看书,做好预习工作,带着问题来听课,做到有的放矢;②听课(笔记):认真听课,做好笔记,笔记的形式可以多样,与书上不同的;③复习:认真做好复习工作,多思考、多提问题.问题可以自问自答;有问题要自己先想想,再问老师.要扣概念,找模型;④练习:复习后再练习、作业,作业要独立完成,不要抄题解、不要抄别人的.请记住:预习、听课(笔记)、复习、练习,再预习等,这就是学习上的良性循环.我们一定要做到学习上的良性循环,克服恶性循环,牢牢掌握学习的主动权,努力做到:概念准、理论熟、思路活、计算快.教材:张禾瑞著的《近世代数基础》.参考书:吴品三的《近世代数》;熊全淹的《近世代数》;谢帮杰的《抽象代数学》;范.德.瓦尔登的《代数学》(一、二册);贾柯勃逊的《基础代数学》(一、二册);[美]G.伯克霍夫、S.麦克莱恩 著,王连祥、徐广善译 《近世代数概论》.三、近世代数的教学安排51课时,讲四章内容,共135页,每次课约7页.教学安排如下:第一章 基本概念 10课时(含绪论),含习题2课时;第二章 群 论 18课时,含习题4课时;第三章 环与域 16课时,含习题4课时;第四章 整环里的因子分解(2节) 5课时,含习题1课时;复习 2课时.教学内容及各章课时(见教学进度表)并参考“《近世代数》课程标准”.第一章 基本概念在普通代数里,我们计算的对象是数,计算的方法是加、减、乘、除.数学渐渐进步,我们发现,可以对于若干不是数的事物,用类似普通计算的方法加以计算.这种例子我们在高等代数里已经看到很多,例如对于向量、矩阵、线性变换等就都可以进行运算.近世代数(抽象代数)的主要内容就是研究各种代数系统,即带有运算的集合.因此我们的讨论就从最基本的概念——集合、映射开始.§1.1 集 合一、集合及其表示集合是一个不加定义的基本概念,它描述性的定义为:作为整体看的一堆东西若干个(有限或无限多个)固定事物的全体组成一个集合的事物叫做这个集合的元素.注意:1.强调“全体”,2.确定集合的表示法:1.列举法;2.性质法;3.图象法集合用大写拉丁字母A ,B ,C ,…来表示.元素用小写拉丁字母a ,b ,c ,…来表示.集合的属于与不属于的表示:a A∉∈,a A二、若干记号1.数集:N,Z,Q,R,C,*Z,*Q2.逻辑:全称号:∀(对于任意)特称号:∃(存在),|∃(存在唯一)若A则B:A B⇒A等价于B:A B⇔或者:∨,而且:∧三、空集合、子集与集合的相等空集合:一个没有元素的集合,记为∅子集:设A,B是两个集合,若x B x A⊆.∀∈⇒∈,则称B是A的子集,记为B A 空集合是任何集合的子集,即∀集合A,均有A∅⊆.为此需证明命题“x x A∀∈∅⇒∈”,但这个前提不成立.任一命题,只要前提不真,那么,无论结论如何,整个命题被认为成立,故有A∅⊆.真子集:若集合B是集合A的子集,而且至少有一个A的元不属于B,则称B是A的真子集,记为B A⊂.集合的相等:若集合A和集合B所包含的元素完全一样,则称集合A等于集合B,记为A B=⇔⊆∧⊆.=.充要条件:A B A B B A四、集合的运算、幂集合、卡氏积设A,B是全集U的两个子集,则A,B的交、并、差为:⋂=∈∧∈{|}A B x x A x B第 11 页 {|}A B x x A x B ⋃=∈∨∈\{|}A B x x A x B =∈∉但性质:交换律,结合律,分配律幂集合:设A 是给定的两个集合,A 的所有子集所组成的的集合叫做A 的幂集合,用A 2表示.例如:设{a b c}A =,,,则A 2={{a}{b}{c}{a b}{b c}{a c}{a b c}}∅,,,,,,,,,,,,. 卡氏积:设1A ,2A ,…,n A 是n 个集合集合12n 12={|(,,,),,1,2,,}n i i A A A x x a a a a A i n ⨯⨯⨯=∈= 称作集合1A ,2A ,…,n A 的积,这也是一个集合.当12n A A A === 时,记为n A .。

近世代数教学大纲

近世代数教学大纲

近世代数教学大纲一、引言近世代数是数学中一个重要的分支,涉及到代数方程、群论、域论、线性代数等内容。

近世代数的研究对于推动数学的发展以及应用于其他学科具有重要的意义。

近年来,随着科学技术的快速发展,近世代数的应用也越来越广泛。

为了培养学生对近世代数的深入理解,本文将从教学的目标、基本内容、教学方法和评估方式等方面,制定一份近世代数教学大纲。

二、教学目标通过近世代数的学习和教学,学生应具备以下知识和能力:1. 掌握近世代数的基本概念、基本理论和基本技巧;2. 理解和运用近世代数的基本原理和定理;3. 能够应用近世代数的知识解决实际问题;4. 培养学生的逻辑思维能力和数学建模能力。

三、基本内容1.1 代数方程的定义和基本概念 1.2 一元高次方程的解法1.3 多项式方程的解法2. 群论2.1 群的定义和基本性质2.2 群的子群和正规子群2.3 群的同态、同构和陪集2.4 群的分类和应用3. 域论3.1 域的定义和基本性质3.2 域的子域和扩域3.3 域的代数闭包和超越数3.4 域的分类和应用4.1 线性方程组的解法4.2 矩阵的基本运算和性质4.3 矩阵的特征值和特征向量4.4 线性变换和线性空间的基本概念四、教学方法1. 讲授法:通过课堂讲授,系统地介绍近世代数的基本理论和技巧,帮助学生理解和掌握相关知识。

2. 实例法:通过举例分析,引导学生运用近世代数的知识解决实际问题,培养学生的应用能力。

3. 探究法:组织学生进行小组讨论、探究性实验等,激发学生的求知欲和创造力,培养学生的问题解决能力和团队合作精神。

4. 演示法:运用多媒体教学手段,展示近世代数的相关应用场景,增加学生的学习兴趣和动力。

五、评估方式1. 课堂小测:定期进行课堂小测,检测学生对知识点的掌握情况。

2. 作业评估:批改学生的作业,评估学生的应用能力和逻辑思维能力。

3. 期中期末考试:进行期中和期末考试,全面检测学生对近世代数的理解和应用能力。

(完整版)近世代数教学大纲

(完整版)近世代数教学大纲

《近世代数》教学大纲课程名称:近世代数英文名称:Abstract Algebra课程编号:0641008 学分:3 学时:54先修课程:高等代数、初等数论替代课程:无适用对象:数学与应用数学专业(4年制普通本科)(一)课程目的要求本课程的目的是引导学生掌握近世代数的基本概念和基本理论,从而达到对近世代数的语言与理论有所了解的目的,帮助学生为进一步的学习和研究打好代数学方面的知识基础.主要是群、环、域的基本概念以及基本理论。

在学习本课程中,要求学生掌握近世代数的基本概念、基本理论和方法,提高数学修养与技巧,以便能深入理解中学代数的内容和方法,为进一步学习其它学科创造条件。

(二)课程简介近世代数是数学与应用数学专业必修课程,是现代数学的一个重要分支,是研究多种代数结构的一门学科。

它的内容对中学代数教学有指导意义,它的思想方法已经渗透到数学的多个分支,它的结果已应用到众多学科领域,现在本课程已作为师范院校数学专业学生的必修课。

本课程的学习分为三个部分,第一部分学习近世代数的预备知识,包括集合、映射、代数运算及等价关系等基本概念。

第二部分学习群的基本理论,主要包括群的定义和基本性质, 子群和商群理论, 群同态和同构定理, 置换群的基本理论,有限群的Lagrange定理。

第三部分学习环论的基础内容, 主要包括环, 子环, 商环的定义和基本性质, 环同态和同构定理, 素理想与极大理想,环上的多项式环的构造,扩域和有限域。

(三)教学方式教学方式是以教师讲授为主,注重知识点之间的比较,运用类比方法;根据课堂教学情况,适当补充一些例题,以帮助学生课后巩固所学知识;适时给出思考题,培养学生的独立思考能力;对一章进行总结时,适当配备一些典型习题讲解, 以帮助学生理解和掌握抽象的概念和性质定理。

(四)教材和主要教学参考书教材:《近世代数》(第二版),朱平天,李伯洪,邹园编,科学出版社, 2009年出版主要教学参考书:1.张禾瑞编:《近世代数基础》,人民教育出版社, 1984年版。

近世代数讲义(电子教案)-(1)

近世代数讲义(电子教案)-(1)

《近世代数》课程教案第一章 基本概念教学目的与教学要求:掌握集合元素、子集、真子集。

集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。

理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。

教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。

教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。

教学措施:网络远程。

教学时数:8学时。

教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。

集合中的每个事物叫做这个集合的元素(简称元)。

定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。

(1)集合的要素:确定性、相异性、无序性。

(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。

若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,。

表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。

2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。

近世代数讲义教学设计

近世代数讲义教学设计

近世代数讲义教学设计一、教学目标本课程的主要目标是让学生熟悉经典近世代数理论和运用现代数学工具解决代数问题的方法和技巧。

具体目标如下:•熟悉近世代数理论的核心概念和基本性质•掌握群、环、域等代数结构的定义、性质以及常见例子•能够运用现代数学工具解决矩阵方程、线性代数问题等•能够阅读和理解相关学术文献,掌握学术写作的基本规范二、教学内容与安排1. 群论•群的定义及基本性质•群的例子(如循环群、对称群等)•子群和正规子群•拓扑群2. 环论•环的定义及基本性质•环的例子(如整数环、多项式环等)•Z n环的结构•环的同态和理想3. 域论•域的定义及基本性质•域的例子(如有理数域、实数域、复数域等)•代数元和超越元•域的扩张4. 线性代数•线性空间与线性变换•矩阵的运算与初等矩阵•矩阵的特征值和特征向量•线性方程组、矩阵方程和行列式5. 近世代数理论的应用•量子力学中的代数结构•编码理论中的有限域•密码学中的应用三、教学方法1. 理论讲授本课程的主要教学方法是理论讲授。

教师将通过板书演示、PPT讲解等方式,向学生讲授代数概念、定理等理论知识。

在讲授时,教师将注重几何意义、应用背景等方面的介绍,以便帮助学生更好地理解、消化所学内容。

2. 讨论与互动在课程的某些环节中,教师还将与学生进行讨论、互动,以便深入探讨一些概念、结论在实际中的应用。

讨论的资料包括理论应用文献、学术会议论文等。

3. 上机实践在课程的结尾阶段,教师还将安排一些上机实践环节,让学生通过举例、练习等方式深度理解所学的代数概念、定理。

在上机实践过程中,教师将根据实际情况进行答疑解惑、引导讨论等活动。

四、教学评估本课程的教学评估主要是通过考试、作业等方式进行。

教师将根据学生的学习情况进行定期的考试和作业,以检验学生对所学知识的掌握程度。

同时,教师还将对学生参与讨论、上机实践等方面进行评估,以检验学生的综合素质。

在评估过程中,教师应注重引导学生主动参与、探索、思考,鼓励他们发挥自己的创意和创造性。

数学与应用数学专业《近世代数》教学大纲

数学与应用数学专业《近世代数》教学大纲

数学与应用数学专业《近世代数》教学大纲(课程编号:06162085)一、课程说明课程总学时72节,周学时4,学分4,开课学期:71、课程性质:《近世代数》课是数学与应用数学专业必修基础课,是现代数学的基本内容,是培养合格中学数学教师与高级专门人才所必备的基础理论知识,是了解现代数学精神、思想和方法最基本的知识。

2、课程教学目的与要求:通过本课程的教学,使学生初步掌握基本的系统的代数知识和抽象、严格的代数方法,进一步熟悉和掌握代数处理问题的方法;进一步提高抽象思维能力和严格的逻辑推理能力;进一步理解具体与抽象、特殊与一般、有限与无限等辨证关系。

能应用所学理论指导中学数学教学以及其它工作,培养学生独立提出问题、分析问题和解决问题的能力,培养学生的数学基本素质,同时为今后继续学习奠定基础。

3、教学内容与学时安排:第一章基本概念 10课时第二章群论 22课时第三章环与域 20课时第四章整环里的因子分解 12课时第五章扩域 8课时4、使用教材与参考书:使用教材:张禾瑞,《近世代数》,人民教育出版社,1978年。

参考书目:(1) 吴品三,《近世代数》,人民教育出版社,1979年。

(2) 刘绍学编著,《近世代数基础》,高等教育出版社1999年10月出版,“面向21世纪课程教材”,“普通高等教育‘九五’国家级重点教材”。

(3) 邓方安主编,《近世代数》,2001年西安地图出版社出版。

(4) 丁石孙、聂灵绍编,《代数学引论》,2002年北京大学出版社出版。

(5) 中国大百科全书·数学, 1988年中国大百科全书科学出版社出版。

(6) Shafarevich I R Basic Notions of Algebra, Encyclopaedia ofMathematical Sciences.Berlin: Spring-Verlag, 1990.(7) Artin M.Algebra.Englewood Cliffs: Prentice-Hall, 1999.(8) Nikulin V V, Shafarevich I R. Geometries and Groups. Beijing:Spring-Verlag, WorldPublishing Corporation, 1989.(9) T. W. Hungerford著,冯克勤译,代数学,1998年湖南出版社出版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数试卷1.以下关系中,哪个是实数集的元间的等价关系?( D )A.关系~:a ~b ⇔a 2+b 2=1B.关系~:a ~b ⇔a ≤bC.关系~:a ~b ⇔a =2bD.关系~:a ~b ⇔a =b2.设A 是区间[0,1]上全体实函数组成的集合,规定:σ( f (x ))=(x 2+1) f (x ),∀f (x )∈A,则σ是A 的( A )A.满变换B.单变换C.一一变换D.不是A 的变换3.在有理数集Q上定义代数运算a οb =(a +b )2,则这个代数运算( )A.既适合结合律又适合交换律B.适合结合律但不适合交换律C.不适合结合律但适合交换律D.既不适合结合律又不适合交换律4.下列集合对所给运算作成群的是( A )A.全体实数对普通数的加法B.全体实数对普通数的减法C.全体实数对普通数的乘法D.全体实数对普通数的除法 5.设⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z b a b a R ,00,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是( )A.有单位元的可换环B.无单位元的可换环C.无单位元的非可换环D.有单位元的非可换环1.设A ={a ,b ,c ,d },则A 的一一变换共有______个.( C )4!A.4B.16C.24D.642.设A ={所有实数x },A 的代数运算a 。

b =a +b +ab ( C )A.既适合结合律又适合交换律B.适合结合律但不适合交换律C.不适合结合律但适合交换律D.既不适合结合律又不适合交换律3.设A ={所有有理数x },A 的代数运算是普通加法,则以下映射作成A 到A 的一个子集A 的同态满射的是( B )A.x →|x |B.x →2xC.x →x 2D.x →|x|4.在非零复数乘法群C *中,阶为2的元有____C__个.( )A.0个B.1个C.2个D.3个5.设M 2(R )=⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛为实数域R ,R b a,00b a 按矩阵的加法和乘法构成R 上的二阶方阵环,那么这个方阵环是( )A.有单位元的交换环B.无单位元的变换环C.无单位元的非交换环D.有单位元的非交换环1.以下关系中,哪个不是所给集合元间的等价关系?( C )A.在有理数集Q 中关系~:a ~b ⇔a -b ∈ZB.在复数集C 中关系~:a ~b ⇔|a |=|b |C.在实数集R 中关系~:a ~b ⇔a ≤bD.在实数集R 中关系~:a ~b ⇔a =b2.设A =Z ,D =Z +,σ∶n |→⎩⎨⎧<--≥+0,120),1(2n n n n 则σ是Z 到Z +的( )A.单射B.满射C.一一映射D.不是映射3.在实数集R 中定义代数运算aob =a +b +ab ,则这个代数运算( )A.既适合结合律又适合交换律B.适合结合律但不适合交换律C.不适合结合律但适合交换律D.既不适合结合律又不适合交换律4.下列集合对所给运算作成群的是( C )A.非零有理数的全体Q *对普通数的加法B.非零有理数的全体Q *对普通数的减法C.非零有理数的全体Q *对普通数的乘法D.非零有理数的全体Q *对普通数的除法5.设R =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z d c b a d c b a ,,,,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是( )A.有单位元的可换环B.无单位元的可换环C.无单位元的非可换环D.有单位元的非可换环1. 设集合A 中含有3个元素,集合B 中含有4个元素,那么,A 与B 的积集合A ×B 中含有______个元素。

( )A. 3B. 4C. 7D. 122.设A =B =R (实数集),如果A 到B 的映射ϕ:x→2x,∀x∈R,则ϕ是从A到B的______。

()A. 满射而非单射B. 单射而非满射C. 一一映射D. 既非单射也非满射3. 设S3={(1),(12),(13),(23),(123),(132)},则S3的子群共有______个。

()A. 2B. 4C. 6D. 84.设Z12是以12为模的剩余类加群,那么,Z12的生成元共有______个。

()A. 4B. 6C. 8D. 125. 设I1,I2是环R的两个子环,0是环R的零元素,那么在下列集合中,______未必是环R的子环。

()A. I1U I2={x | x∈I1或x∈I2}B. {0}C. I1I I2={x | x∈I1且x∈I2}D. 环R本身1.设m是一个正整数,∀a∈Z,作带余除法:a=mq+r,0≤r<m,规定:f(a)=r.则f 是Z的( )A.满变换B.单变换C.一一变换D.既不是满变换也不是单变换2.有理数集Q上的代数运算baο=b3( )A.既适合结合律又适合交换律B.适合结合律但不适合交换律C.不适合结合律但适合交换律D.既不适合结合律又不适合交换律3.剩余类加群Z8的子群有( )A.4个B.5个C.6个D.7个4.在3次对称群S3中可以与(132)交换的所有元素为( )A.(1),(132)B.(12),(13),(23)C.(1),(123),(132)D.S 3中的所有元素5.M 2(R)=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛为实数域R ,R b ,a 0b 0a 按矩阵的加法和乘法构成R 上的二阶方阵环,这个方阵环是( )A.有单位元的交换环B.无单位元的非交换环C.无单位元的交换环D.有单位元的非交换环1.设集合A 中含有4个元素,那么积集合A ×A 中含有______个元素.( D )A.4B.8C.12D.162.设R 是整数集,A=R ×R ,σ∶(x ,y )→(x ,-y ),则σ是A 的( C )A.满变换B.单变换C.一一变换D.不是A 的变换3.在有理数集Q中的代数运算a οb =b 2( C )A.适合结合律但不适合交换律B.不适合结合律但适合交换律C.既适合结合律又适合交换律D.既不适合结合律又不适合交换律4.在4次对称群S 4中,阶为2的元有( A )A.6个B.7个C.8个D.9个5.除环的理想有( B )A.1个B.2个C.3个D.4个 6.设A ={a ,b ,c ,d ,e },则A 的一一变换共有__120____个.5!7.在4次对称群S 4中,(134)2(312)-1=______.8.在3次对称群S 3中,H ={(1),(12)}是S 3的一个子群,则H (23)=_{(23) (132)}_____.9.设Z 8是模8的剩余类环,则Z 8中的零因子是______.10.剩余类环Z 15的可逆元有______个.11.设Z [x ]是整系数多项式环,则Z [x ]的主理想(x 2)=______.12.整环I ={所有复数a +b 2-(a ,b 是整数)},则I 的单位是______.13.设Q 是有理数域,则Q ⎪⎭⎫⎝⎛+-112i i =___.14.32+在有理数域Q 上的极小多项式是_____.6.模8的剩余类加群Z 8有__________个生成元.7.若α=(123)(45),β=(2345),则βα-1=__________.8.设循环群G =(a ),如果a 的阶为n ,则G 同构于__________.9.整数环有_____1_____个可逆元 .10.剩余类环Z 5的零因子个数等于_______.11.剩余类环Z 6的子环有__________个.12.整环I ={所有复数a +b 5-(a ,b 是整数)},则I 的单位是__________.13.设Q 为有理数域,S ={3,5},则Q (S )=__________. 14.i 22在有理数域Q 上的极小多项式是__________. 6.设A ={a ,b ,c ,d ,e },则A 的子集共有_____3125___个.7.在4次对称群S 4中,(143)2(132)-1=________.8.模12的剩余类加群Z 12的生成元有________个.9.设Z 6是模6的剩余类环,则Z 6中的零因子是________.10.模p (素数)的剩余类环Z p 的特征为__. 11.剩余类环Z 17的可逆元有__个.12.在高斯整环Z [i ]={a +bi |a ,b ∈Z }中,主理想(1+i )=________.13.在整环I ={所有复数a +b 3-(a ,b 是整数)}中,1+3-的相伴元是________.14.设R 是实数域,则)1()2(-+i i R =__. 15.51+在有理数域Q 上的极小多项式是_____. 6. 设“︒”是集合A ×A 到A 的一个代数运算,如果对于∀a ,b ,c ∈A ,“︒”满足______,则称代数运算“︒”适合结合律。

7. 设(G ,·)是一个群,则对于∀a ,b ,c ∈G ,方程ax =b 和ya =b 在G 中有唯一解,那么,这两个方程的解分别为______。

8. 设σ=(5234),τ=(135)∈S 5,那么,1στ-=______(表示成若干个没有公共数字的循环置换之积)。

9. 设Z12={[0],[1],[2],…,[11]}是以12为模的剩余类加群,那么,Z12的子群共有______个。

10. 在3次对称群S3中,设子群H={(1),(23)},则子群H关于元素 (132) 的右陪集H(132)=______。

11. 设 (R,+,·)是一个至少含有两个元素的环,如果R满足______,则称R是一个除环。

12. 设Z6={[0],[1],[2],[3],[4],[5]}是以6为模的剩余类环,那么,在Z6的子集{[0],[2],[4]}, { [1] }, {[0],[3]}中,______不是Z6的子环。

13. 设F是一个域,则F的理想有______个。

14. 设Z[x]是整系数多项式环,f (x)=6x2-24,则f (x)在Z[x]中的不可约分解为______。

15. i是有理数域Q上的两个代数元,则Q,i)在有理数域Q上的扩域次数:(Q,i) : Q)=______。

6.设A={a,b,c,d,e,f},则A的一一变换共有_个.7.在非零实数乘法群R*中,阶为2的元有_个.8.在4次对称群S4中,(132)2(1234)-1=___. 9.模10的剩余类加群Z10有__个生成元.10.模P(素数)的剩余类环Zp有________个可逆元.11.模9的剩余类环Z9的零因子为________.12.设Z [x ]是整系数多项式环,则Z [x ]的理想(3,x)=________.13.主理想环与欧氏环的关系是__. 14.在5,2i+1,π中,_是有理数域Q 上的代数元. 15.21+在有理数域Q 上的极小多项式是_.6.剩余类加群Z 4有__个生成元.7.在4次对称群S 4中,(123)(1423)-1=__.8.阶为n 的有限循环群同构于_.9.剩余类环Z 11的零因子个数等于__.10.剩余类环Z 13的可逆元有__个.11.如果G 是一个含有16个元素的群,那么,根据Lagrange 定理知,对于∀a ∈G ,元素a 的阶只可能是__.12.整环I ={所有复数a +b 7-(a ,b 是整数)},则I 的单位是__.13.在3,i +2,π2中,______是有理数域Q 上的代数元.14.设Q 是有理数域,则Q (2+5)=___.15.12-+i i 在实数域R 上的极小多项式是__.15.设M 是一个非空集合,2M 是M 的幂集(M 的子集的全体称为M 的幂集),问2M 关于集合的并∪是否构成群?为什么?16.找出模20的剩余类加群Z 20的所有子群,并找出Z 20的全部生成元.17.设⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛=Z b a b a R ,00关于矩阵的加法和乘法构成一个环,I =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z x x 000证明:I 是R 的理想,问商环R /I 由哪些元素组成? 15.若A ={a ,b ,c ,d }对于代数运算“o ”来说作成群,且除单位元以外,每个元的阶都是2,试作出A 的代数运算表.16.找出模12的剩余类环Z 12的所有子环,这些子环是否都是理想?为什么?17.偶数环2Z 的主理想(4)含有哪些元?2Z /(4)含有哪些元?2Z /(4)是否为域?为什么?16.找出3次对称群S 3的所有子群,这些子群中哪些是S 3的不变子群?17.设群G =Z 18子群H =([6]),(1)商群G /H =?(2)商群G /H 与怎样的一个群同构?18.设R =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z b a b a ,00关于矩阵的加法和乘法构成一个环,I=⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z x x 000, 证明:I 是R 的理想,问商环R /I 由哪些元素组成?16.设Z 9为以9为模的剩余类加群,即Z 9={[0],[1],[2],…,[8]}。

相关文档
最新文档