阶梯奥数三年级讲义(教师版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥数讲义
【课程说明】
由于培优大纲顺序和本课程顺序不同,所以在学习此课程时,有些讲次安排打乱了,重新排序不会影响知识点的学习。
【课程目标】
提升兴趣
※激发学生学习的主动性,乐于思考,乐于学习
培养习惯
※传授给学生正确的数学学习习惯,解题习惯
收获成绩
※通过正确的引导帮助孩子提高成绩,积累成就感和自信心
目录第一讲高斯求和
第二讲找简单数列的规律
第三讲上楼梯问题
第四讲植树与方阵问题
第五讲归一问题
第六讲平均数问题
第七讲和倍问题
第八讲差倍问题
第九讲和差问题
第十讲年龄问题
第十一讲鸡兔同笼问题
第十二讲盈亏问题
第十三讲巧求周长
第一讲高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:
(1)1,2,3,4,5, (100)
(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?
分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到
项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。
例3 、3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列,
项数=(99-3)÷4+1=25,
原式=(3+99)×25÷2=1275。
和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数
列。
解:(1)最大三角形面积为
(1+3+5+…+15)×12
=[(1+15)×8÷2]×12
=768(厘米2)。
2)火柴棍的数目为
3+6+9+…+24=(3+24)×8÷2=108(根)。
答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。
例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?
分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了2×2只球……第十次多了2×10只球。因此拿了十次后,多了
2×1+2×2+…+2×10
=2×(1+2+ (10)
=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
综合列式为:
(3-1)×(1+2+…+10)+3
=2×[(1+10)×10÷2]+3=113(只)。
练习3
1.计算下列各题:
(1)2+4+6+...+200;(2)17+19+21+ (39)
3.求首项是13,公差是5的等差数列的前30项的和。
4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?
5.求100以内除以3余2的所有数的和。
6.在所有的两位数中,十位数比个位数大的数共有多少个?
练习
1.(1)10100;(2)336;(3)440;(4)780。
2.1127。提示:项数=(93-5)÷4+1=23。
3.2565。提示:末项=13+5×(30-1)=158。
4.180次。解:(1+2+…+12)×2+24=180(次)。
5.1650。解:2+5+8+…+98=1650。
6.45个。
提示:十位数为1,2,…,9的分别有1,2,…,9个。
第二讲找简单数列的规律
这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。
按一定次序排列的一列数就叫数列。例如,
(1) 1,2,3,4,5,6,…
(2) 1,2,4,8,16,32;
(3) 1,0,0,1,0,0,1,…
(4) 1,1,2,3,5,8,13。
一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作a n。
数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。
许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。
数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项a n=n。
数列(2)的规律是:后项=前项×2,或第n项
数列(3)的规律是:“1,0,0”周而复始地出现。
数列(4)的规律是:从第三项起,每项等于它前面两项的和,即
a3=1+1=2,a4=1+2=3,a5=2+3=5,
a6=3+5=8,a7=5+8=13。
常见的较简单的数列规律有这样几类:
第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)。
第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)。
第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。
例1找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)4,7,10,13,( ),…
(2)84,72,60,( ),( );
(3)2,6,18,( ),( ),…
(4)625,125,25,( ),( );
(5)1,4,9,16,( ),…