数学九年级上知识点总结(北师大版)
北师大版初三数学知识点总结

北师大版初三数学知识点总结北师大版初三数学知识点总结1直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
〔勾股定理的逆定理〕。
判定3:假设一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角〔两角相加等于90°〕的三角形是直角三角形。
判定5:假设两直线相交且它们的斜率之积互为负倒数,那么两直线互相垂直。
那么判定6:假设在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,那么这个三角形为直角三角形。
〔与判定3不同,此定理用于斜边的三角形。
〕北师大版初三数学知识点总结2全套教科书包含了课程标准(实验稿)规定的“数与代数〞“空间与图形〞“统计与概率〞“实践与综合应用〞四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。
本册书内容分析如下:第21章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
“二次根式〞一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。
“二次根式的乘除〞一节的内容有两条开展的线索。
一条是用具体计算的例子体会二次根式乘除法那么的合理性,并运用二次根式的乘除法那么进行运算;一条是由二次根式的乘除法那么得到并运用它们进行二次根式的化简。
九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版点的连线与切线所夹角为直角.1.垂径定理及推论:在一个圆中,如果一条直线通过圆心且垂直于另一条直线,则这条直线被称为垂径,而另一条直线被称为弦。
根据垂径定理,垂径平分弦,并且中垂定理、中径定理和弧径定理都可以由垂径定理推导而来。
2.平行线夹弧定理:当两条平行弦穿过一个圆时,它们所夹的弧是相等的。
3.“角、弦、弧、距”定理:在同一个圆或等圆中,如果两个角相等,则它们所对的弦也相等;如果两个弦相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果两个弧相等,则它们所对的角也相等;如果两个弦的弦心距相等,则它们也相等。
4.圆周角定理及推论:圆周角的度数等于它所对的弧的度数的一半;一条弧所对的圆周角等于它所对的圆心角的一半;如果两个弧相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果一个三角形的一条边的中线等于这条边的一半,则这个三角形是直角三角形。
5.圆内接四边形性质定理:圆内接四边形的对角线互补,并且任何一个外角都等于它的内对角。
6.切线定理及性质:如果一条直线通过圆的外部一点并且与圆相切,则这条直线被称为切线。
根据切线定理,经过半径的外端并且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。
7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线与切线所夹角为直角。
点的连线平分两条切线的夹角。
因为AB是切线,所以OC垂直于AB。
(3)几何表达式举例:因为PA、PB是切线,所以PA=PB。
因为PO过圆心,所以∠APO=∠BPO。
弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
(如图)相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项。
北师大版《数学》(九年级上册)知识点总结

北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结
一.比例线段:
1两条线段的比是 的比。
将“形”的问题转化为“数”的问题。
2.成比例线段:四条线段a,b,c,d 中,如果 ,那么这四条线段a,b,c,d 叫做成比例线段。
比例线段是有顺序的,即a,b,c,d 是成比例线段,则是a:b=c:d
3.如果c
b b
a ,那么
b 叫做a 和
c 的比例中项; 4.比例的性质:
(1)基本性质:如果 ,那么 。
()等比性质:如果 ,那么 5.平行线分线段成比例定理:
如图,321////l l l ,则可得比例式: DE//AB,则所得比例式:
6.黄金分割: 黄金比 二.相似三角形:
1.相似三角形的判定方法:
(1)两角对应 的两个三角形相似。
(2)两边对应 且 相等的两个三角形相似。
(3)三边 的两个三角形相似
2.相似三角形的性质:
3.位似图形:
4.位似图形有同向和 两种。
在坐标系中,图形上点的坐标都乘以k 时,得到的图形与原图形关于原点位似,且位似比是|k|.
5.判定两个三角形相似的常用步骤:
先通过已知,平行、对顶角、公共角等,看能否找到两对相等的角; 若只能找到一对相等的角,再分析夹这个角的两边是否成比例; 若找不到相等的角,就分析三边是否成比例。
5.常见的基本模型有 :
D E F
1l 3
l 2
l m n
B A C。
北师大版九年级数学知识点汇总(总16页)

北师大版九年级数学知识点汇总(总16页)第一章整式与代数式一、定义1、定义1:整式整式是由常数和未知数的乘积以及未知数的幂次构成的一个或多个项的表达式。
2、定义2:代数式代数式是数学中由常数、未知数、及他们的运算符号组成的符号表达式的总称。
二、运算1、加减运算在加减运算中,同类项要求具有相同的底数和指数,再将它们的系数相加减,整式中一些未知数有相同指数,可以合并为一项。
2、乘除运算乘除运算中,同一式子中的若干未知数及其指数要求相同,否则将它们拆开,系数则相乘、相除,未知数则相乘、相除。
三、同类因式1、定义:同类因式是指有相同底数和指数的项。
2、形式当底数相同,有两种形式出现:(1)乘积形式,如:(a+b)2;(2)对比形式,如a2:b2;当指数相同,有三种形式出现:(1)口诀形式,如:a2b2;(2)引号形式,如:(a+b)2;(3)下标形式,如:a2/b2。
第二章平方差一、定义1、定义1:平方平方是数学中指一个数的平方,也可以表示为n²。
2、定义2:差差是指在数学中表示两个或多个数之间的差,也可以表示为a-b。
二、运算1、解平方差要解方程:x²-a=b,须将a和b分别平方,变为x²-a²=b²,再根据等式左右两边分别加或减a²,变为:x²±2a x±a²=b²,再用平方根法求出x的值。
2、完全平方差要解方程:ax²+2bx+c=0,首先设:x²+2px+q=0,其中p=b/a,q=c/a,再将上式化为完全平方差的形式:(x+p)²=q-p²,最后解出 x=–p±√q–p² 。
三、巧解平方差当a、b、c的数值比较简单且不能完全平方差时,则可用巧解方法。
只要将a、b、c 做互质处理,即将a与b、c求公约数,将a、b、c分解为两个数的乘积,如果形式中乘积可以分解完全平方式,则可用巧解方法解方程。
北师大版数学九年级上下册全册复习课件(PPT共235张)

数学·新课标(BS)
上册第一章复习 ┃ 考点攻略
方法技巧 正方形是一种特殊的四边形,它里面隐含着许多线段之间的
关系或角之间的关系,我们要充分利用正方形的特性,结合
图形大胆地探索、归纳、验证即可使问题获解.
数学·新课标(BS)
上册第一章复习 ┃ 试卷讲练
特殊平行四边形属于对八年级平行四边形内容的深化与提高, 并进一步培养学生的逻辑推理能力,在中考中既可以作为单独 考查意图 知识点考查,也可以综合其他知识点考查,其中菱形、矩形、 正方形是考查重点. 菱形 知识与 技能 矩形 正方形 综合 思想方法 亮点 1,4,9,11,12,18 2,5,8,13,14,15,17 3,6,10,20,22,23 7,16,19,21,24 从特殊到一般 23题以动点为载体,结合图形变换,考查对于图形的分析能力 及逻辑推理能力.
如图 S1-3,将矩形ABCD 沿直线AE 折叠,顶点D恰好落
在BC边上的F点处.已知CE=3 cm,AB=8 cm,求图中阴影部分 的面积.
[解析] 要求阴影部分的面积,由于阴 影部分由两个直角三角形构成,所以只要
根据勾股定理求出直角三角形的直角边即 可.
数学·新课标(BS)
上册第一章复习 ┃ 考点攻略
CE=2,点P在BD上,求PE与PC的长度和的最小值.
数学·新课标(BS)
上册第一章复习 ┃ 考点攻略 [解析] 连接AP,AE ,由正方形关于对角线对称将 PC转移到
PA,要求PE与PC和的最小值即求 PE与PA和的最小值,易知当P在 AE上时,PA+PE最小.
解:连接AP,AE,如图S1-5.
上册第一章复习 ┃ 知识归类 8.中点四边形
中点四边形就是连接四边形各边中点所得的四边形,我们 可以得到下面的结论:
北师大版九年级数学上册知识点总结

九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
北师大版九年级上册数学复 习知识点及例题

性角 质
对 角 线
四个角都是 直角
互相平分且 相等
对角相等
四个角都是直角
互相垂直平分, 且每条对角线平 分一组对角
互相垂直平分且相等,每 条对角线平分一组对角
判定
·有三个角 是直角; ·是平行四 边形且有一 个角是直角; ·是平行四
·四边相等的四 边形; ·是平行四边形 且有一组邻边相 等; ·是平行四边形
·是矩形,且有一组邻 边相等; ·是菱形,且有一个角 是直角。
边形且两条 且两条对角线互 对角线相等. 相垂直。
对称性
既是轴对称图形,又是中心对称图形
一.矩形 矩形定义:有一角是直角的平行四边形叫做矩形.
【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质
性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等,具有平行四边形的所以性质。;
①有一组邻边相等的平行四边形 (菱形) ②有一个角是直角的平行四边形 (矩形) 正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的
菱形. 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫
做正方形. 正方形是中心对称图形,对称中心是对角线的交点,正方形
又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有 四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们 性质的综合,正方形的性质总结如下:
边:对边平行,四边相等; 角:四个角都是直角; 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角 形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等 的等腰直角三角形,这是正方形的特殊性质.
九年级数学上册第三章知识点总结(北师大版)

北师大版九年级数学上册第三章知识点总结《北师大版九年级数学上册第三章知识点总结》嘿,宝子们。
今天咱们来唠唠北师大版九年级数学上册第三章的那些知识点。
这一章呢,有好多重要的东西。
像证明(三)这部分,平行四边形可是个大主角。
平行四边形的性质可不少,对边平行且相等,对角也相等呢。
就好比咱们生活中的那种平行的栏杆,两边总是规规矩矩地保持着自己的状态。
而且平行四边形的对角线互相平分,这就像两个人分东西,分得那叫一个公平。
再说说特殊的平行四边形吧。
矩形,这家伙可特别了。
它是平行四边形的一种特殊情况,四个角都是直角。
想象一下家里的那种方方正正的相框,四个角都是九十度,规规矩矩的。
矩形的对角线不仅互相平分,还相等呢。
这就好比它比普通的平行四边形又多了点“小特权”。
菱形也不甘示弱呀。
菱形的四条边都相等,就像一个规规矩矩的小方块被拉成了斜斜的样子,但是四条边依旧保持着相等的长度。
它的对角线互相垂直,而且还平分每一组对角呢。
感觉菱形就像是一个很有个性的平行四边形,有着自己独特的魅力。
还有正方形呢,正方形可就厉害了。
它既是矩形又是菱形,所以它既有矩形四个角是直角的特点,又有菱形四条边相等的优点。
就像是一个集万千优点于一身的学霸,啥都好。
在证明这些图形的性质和判定的时候,也有很多小窍门。
比如说要证明一个四边形是平行四边形,咱们可以从对边相等、对边平行、对角线互相平分等方面入手。
要是证明矩形呢,就可以先证明它是平行四边形,再加上一个角是直角这个条件。
菱形的话,可以先证平行四边形,再加上邻边相等之类的。
这些知识点在咱们做数学题的时候可太重要了。
就像盖房子的砖头一样,少了哪一块都不行。
有时候遇到一道几何证明题,你就得在脑袋里把这些知识点过一遍,看看哪个能用得上。
就像从自己的小百宝箱里找工具一样,找对了工具,问题就迎刃而解了。
我觉得这一章的知识点虽然有点多,但是只要咱们把每个图形的特点和判定方法都搞清楚,就像熟悉自己的朋友一样,做数学题的时候就不会害怕了。
北师大版数学九年级上册课本知识点

北师大版数学九年级上册课本知识点第一章证明(二)1、(2页)公理三边对应相等的两个三角形全等。
(sss)公理两边及其夹角对应成正比的两个三角形全系列等。
(sas)公理两边及其夹角对应相等的两个三角形全等。
(asa)公理全系列等三角形的对应边成正比、对应角成正比。
推论两角及其中一角的对边对应相等的两个三角形全等。
(aas)2、(3页)定理等腰三角形的两个底角成正比。
3、(4页)推论等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习1.证明:等边三角形的三个角都相等,并且每个角都等于60。
4、(7页)定理存有两个角成正比的三角形就是等腰三角形。
(等角对等边)5、(8页)在证明时,先假设命题的结论不成立,然后推导出定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
6、(11页)定理存有一个角等同于60的等腰三角形就是等边三角形。
7、(12页)定理在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
8、(13页)随堂练1.证明:三个角都成正比的三角形就是等边三角形。
9、(16页)定理直角三角形两条直角边的平方和等于斜边的一半。
10、(17页)定理如果三角形两边的平方和等同于第三边的平方,那么这个三角形就是直角三角形。
11、(18页)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题就是真命题,它的逆命题却不一定就是真命题。
如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称作互逆定理。
12、(23页)定理斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“hl”)13、(26页)定理线段垂直平分线上的的边这条线段两个端点的距离成正比。
14、(27页)定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
九年级数学圆知识点总结北师大版

圆上两点与圆心连线夹角相等
02
圆上两点与圆心连线形成的夹角相等,这个夹角叫做圆心角。
圆心角与对应的弧的关系
03
在同一个圆或等圆中,相等的圆心角所对的弧也相等。
圆心、半径和直径
01
02
03
圆心的定义
圆心是圆的中心点,也是 圆上三点确定的唯一确定 的点。
半径的定义
从圆心到圆上任意一点的 线段叫做半径,半径的长 度等于圆的半径。
性运动。
04
总结词:均匀性
05
详细描述:圆周上的点以相同
的速度旋转,形成均匀的旋转
运动。
06
圆的物理应用
总结词:机械原理
详细描述:圆在机械运转中 起到关键作用,如轴承、传
动装置等。
总结词:动力传
详细描述:圆周运动可以转 化为其他形式的运动,如直 线运动、振动等。
总结词:能量转化
详细描述:圆周运动可以转 化和传递能量,如发电机、 电动机等。
圆的周长和面积
圆的周长
1 2
圆的周长的定义
圆的周长是指圆边界上所有点沿同一方向的距离 总和。
圆的周长的计算公式
$C = 2pi r$,其中$C$表示圆的周长,$r$表示 圆的半径,$pi$是一个常数,约等于3.14159。
3
圆的周长的应用
在几何学、物理学、工程学等领域中,圆的周长 公式被广泛应用于计算圆的周长、圆的直径、圆 弧长度等。
ห้องสมุดไป่ตู้
圆与其他图形的面积关系
与正方形的面积关系
当圆内接于一个正方形时,圆的面积与正方形的面积之比为 $pi : 4$。
与三角形的面积关系
当圆内接于一个三角形时,圆的面积与三角形的面积之比为 $pi : 2$。
北师大版九年级数学上册知识点

北师大版九年级数学(上)册知识点1、菱形的性质与判定①菱形的定义:一组邻边相等的平行四边形叫做菱形。
②菱形的性质:•具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
••菱形是轴对称图形,每条对角线所在的直线都是对称轴。
•••③菱形的判别方法:•一组邻边相等的平行四边形是菱形。
••对角线互相垂直的平行四边形是菱形。
••四条边都相等的四边形是菱形。
•2、矩形的性质与判定①矩形的定义:有一个角是直角的平行四边形叫矩形。
矩形是特殊的平行四边形。
②矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)③矩形的判定:•有一个内角是直角的平行四边形叫矩形(根据定义)。
••对角线相等的平行四边形是矩形。
••四个角都相等的四边形是矩形。
•④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定①正方形的定义:一组邻边相等的矩形叫做正方形。
②正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)③正方形常用的判定:•有一个内角是直角的菱形是正方形;••邻边相等的矩形是正方形;••对角线相等的菱形是正方形;••对角线互相垂直的矩形是正方形。
•④正方形、矩形、菱形和平行边形四者之间的关系⑤梯形定义:•一组对边平行且另一组对边不平行的四边形叫做梯形。
••两条腰相等的梯形叫做等腰梯形。
••一条腰和底垂直的梯形叫做直角梯形。
•⑥等腰梯形的性质:•等腰梯形同一底上的两个内角相等,对角线相等。
••同一底上的两个内角相等的梯形是等腰梯形。
••三角形的中位线平行于第三边,并且等于第三边的一半。
••夹在两条平行线间的平行线段相等。
••在直角三角形中,斜边上的中线等于斜边的一半•第二章一元二次方程1、认识一元二次方程•只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0•(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
北师大版九年级数学上册知识点归纳

九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
九年级数学上册各章节考点归纳(最新北师大版)

特殊的平行四边形考点一:直角三角形斜边上的中线的性质1.如图1,在△ABC 中,∠ACB=90°,∠ABC=30°,BD 平分∠ABC ,P 是BD 的中点,若AD=6,则CP 的长为( ) A.3 B. 3.5 C.4 D. 4.52.如图2,平行四边形ABCD 中,AC ⊥BC ,E 为AB 的中点.若CE=2,则CD=( ) A.2 B.3 C.4 D.5总结:直角三角形斜边的中线等于斜边的一半.本次期中考试考到的可能性还是有的,一旦考了,我们可能就会手足无措,为什么呢,因为我们忘了这一性质,需引起重视.考点二:特殊的平行四边形1.如图3,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A.20B.15C.10D.5思考:为什么要出这样一道题,因为菱形中出现了120°(或60°),就会产生等边三角形2.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( ) A.75° B.65° C.55° D.50°3.如图5,在菱形ABCD 中,∠A=110°,E,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P,则∠FPC=( ) A.35° B.45° C.50° D.55°思考:有中点,应该想到倍长中线.【课堂练】4.如图6,在菱形ABCD 中,AB =5,对角线AC =6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为______.5.如图7,在菱形ABCD 中,∠ABC=60°,E 为AB 的中点,P 为对角线BD 上任意一点,AB=4,PA+PE 的最小值为( )A.4 B.2 C.32 D.336.如图8,在菱形ABCD 的边长是6,∠ABC=60°,点E 、F 、G 是BC 、CD 、BD 上的任意一点,则EG+FG 的最小值是( ) A.33 B.2 C.32 D.6思考:几何中的一个、两个或多个动点问题如何求解,关键在于通过对称将点转化到一条直线上再求.【课堂练】7.如图9,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连接CE ,则CE 的长为( )A.3.5 B.3 C.2.8 D.2.5思考:线段垂直平分线上的点到线段两个端点的距离相等,但是我们却常常将它忘掉.【课堂练】8.如图10,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( ). A.3 B.2.4 C.4 D.4.89.如图11,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为________.10.如图12,在矩形ABCD 中,AB=20,BC=10,若M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为______.【课堂练】11.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( ) A.7 B.4或10 C.5或9 D.6或8【课堂练】12.如图13,在矩形ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MD AM 等于( ) A.83 B.32 C.53 D.54 13.如图14,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交FG 于点P ,则GT=( ) A.2 B.22 C.2 D.1【课堂练】14.如图15,边长为6的大正方形中有两个小正方形.若两个小正方形的面积分别为21S S ,,则1S +2S 的值为( ) A.16 B.17 C.18 D.19【课堂练】15.如图16,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A.B.C.D.※【难题】16.如图17,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_____.【课堂练】17.如图18,正方形ABCD中,∠DAC的平分线交DC于点E.若P、Q分别是AD和AE上的动点,则DQ+PQ能取到的最小值为42时,此正方形的边长为()A.2 B.4 C.6 D.8【必须做】18.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD,OC 上,且DE=CF,连接DF与AE的延长线交DF于点M.求证:AM⊥DF.考点三特殊的平行四边形的判定【课堂练】1.如图,在平行四边形ABCD中,AE、CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AFB.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线【必须做】2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCDE是矩形. 【必须做】3.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形; (2)若∠AED=2∠EAD,求证四边形ABCD是正方形.【必须做】4.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的角平分线于点E,交∠BCA的外角∠ACD平分线于点F.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并说明理由.(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.警示:解答题,考虑好再写,写的过程要思路清晰,有条理.考点四探究问题1.在正方形地块内修两条笔直的道路,把正方形分成形状相同且面积相等的四部分,道路宽度忽略不计.请设计三种不同的方案,在给出的三张正方形图纸上分别画出来,并简述绘图步骤.2.你能用手中的矩形纸片折出一个菱形吗?(1)聪明的你能够想出菱形应该怎样折出来吗?请你在下图中画出菱形的面积.(2)在矩形ABCD中,设AB=3,AD=4,请你用尺规在图中画出面积最大的菱形(保留作图痕迹,不用说明理由),标注上适当的字母,并求出这个菱形的面积.(3)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).请你求出AB与BC的比值.3.(2013.河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),已知AD=6,求四边形AFDC的面积;(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).4.(2013.陕西)(1)请在图①中,作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由。
新北师大版九年级数学二次函数知识点归纳总结

九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。
下面对这些知识点进行归纳总结。
1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。
-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。
-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。
-二次函数的对称轴与x轴交点为顶点坐标的x坐标。
-二次函数的图像关于对称轴对称。
3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。
4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。
二次函数的根可能有两个、一个或没有。
-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。
-二次函数的根与系数之间的关系可由韦达定理得到。
设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。
-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。
总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。
北师大版九年级上册数学 知识点复习课件(共46张PPT)

知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
(完整)北师大版九年级数学上册知识点总结,文档

北师大版初中数学知识点汇总九年级(上册 )班级姓名第一章证明 (二)1、三角形全等的性质及判断全等三角形的对应边相等,对应角也相等判断: SSS、 SAS、ASA 、AAS 、2、等腰三角形的判断、性质及推论性质:等腰三角形的两个底角相等〔等边同等角〕判断:有两个角相等的三角形是等腰三角形〔等角同等边〕推论:等腰三角形顶角的均分线、底边上的中线、底边上的高互相重合〔即“三线合一〞〕3、等边三角形的性质及判判定理性质定理:等边三角形的三个角都相等,并且每个角都等于 60 度;等边三角形的三条边都满足“三线合一〞的性质;等边三角形是轴对称图形,有 3 条对称轴。
判判定理:有一个角是 60 度的等腰三角形是等边三角形。
也许三个角都相等的三角形是等边三角形。
含 30 度的直角三角形的边的性质定理:在直角三角形中,若是一个锐角等于 30 度,那么它所对的直角边等于斜边的一半。
4、直角三角形(1〕勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:若是三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2〕命题包括和结论两局部;抗命题是将倒是的和结论交换;正确的抗命题就是逆定理。
(3〕直角三角形全等的判判定理定理:斜边和一条直角边对应相等的两个直角三角形全等〔HL 〕5、线段的垂直均分线〔 1〕线段垂直均分线的性质及判断性质:线段垂直均分线上的点到这条线段两个端点的距离相等。
判断:到一条线段两个端点距离相等的点在这条线段的垂直均分线上。
(2〕三角形三边的垂直均分线的性质三角形三条边的垂直均分线订交于一点,并且这一点到三个极点的距离相等。
(3〕如何用尺规作图法作线段的垂直均分线分别以线段的两个端点 A 、B 为圆心,以大于 AB 的一半长为半径作弧,两弧交于点 M 、 N;作直线 MN ,那么直线 MN 就是线段 AB 的垂直均分线。
6、角均分线(1〕角均分线的性质及判判定理性质:角均分线上的点到这个角的两边的距离相等;判断:在一个角的内部,且到角的两边的距离相等的点,在这个角的均分线上。
九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版九年级数学圆知识点总结(北师大版)一、圆的定义1、圆:平面上到定点的距离等于定长的所有点组成的图形。
2、圆心:圆中心的点叫做圆心。
3、半径:连接圆心和圆上任意一点的线段叫做半径。
4、直径:通过圆心且两端都在圆上的线段叫做直径。
二、圆的性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,其对称中心是圆心。
2、圆心角和圆周角(1)顶点在圆心上的角叫做圆心角。
(2)顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
3、圆的基本性质(1)半径相等的圆是等圆。
(2)直径是圆中最长的弦。
(3)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆的面积和周长(1)圆的面积 S=πr²,其中r为半径。
(2)圆的周长 C=2πr,其中r为半径。
三、点和圆的三种位置关系1、点在圆内:点和圆心的距离小于半径。
2、点在圆上:点和圆心的距离等于半径。
3、点在圆外:点和圆心的距离大于半径。
四、直线和圆的三种位置关系1、直线和圆相离:直线和圆没有公共点。
2、直线和圆相切:直线和圆只有一个公共点。
3、直线和圆相交:直线和圆有两个公共点。
五、圆和圆的位置关系1、外离:两圆没有公共点,且一个圆在另一个圆外面。
2、外切:两圆只有一个公共点,且一个圆在另一个圆外面。
3、相交:两圆有两个公共点。
4、内切:两圆只有一个公共点,且一个圆在另一个圆里面。
5、内含:两圆没有公共点,且一个圆在另一个圆里面。
六、正多边形和圆1、把正多边形的各边中心连向它的各边所在直线时,中心和边的垂线组成的角叫做正多边形的中心角。
2、正多边形的半径和边数之间存在如下关系:半径=r,边数n=2πr/α,其中α为正多边形的中心角。
七、弧长和扇形面积1、弧长公式:l=nπr/180,其中n为弧度制下的扇形圆心角。
2、扇形面积公式:S=nπr²/360,其中n为扇形圆心角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上第一章特殊平行四边形(9课时)目标:经历菱形、矩形、正方形概念的抽象过程,性质与判定的探索、猜测与证明的过程;理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系;证明菱形、矩形、正方形的性质定理及判定定理;探索并掌握直角三角形的性质定理,直角三角形斜边上的中线等于斜边的一半。
菱形的性质与判定(3课时),矩形的性质与判定(3课时),正方形的性质与判定(2课时),回顾与思考(1课时);共9课时。
1、菱形的性质与判定有一组邻边相等的平行四边形叫做菱形。
菱形是轴对称图形。
定理:菱形的四条边相等。
定理:菱形的对角线互相垂直。
定理:对角线互相垂直的平行四边形是菱形。
定理:四边相等的四边形是菱形。
2、矩形的性质与判定有一个角是直角的平行四边形叫做矩形。
矩形是轴对称图形。
定理:矩形的四个角都是直角。
定理:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
定理:对角线相等的平行四边形是矩形。
定理:有三个角是直角的四边形是矩形。
3、正方形的性质与判定有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
正方形既是矩形,又是菱形,它具有矩形与菱形的所有性质。
正方形是轴对称图形。
定理:正方形的四个角都是直角,四条边相等。
定理:正方形的对角线相等且互相垂直平分。
定理:对角线相等的菱形是正方形。
定理:对角线垂直的矩形是正方形。
定理:有一个角是直角的菱形是正方形。
第二章一元二次方程(11课时)目标:经历从具体情境中抽象出一元二次方程的过程;理解一元二次方程相关的概念,理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程,并在这个过程中体会转化的数学思想;经历估计一元二次方程解的过程;会用一元二次方程根的判别式判别方程是否有实数根和两个实数根是否相等;了解一元二次方程的根与系数的关系;利用一元二次方程解决实际问题。
认识一元二次方程(2课时),用配方法求解一元二次方程(2课时),用公式法求解一元二次方程(2课时),用因式分解法求解一元二次方程(1课时),一元二次方程的根与系数的关系(1课时),应用一元二次方程(2课时),回顾与思考(1课时),共11课时。
1、认识一元二次方程只含有一个未知数x 的整式方程,并且都可以化成20ax bx c ++=(,,a b c 为常数,0a ≠)的形式,这样的方程叫做一元二次方程。
把20ax bx c ++=(,,a b c 为常数,0a ≠)称为一元二次方程的一般形式,其中2ax ,bx ,c 分别称为二次项、一次项和常数项,a ,b 分别称为二次项系数和一次项系数。
2、用配方法求解一元二次方程通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法。
遇到二次项系数不为1的情况,可以先将二次项系数化为1.3、用公式法求解一元二次方程一元二次方程的求根公式:2b x a-±=用求根公式解一元二次方程的方法称为公式法。
对于一元二次方程,当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根。
把24b ac -叫做一元二次方程的根的判别式,用△表示。
4、用因式分解法求解一元二次方程如果0ab =,那么0a =或0b =。
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,可以使用因式分解法来求解方程。
将原来的一元二次方程转化成了两个一元一次方程。
5、一元二次方程的根与系数的关系如果方程20(0)ax bx c a ++=≠有两个实数根12,x x ,那么12b x x a +=-,12c x x a =。
6、应用一元二次方程相遇问题,定价问题第三章概率的进一步认识(5课时)目标:能运用列表和画树状图的方法计算一些简单事件发生的概率;能用时延频率估计一些较复杂随机事件发生的概率;能运用概率解决一些简单的实际问题。
用树状图或表格求概率(3课时),用频率估计概率(1课时),回顾与思考(1课时),共5课时。
1、用树状图或表格求概率树状图或表格可以不重复、不遗漏地列举可能出现的结果。
2、用频率估计概率第四章图形的相似(17课时)目标:了解线段的比、成比例线段,掌握比例的性质及平行线分线段成比例的基本事实;了解相似多边形和相似比;三角形相似的条件和性质;相似三角形判定定理的证明;了解图形的位似,能够利用位似将一个图形放大或缩小;了解多边形的顶点坐标,分别扩大或缩小相同倍数时所对应的图形与原图形的位似关系;了解黄金分割。
成比例线段(2课时),平行线分线段成比例(1课时),相似多边形(1课时),三角形相似的条件(4课时),相似三角形判定定理的证明(3课时),利用相似三角形测高(1课时),相似三角形的性质(2课时),图形的位似(2课时),回顾与思考(1课时);共17课时。
1、成比例线段如果选用统一长度单位量得两条线段,AB CD 的长度分别是,m n ,那么这两条线段的比就是它们长度的比,即::AB CD m n =,或写成AB m CD n =。
其中,线段,AB CD 分别叫做这个线段比的前项和后项。
如果把m n 表示成比值k ,那么AB k CD =,或AB k CD =∙。
这两条线段的比实际上就是两个数的比。
四条线段中,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a c b d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。
如果a c b d=,那么ad bc =。
如果ad bc =(,,,0a b c d ≠),那么a cb d=。
如果(0)a c m b d n b d n ===+++≠ ,那么a c m a b d n b +++=+++ 。
2、平行线分线段成比例两条直线被一组平行线所截,所得的对应线段成比例。
推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
3、相似多边形各角分别相等、各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
4、探索相似三角形相似的条件三角分别相等、三边成比例的两个三角形叫做相似三角形。
定理:两角分别相等的两个三角形相似。
定理:两边成比例且夹角相等的两个三角形相似。
定理:三边成比例的三角形相似。
一般地,点C 把线段AB 分成两条线段AC 和BC ,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,0.618。
5、相似三角形判定定理的证明上面定理的证明,思路是:在大的三角形中作一个跟小的三角形全等的三角形,证明所作的三角形与大的三角形相似,所以,小的三角形也与大的三角形相似。
6、利用相似三角形测高7、相似三角形的性质定理:相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比。
定理:相似三角形的周长比等于相似比,面积比等于相似比的平方。
8、图形的位似一般地,如果两个相似多边形任意一组对应顶点,P P '所在的直线都经过同一点O ,且有(0)OP k OP k '=∙≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心,实际上k 就是这两个相似多边形的相似比。
在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数(0)k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,他们的相似比为k 。
第五章投影与视图(6课时)目标:会画圆柱、圆锥、球、直棱柱及简单组合体的三种视图;了解视图在生活中的应用。
投影(2课时),视图(3课时),回顾与思考(1课时)1、投影物体在光线照射下,会在地面或其它平面上留下他的影子,这就是投影现象,影子所在的平面称为投影面。
太阳光线可以看成是平行光线,平行光线所成的投影称为平行投影。
平行光线与投影面垂直的投影称为正投影。
2、视图用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。
从正面得到的视图叫做主视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图。
在这三种视图中,主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽。
第六章反比例函数(5课时)目标:体会反比例函数的意义,理解反比例函数的概念,求解反比例函数的表达式;画出反比例函数的图像,理解反比例函数的性质。
反比例函数(1课时),图像与性质(2课时),应用(1课时),回顾与思考(1课时),共5课时。
1、反比例函数如果变量,x y 之间的对应关系可以表示成k y x =(k 为常数,且0k ≠)的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为零。
2、反比例函数的图像与性质反比例函数k y x=的图像是由两支曲线组成的。
当0k >时,两支曲线分别位于第一、三象限内;当0k <时,两支曲线分别位于第二、四象限内。
反比例函数k y x =的图像,当0k >时,在每一象限内,y 的值随x 的增大而减小;当0k <时,在每一象限内,y 的值随x 值的增大而增大。
3、反比例函数的应用。