用倒推法巧解分数应用题资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用倒推法巧解分数应

用题

用倒推法巧解分数应用题

如东县曹埠镇曹埠小学六年级王翀宇(226402)

最近我们学习了分数应用题,通过学习,我发现了有些分数应用题,我们可以用倒推的方法,也就是按照题目中叙述过程的相反顺序来思考、分析,从而比较顺利地求出了结果。

例如:一只猴子在山上摘桃子吃。第一天吃了一棵树上桃子数的1/10,以后两天分别吃了当天这棵树上剩下桃子数的1/5、1/3。这样,这棵树上还留下48个桃子。这棵树上原有多少个桃子?

我想:从已知条件的最后结果出发,倒推过去思考。由猴子在第三天吃剩下桃子数的1/3后,树上还有48个桃子这个条件出发,可以知道,猴子吃了2天后树上的桃子数为:

48÷(1-1/3)=72(个)

同理推出,猴子第一天吃了以后树上的桃子数为:

72÷(1-1/5)=90(个)

树上原有的桃子数为:

90÷(1-1/10)=100(个)

答:这棵树上原有桃子100个。

比如:小明看一本书,第一天看了这本书的1/2还多6页,第二天看了余下的1/3,这时还剩下42页。这本书一共有多少页?

我是这样想的:由第二天看了余下的1/3后,还剩42页,可知:

余下的页为:42÷(1-1/3)=63(页)

全书页数的1/2为:63+6=69(页)

全书的页数为:69÷1/2=138(页)

解:42÷(1-1/3)=63(页)

(63+6)÷(1-1/2)=138(页)

答:这本书一共有138页。

还有这样一题:白兔、黑兔各采蘑菇若干千克,白兔拿出1/5给黑兔,黑兔再拿出现有蘑菇的1/4给白兔,这时它们都有蘑菇18千克。它们原来各采蘑菇多少千克?

这道题我是这样想的:从题目中的最后一个条件去想,黑兔拿出现有蘑菇的1/4后还剩18千克,那么它在未拿出之前应有蘑菇是:

18÷(1-1/4)=24(千克)。这也就是说,黑兔拿出了24-18=6(千克)蘑菇给白兔,白兔在得到黑兔蘑菇之前应有蘑菇是:18-6=12(千克)。而这12千克实际上是白兔拿出它原有蘑菇的1/5给黑兔后的蘑菇,这样白兔原有的蘑菇就是:12÷(1-1/5)=15(千克)。

那么,黑兔原有的蘑菇应是多少呢?把它算出来,

再验算,看看对不对。

通过这三道题的解答,使我明白了,能用倒推法解答的分数应用题通常具备以下的特点:

(1)已知最后的结果;

(2)已知在到达最终结果时的每一步的具体过程(或具体做法),都能够还原;

(3)要求的是最初的数据。

来源:本站原创 2011-06-17 18:18:13

[标签:应用题解盈亏问题必备公式]奥数精华资讯免费订阅

【盈亏问题公式】

(1)一次有余(盈),一次不够(亏),可用公式:

(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”

解(7+9)÷(10-8)=16÷2

=8(个)………………人数

10×8-9=80-9=71(个)………………………桃子

或8×8+7=64+7=71(个)(答略)

(2)两次都有余(盈),可用公式:

(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”

解(680-200)÷(50-45)=480÷5

=96(人)

45×96+680=5000(发)

或50×96+200=5000(发)(答略)

(3)两次都不够(亏),可用公式:

(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”

解(90-8)÷(10-8)=82÷2

=41(人)

10×41-90=320(本)(答略)

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(例略)

(5)一次有余(盈),另一次刚好分完,可用公式:

来源:本站原创 2011-06-17 22:08:39

[标签:应用题奥数经济利润题例题讲解]奥数精华资讯免费订阅

1、

应用题:有关年龄问题的例题解析

来源:本站原创 2011-06-17 18:41:28

[标签:应用题年龄问题例题解析]奥数精华资讯免费订阅

在一些数学问题中要讨论年龄的变化和几个人的年龄的关系,我们知道随着时间的往后或往前推移,人的年龄就会增加或减少,如果有几个人,时间往后推移,几个人年龄的和随着年数增加而增加年数的几(按人数)倍,但这几个人年龄间的差却是不变的。在解答有关年龄变化的问题时这是必须牢记的。

例1:小华今年12岁,他妈妈今年48岁,多少年以前妈妈的年龄是小华的5倍?多少年以后妈妈的年龄是小华的3倍?

解:首先,不管是今年或今年前、今年后的若干年,小华和他妈妈年龄的差都是相同的,妈妈的年龄比小华大48-12=36(岁)。

当妈妈的年龄是小华的5倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的5份,比小华多5-1=4(份),所以那时小华是:36÷4=9(岁),是在今年前12-9=3(年)。

当妈妈的年龄是小华的3倍时,把那时小华的年龄作为1份,妈妈的年龄是这样的3份,比小华3-1=2(份),所以那时小华是:36÷2=18(岁),是在今年后18-12=6(年)。

相关文档
最新文档