南宁市2020年中考数学模拟试题(I)卷

合集下载

南宁市2020年(春秋版)数学中考模拟试卷(I)卷

南宁市2020年(春秋版)数学中考模拟试卷(I)卷

南宁市2020年(春秋版)数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分) (2016七上·工业园期末) 下边给出的是某月的日历表,任意圈出一竖列上、相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能()A . 27B . 40C . 54D . 692. (1分) (2019七上·顺德月考) 太阳的半径大约是669000千米,用科学记数法表示669000结果是()A . 6.69×103B . 6.69×104C . 6.69×105D . 6.69×1063. (1分)(2020·江岸模拟) 如图所示的几何体的俯视图是()A .B .C .D .4. (1分)关于4,3,8,5,5这五个数,下列说法正确的是()A . 众数是5B . 平均数是4C . 方差是5D . 中位数是85. (1分) (2020·北京模拟) 如果y=﹣x+3,且x≠y,那么代数式的值为()A . 3B . ﹣3C .D . ﹣6. (1分)如果,则下列变形中正确的是()A .B .C .D .7. (1分)如图一直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则BE等于()A . 2 cmB . 3 cmC . 4 cmD . 5 cm8. (1分)(2012·北海) 如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A . 10πB .C . πD . π二、填空题 (共5题;共5分)9. (1分) (2019七上·孝南月考) -2.5的相反数、倒数、绝对值分别为 ________、________、________。

南宁市2020年中考数学模拟试题及答案

南宁市2020年中考数学模拟试题及答案

南宁市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年中考数学一模试卷(I)卷

2020年中考数学一模试卷(I)卷

2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分)的倒数是()A .B . -2C . 2D .2. (3分)下列运算错误的是()A . (m ) = mB . a ÷a =aC . x ·x =xD . a +a =a3. (3分)观察下列图案,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (3分)反比例函数y=(k≠0)的图象过点(-1,1),则此函数的图象在直角坐标系中的()A . 第二、四象限B . 第一、三象限C . 第一、二象限D . 第三、四象限5. (3分)如图是某几何体从不同角度看到的图形,这个几何体是()A . 圆锥B . 圆柱C . 正三棱柱D . 三棱锥6. (3分)若整数a使关于x的不等式组无解,且使关于x的分式方程- =-1有非负整数解,那么所有满足条件的a的值之和是()A . 4B . 6C . 8D . 107. (3分)如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B,C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A . πB . πC . πD . π8. (3分)在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O 的位置关系是()A . P在⊙O内B . P在⊙O上C . P在⊙O外D . P与A或B重合9. (3分)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A . y=2x2+1B . y=2x2﹣3C . y=2(x﹣8)2+1D . y=2(x﹣8)2﹣310. (3分)如图·在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内放入边长为1的正方形纸片,每两张纸片都不重叠,则最多能放人的正方形纸片的张数是()A . 15B . 16C . 17D . 18二、填空题(共30分) (共10题;共30分)11. (3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为________.12. (3分)计算:﹣3 =________.13. (3分)若代数式在实数范围内有意义,则x的取值范围是________。

南宁市2020年初中毕业生学业模拟考试数学试卷(一)

南宁市2020年初中毕业生学业模拟考试数学试卷(一)

南宁市2020年初中毕业生学业模拟考试数学试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列各组数中,互为相反数的一组是()A . 3与B . 2与|-2|C . (-1)2 与1D . -4与(-2)22. (2分)第30届延庆冰雪欢乐节于2015年12月20日开幕.本届冰雪欢乐节以“冰雪延庆,激情冬奥”为主题,将持续至2016年2月底.在70余天的时间里,延庆将举办冰雪赛事、冰雪培训、冰雪旅游、文化宣传4大类20项活动,据不完全统计,截止2016年1月4日,冰雪节期间,延庆乡村旅游收入超过2350000元.将2350000用科学记数法表示应为()A . 2.35×107B . 2.35×106C . 23.5×106D . 23.5×1053. (2分)在,,,这四个实数中,最大的是()A .B .C .D . 04. (2分)(2018·枣阳模拟) 下列运算正确的是()A . a3+a3=2a6B . (x2)3=x5C . 2a6÷a3=2a2D . x3•x2=x55. (2分)由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A .B .C .D .6. (2分) (2019七下·东城期末) 若多边形的内角和大于900°,则该多边形的边数最小为()A . 9B . 8C . 7D . 67. (2分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,如果要使得利润率为5%,那么销售时应该打()A . 6折B . 7折C . 8折D . 9折8. (2分)(2020·临沂) 如图,在中,,,,则()A .B .C .D .9. (2分)(2019·莲湖模拟) 如图,A,D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A . 68°B . 58°C . 72°D . 56°10. (2分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A . 3:4B . 9:16C . 9:1D . 3:111. (2分)如图,等边△OAB的边OB在x轴的负半轴上,双曲线y=过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为()A . y=B . y=-C . y=D . y=-12. (2分)(2017·西固模拟) 袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)约分:________叫做约分,约分的结果应为________或者________.14. (1分) (2017七下·东城期中) 若不等式组的解集是-1<x<2,则 ________.15. (1分) (2017·云南) 如图,在△ABC中,D,E分别为AB,AC上的点,若DE∥BC, = ,则=________.16. (1分) (2017九上·鄞州竞赛) 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点是法国数学家和教育家克洛尔于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=________。

2024年3月广西统一中考数学模拟预测题(一)(原卷版)

2024年3月广西统一中考数学模拟预测题(一)(原卷版)

2024年广西统一中考数学模拟测试卷(一)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 如图,在数轴上,手掌遮挡住的点表示的数可能是( )A. B. C. D. 2. 先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是( )AB. C. D.3.有意义,则的取值范围是()A. B. C. D. 4. 年月日,神舟十五号航天员乘组圆满完成了他们首次出舱任务,飞船的时速为每小时万千米,万千米用科学记数法表示应为( )A.米 B. 米 C. 米 D. 米5. 下列各式中,计算结果等于的是( )A. B. C. D.6. 如图,该数轴表示的不等式的解集为( )A. B. C. D. .的0.5-0.5 1.5- 2.5-x 2x <2x >2x ≤2x ≥2023210 2.82.852.810⨯62.810⨯72.810⨯82.810⨯5a 23a a +6a a-23a a ⋅÷5a a2x <1x >12x ≤≤12x <<7. 若一个多边形的每一个内角都等于,则这个多边形的边数为( )A. 10B. 12C. 14D. 158. 下列说法正确是( )A. 调查学青会运动员是否服用兴奋剂适合用抽样调查B. 一组数据,,,,的中位数是3C. “经过有交通信号灯的路口,遇到红灯”是随机事件D. 甲、乙两人9次跳高成绩的方差分别为,,说明乙的成绩比甲稳定9. 如图所示的是一副特制的三角板,用它们可以画出-一些特殊角.在下列选项中,不能用这副三角板画出的角度是( )A. B. C. D. 10. 我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是( )A. B. C D. 11. 如图所示为某新款茶吧机,开机加热时每分钟上升20℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与通电时间成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温与通电时间之间的关系如图所示,则下列说法中错误的是( )A. 水温从加热到,需要的.150︒5534121.1S =甲22.5S =乙18 108 82 11722(12)864x x ++=22(12)864x x ++=(12)864x x -=(12)864x x +=y ()min x y x 20C ︒100C ︒4minB. 水温下降过程中,与的函数关系式是C. 在一个加热周期内水温不低于40℃的时间为D. 上午10点接通电源,可以保证当天10:30能喝到不低于的水12. 如图,点为上三点,,点为上一点,于,,,则的长为( )A.B. 2C. D.二、填空题(本大题共6个小题,每小题2分,共12分)13. 如图,直线,直线被直线所截,若,则______.14. 分解因式:___________.15. 南宁市有四个人气较旺的景点:方特东盟神画、青秀山风景区、南宁市园博园、南宁云顶观光,若小平同学随机选择一处去游览,她选择青秀山风景区的概率是______.16. 如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽是矩形.当餐盘正立且紧靠支架于点A ,D 时,恰好与边相切,则此餐盘的半径等于_________cm .17. 如图,隧道的截面由抛物线和长方形构成,按照图中所示的平面直角坐标系,抛物线可以用表示.在抛物线型拱壁上需要安装两排灯,如果灯离地面的高度为,那么两排灯的y x 400y x=7min38C ︒,,A B C O AC BC=M BC CE AM ⊥E 5AE =3ME =BM12l l ∥12,l l 3l 150∠=︒3∠=︒22x x +=ABCD BC OABC 21266y x x =-++8m水平距离是 ________________米.18. 如图,在矩形中,,点E 、F 分别在边上,点M 为线段上一动点,过点M 作的垂线分别交边于点G 点H .若线段恰好平分矩形的面积,且,则的长为 _____.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤)19. 计算:.20.解分式方程:.21. 如图,在中,对角线,相交于点O ,E 为的中点,连接,.(1)实践与操作:利用尺规在线段上作出点F ,使得四边形为平行四边形,连接,;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)应用与求解:若,求的长.22. 年2月,C 市从甲、乙两校各抽取名学生参加全市数学素养水平监测.样本学生数学测试成ABCD 4,6AB AD ==,AB CD EF EF ,AD BC EF ABCD 1DF =GH ()()()238523÷-+-⨯-1123x x=-ABCD Y AC BD OD AE CE OB AFCE AF CF 4,60AB BC ABC ==∠=︒EF 202310绩(满分分)如下表:样本学生成绩平均数 方差中位数众数甲校5066666678808182839474.6141.04a 66乙校6465697476767681828374.640.8476b(1)表中_______;_______;(2)请结合平均数、方差、中位数、众数这几个统计量,评判甲、乙两校样本学生的数学测试成绩;(3)若甲、乙两校学生都超过人,按照C 市的抽样方法,用样本学生数据估计甲、乙两校总体数学素养水平可行吗?为什么?23. 如图,在中,为上一点,以点为圆心,为半径作圆,与相切于点,过点作交的延长线于点,且.(1)求证:为的切线;(2)若,sin ,求的长.24. 在锐角中,,矩形的两个顶点,分别在上,另两个顶点均在上,高交于点,设的长为,矩形的面积为.(1)求的长,并用含的式子表示线段的长;(2)请求出关于的函数解析式;100=a b =2000ABC O AC O OC BC C A AD BO ⊥BO D AOD BAD ∠=∠AB O 10AB =45ABC ∠=AD ABC 6,12ABC BC S ∆==MPQN M N ,AB AC ,P Q BC AD MN E MN x MPQN y AD x AE y x(3)试求的最大值.25. 【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm ,开始放水后每隔10min 观察一次甲容器中的水面高度,获得的数据如下表:流水时间t /min 010203040水面高度h /cm (观察值)302928.12725.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用时,;时,这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验,发现有两组表中观察值不满足任务2中求出函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t 为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h 的观察值之差的平方和,记为w ;w 越小,偏差越小.任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过的一次函数解析式,使得w 的值最小.【设计刻度】的y 0=t 30h =0=t 30h =10t =29h =()0,30得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4 请你简要写出时间刻度的设计方案.26. 某学校数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形中,点,分别是,上的两点,连接,,,猜想并计算的值;【类比探究】(2)如图2,在矩形中,,点是上的一点,连接,且,求的值;【类比证明】(3)如图3,在四边形中,,点为上一点,连接,过点作的垂线交的延长线于点,交的延长线于点,求证:.ABCD E F AB AD DE CF DE CF ⊥DECFABCD 30DBC ∠=︒E AD ,CE BD CE BD ⊥CEBDABCD 90A B ∠=∠=︒E AB DE C DE ED G AD F DE AB CF AD ⋅=⋅。

2020届中考模拟广西南宁市中考数学模拟试卷(含参考答案)(Word版)

2020届中考模拟广西南宁市中考数学模拟试卷(含参考答案)(Word版)

广西南宁市中考数学试卷一、选择题(本大题共12 小题,每小题3 分,共36 分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1 .(3.00 分)﹣ 3 的倒数是()A.﹣3 B.3 C.﹣D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3 的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.【解答】解:81000 用科学记数法表示为8.1 × 104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤ |a|< 10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.(3.00 分)某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所【分析】根据平均分的定义即可判断;【解答】解:该球员平均每节得分= =8,故选:B.【点评】本题考查折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的定义;6. (3.00 分)如图, ∠ ACD 是 △ ABC 的外角, CE 平分∠ ACD ,若 ∠ A=60°, ∠ B=40°,则 ∠ ECD∠ ACD ,根据角平分线定义求出即可.∵∠ A=60°, ∠ B=40°,ACD=∠ A+∠ B=100°, CE 平分 ∠ ACD , ECD= ∠ ACD=5°0,故选: C .本题考查了角平分线定义和三角形外角性质, 能熟记三角形外角性质的内容是解此题7. ( 3.00 分)若 m > n ,则下列不等式正确的是( ) A . m ﹣ 2< n ﹣ 2 B . C . 6m < 6nD .﹣ 8m >﹣ 8n【分析】将原不等式两边分别都减 2、都除以4、都乘以 6、都乘以﹣ 8,根据不等式得基本性 质逐一判断即可得. 【解答】解:A 、将 m > n 两边都减 2 得: m ﹣ 2> n ﹣ 2,此选项错误;B 、将 m > n 两边都除以 4 得: > ,此选项正确;C 、将 m > n 两边都乘以 6 得: 6m > 6n ,此选项错误;D 、将 m > n 两边都乘以﹣8,得:﹣ 8m <﹣ 8n ,此选项错误;故选: B .【点评】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等 式的两边同时乘以(或除以)同一个负数,不等号的方向改变.55°8.(3.00 分)从﹣2,﹣1,2 这三个数中任取两个不同的数相乘,积为正数的概率是(【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.A.B.C.D.【解答】解:列表如下:积﹣﹣221﹣2﹣﹣2 ﹣2﹣﹣42由表可知,共有6 种等可能结果,其中积为正数的有2 种结果,所以积为正数的概率为故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.(3.00 分)将抛物线y= x2﹣6x+21 向左平移 2 个单位后,得到新抛物线的解析式为(A.y= (x﹣8)2+5 B.y= (x﹣4)2+5 C.y= (x﹣8)2+3 D.y= (x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y= x2﹣6x+21= (x2﹣12x)+21= [ (x﹣6)2﹣36]+21= (x﹣6)2+3,故y= (x﹣6)2+3,向左平移2 个单位后,得到新抛物线的解析式为:y= (x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.10.(3.00 分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若A B=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.2【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥ BC于D,∵△ABC是等边三角形,∴ AB=AC=BC=,2∠ BAC=∠ ABC=∠ ACB=60°,∵ AD⊥ BC,∴ BD=CD=,1 AD= BD= ,∴△ABC的面积为= ,S 扇形BAC= = π ,∴ 莱洛三角形的面积S=3× π ﹣2× =2π ﹣2 ,故选:D.【点评】本题考查了等边三角形的性质好扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.(3.00 分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80 吨增加到100 吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100 或80(1+x)2=100.故选:A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.12.( 3.00 分)如图,矩形纸片ABCD,AB=4,BC=3,点P 在BC边上,将△CDP沿DP折叠,点C 落在点 E 处,PE、DE分别交AB于点O、F,且OP=O,则F cos∠ADF 的值为(DC=DE、CP=EP,由∠ EOF=∠ BOP、∠ B=∠ E、OP=OF可得出OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=O、B EF=BP,设EF=x,则BP=x、DF=4x、BF=PC=﹣3 x,进而可得出AF=1+x,在Rt△ DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ ADF的值.【解答】解:根据折叠,可知:△ DCP≌△ DEP,∴ DC=DE=,4 CP=EP.在△ OEF和△ OBP中,,∴△OEF≌△OBP(AAS),∴ OE=O,B EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵ BF=OB+OF=OE+OP=PE,=PC=BC﹣BP=3﹣x,AF=AB﹣BF=1+x.在Rt△ DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x= ,∴ DF=4﹣x= ,∴ cos∠ ADF= = .故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.二、填空题(本大题共 6 小题,每小题 3 分,共18 分)13.(3.00 分)要使二次根式在实数范围内有意义,则实数x 的取值范围是x≥ 5 .【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥ 5.故答案为:x≥ 5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.14.(3.00 分)因式分解:2a2﹣2= 2(a+1)(a﹣1).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.15.( 3.00 分)已知一组数据6,x,3,3,5,1 的众数是3 和5,则这组数据的中位数是 4 .【分析】先根据众数的定义求出x=5,再根据中位数的定义求解可得.【解答】解:∵ 数据6,x,3,3,5,1 的众数是3和5,∴ x=5,则数据为 1、 3、 3、 5、 5、 6, =4, 故答案为: 4.16.( 3.00 分)如图,从甲楼底部 A 处测得乙楼顶部 C 处的仰角是 30°,从甲楼顶部 B 处测得D 处的俯角是45°,已知甲楼的高 AB 是 120m ,则乙楼的高 CD 是40 m (结果保AB=AD ,再利用锐角三角函数关系得出答案.∠ BDA=45°,则 AB=AD=120,m 又 ∵∠ CAD=3°0,在 Rt △ ADC 中, tan ∠ CDA=tan30° = 解得: CD=40 ( m ) , 故答案为: 40 .tan ∠ CDA=tan30° = 是解题关键.17. ( 3.00 分)观察下列等式: 30=1, 31=3, 32=9, 33=27,34=81, 35=243, ⋯ ,根据其中规律可得30+31+32+⋯ +32018的结果的个位数字是3 . 【分析】首先得出尾数变化规律,进而得出 30+31+32+⋯ +32018的结果的个位数字.【解答】解: ∵ 30=1, 31=3, 32=9, 33=27, 34=81, 35=243, ⋯ , ∴ 个位数 4 个数一循环,这组数据为∴ ( 2018+1) ÷ 4=504余 3, ∴ 1+3+9=13, ∴ 30+31+32+⋯ +32018的结果的个位数字是: 3.故答案为: 3.【点评】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.18.( 3.00 分) 如图, 矩形ABCD 的顶点 A , B 在 x 轴上, 且关于 y 轴对称, 反比例函数 y= ( x0) 的图象经过点 C , 反比例函数 y= ( x <0) 的图象分别与 AD , CD 交于点 E ,F , 若 S △ BEF =7,△ BEF 的面积,构造方程.k 1+3k 2=0,则 k 1等于 9A坐B 的坐标为(a,0),则A点坐标为(﹣a,0)∴ k2=﹣k1代入① 式得解得k1=9故答案为:9【点评】本题是反比例函数综合题,解题关键是设出点坐标表示相关各点,应用面积法构造方程.三、解答题(本大题共8 小题,共66 分,解答题因写出文字说明、证明过程或演算步骤)19.(6.00 分)计算:| ﹣4|+3tan60 °﹣﹣()﹣1【分析】直接利用特殊角的三角函数值以及二次根式的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=4+3 ﹣2 ﹣2= +2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.C(a,),E(﹣a,﹣,D(﹣a,),F(﹣,)矩形ABCD面积为:2a? =2k 1S △S △S△=S△=7k1+3k2= 020.(6.00 分)解分式方程:﹣1= .【分析】根据解分式方程的步骤:① 去分母;② 求出整式方程的解;③ 检验;④ 得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:x=1.5,检验:x=1.5 时,3(x﹣1)=1.5≠ 0,所以分式方程的解为x=1.5 .【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:① 去分母;② 求出整式方程的解;③ 检验;④ 得出结论.21.(8.00 分)如图,在平面直角坐标系中,已知△ ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ ABC向下平移 5 个单位后得到△ A1B1C1,请画出△ A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B 为顶点的三角形的形状.(无须说明理由)( 1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△ A1B1C1为所作;2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△ A2B2C2,3)根据勾股定理逆定理解答即可.(1)如图所示,△ A1B1C1即为所求:(2)如图所示,△ A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=O1A= ,A1B= ,即,所以三角形的形状为等腰直角三角形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(8.00 分)某市将开展以“走进中国数学史”为主题的知识凳赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:1)求 2)在扇形统计图中,求成绩等级 频数(人数)频率 A 4 0.04 B m0.51CnD合计100 1m= 51 , n= 30 ; “C 等级”所对应心角的度数;A 的 4名同学中有 1 名男生和3名女生,现从中随机挑选 2名同学代表学校 3)成绩等级为 1 男 1女 ”的概率.( 1)由 A 的人数和其所占的百分比即可求出总人数,由此即可解决问题;2)由总人数求出 C等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角 3)列表得出所有等可能的情况数, 找出刚好抽到一男一女的情况数,即可求出所求的概率; ( 1)参加本次比赛的学生有: 4÷ 0.04=100(人) ; m=0.51×100=51(人), D组人数 =100× 15%=15(人) , n=100﹣ 4﹣ 51﹣ 15=30(人) 故答案为 51, 30; 2) B 等级的学生共有: 50﹣ 4﹣ 20﹣ 8﹣ 2=16(人) . 所占的百分比为: 16÷50=32%C 等级所对应扇形的圆心角度数为: 360°×30%=108°. 3)列表如下:女1女2女323. ( 8.00 分)如图,在 ? ABCD 中, AE ⊥BC , AF ⊥ CD ,垂足分别为 E , F ,且BE=DF . ( 1)求证: ? ABCD 是菱形; ( 2)若AB=5, AC=6,求 ? ABCD 的面积.【分析】 ( 1)利用全等三角形的性质证明 AB=AD 即可解决问题; ( 2)连接 BD 交 AC 于 O ,利用勾股定理求出对角线的长即可解决问题;【解答】 ( 1)证明: ∵ 四边形 A BCD 是平行四边形, ∴∠ B=∠ D ,∵ AE ⊥ BC , AF ⊥ CD , ∴∠ AEB=∠ AFD=90°,∵ BE=DF ,∴△ AEB ≌△ AFD ∴ AB=AD ,∴ 四边形 ABCD 是平行四边形.2)连接 B D 交 AC 于 O .四边形ABCD 是菱形, AC=6,AC ⊥ BD ,男 ﹣﹣﹣女 1(男,女) 女 2(男,女) 女 3(男,女) 共有 12 种等可能的结果,选中P (选中1 名男生和 1名女生) 1 名男生和 1名女生结果的有.= =.﹣﹣﹣(女,女) (女,男) (女,女)(女,女)﹣﹣﹣6种.=所求情况数与总情况数之比.AO=O C=AC= 6=3,AB=5,AO=3,BO= = =4,BD=2BO=,8S 平行四边形ABCD= AC× BD=24.键是正确寻找全等三角形解决问题,属于中考常考题型.24.(10.00 分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30 吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300 吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120 元/吨和100 元/ 吨.经协商,从甲仓库到工厂的运价可优惠a 元吨(10≤ a≤ 30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.【分析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得解得240吨,乙仓库存放原料210吨;2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)① 当10≤a< 20时,20﹣a> 0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤ a≤ 30 时,则20﹣a< 0,W随m的增大而减小.【点评】本题考查了二元一次方程组及一次函数的性质,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.25.(10.00 分)如图,△ ABC内接于⊙O,∠CBG∠= A,CD为直径,OC与AB相交于点E,过点E 作EF⊥ BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙ O相切;3)在(2)的条件下,若⊙ O的半径为8,PD=O,求D OE的长.【分析】(1)要证PG与⊙ O 相切只需证明∠ OBG=9°0,由∠ A 与∠ BDC是同弧所对圆周角且∠ BDC=∠ DBO可得∠ CBG∠= DBO,结合∠ DBO∠+ OBC=9°0即可得证;(2)求需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥ AC、连接OA,证△ BEF∽△OAM得= ,由AM= AC、OA=OC 知= ,结合= 即可得;( 3)Rt△ DBC中求得BC=8 、∠ DCB=3°0,在Rt△EFC中设EF=x,知EC=2x、FC= x、BF=8﹣x,继而在Rt△ BEF中利用勾股定理求出x的,从而得出答案.【解答】解:(1)如图,连接OB,则OB=O,DBDC=∠ DBO,BAC=∠ BDC、∠ BDC∠= GBC,GBC∠= BDC,∵ CD是⊙ O的切线,∴∠DBO∠+ OBC=9°0,∴∠GBC∠+ OBC=9°0,∴∠GBO=9°0,∴ PG与⊙ O相切;(2)过点O作OM⊥ AC于点M,连接OA,则∠ AOM∠= COM=∠ AOC,∵=,∴∠ ABC= ∠ AOC,又∵∠EFB=∠ OGA=9°0,∴△BEF∽△OAM,∴,∵ AM= AC,OA=O,C∴,∴=,又∵=,∴=2×=2× = ;( 4)∵ PD=O,D ∠ PBO=9°0,∴ BD=OD=,8在Rt△ DBC中,BC= =8 ,又∵ OD=O,B∴△DOB是等边三角形,∴∠DOB=6°0,∵∠DOB∠= OBC∠+ OCB,OB=O,C∴∠OCB=3°0,∴=,= ,∴ 可设EF=x,则EC=2x、FC= x,∴ BF=8 ﹣x,在Rt△ BEF中,BE2=EF2+BF2,∴ 100=x2+(8 ﹣x)2,解得:x=6±,∵ 6+ > 8,舍去,∴ x=6﹣,∴ EC=12﹣2 ,∴ OE=8﹣(12﹣2 )=2 ﹣4.【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识点.26.(10.00 分)如图,抛物线y=ax2﹣5ax+c 与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x 轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=B,连接N MN,AM,AN.(1)求抛物线的解析式及点D 的坐标;(2)当△ CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为 3 所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠ MCN∠= OCB,根据相似三角形的判定方法,当= 时,△ CMN∽△C OB,于是有∠ CMN∠=COB=9°0,即= ;当= 时,△ CMN∽△CBO,于是有∠ CNM∠= COB=9°0,即= ,然后分别求m的值即可得到M点的坐标;3)连接DN,AD,如图,先证明△ ACM≌△DBN,则AM=D,所以N AM+AN=DN+,利用三角形AN三边的关系得到DN+A邸\D (当且仅当点A、M D共线时取等号),然后计算出AD即可. 【解答】解:(1)把A (― 3, 0), C(0, 4)代入y=aY ―5ax+c 得©4抛物线解析式为y= - -1-X2+-^-X+4;6 6VAC=BQ CQLABOB=OA=,3••B (3, 0),••,BEUx轴交抛物线于点D,••.D点的横坐标为3,当x=3 时,y= - - >9+— x3+4=5, 6 6:D点坐标为(3, 5);(2)在RtAOBCfr, BCM OB%。

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020年广西南宁市中考数学试题及参考答案(word解析版)

2020年广西南宁市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣52.下列图形是中心对称图形的是()A.B.C.D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.3010.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.14.计算:﹣=.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.20.(6分)先化简,再求值:÷(x﹣),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A 是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC 的面积;若不存在,请说明理由.答案与解析第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.下列实数是无理数的是()A.B.1 C.0 D.﹣5【知识考点】算术平方根;无理数.【思路分析】无限不循环小数是无理数,而1,0,﹣5是整数,也是有理数,因此是无理数.【解题过程】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此是无理数,故选:A.【总结归纳】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.下列图形是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解题过程】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【总结归纳】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6﹣1=5.【解题过程】解:889000=8.89×105.故选:C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【知识考点】整式的混合运算.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解题过程】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.【总结归纳】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量【知识考点】全面调查与抽样调查.【思路分析】利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解题过程】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.【总结归纳】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定【知识考点】根的判别式.【思路分析】先根据方程的一般式得出a、b、c的值,再计算出△=b2﹣4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解题过程】解:∵a=1,b=﹣2,c=1,∴△=(﹣2)2﹣4×1×1=4﹣4=0,∴有两个相等的实数根,故选:B.【总结归纳】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解题过程】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.【总结归纳】本题考查了作图﹣基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解题过程】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是=,故选:C.【总结归纳】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.30【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解题过程】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.【总结归纳】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【知识考点】由实际问题抽象出分式方程.【思路分析】直接利用总时间的差值进而得出等式求出答案.【解题过程】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.【总结归纳】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【知识考点】勾股定理的应用.【思路分析】画出直角三角形,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【总结归纳】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x >0)于点C,D.若AC=BD,则3OD2﹣OC2的值为()A.5 B.3C.4 D.2【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【思路分析】延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解题过程】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=(x>0)上,则CE=,DF=.∴BD=BF﹣DF=b﹣,AC=﹣a.又∵AC=BD,∴﹣a=(b﹣),两边平方得:a2+﹣2=3(b2+﹣2),即a2+=3(b2+)﹣4,在直角△ODF中,OD2=OF2+DF2=b2+,同理OC2=a2+,∴3OD2﹣OC2=3(b2+)﹣(a2+)=4.故选:C.【总结归纳】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC =BD得到a,b的关系是解题的关键.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,在数轴上表示的x的取值范围是.【知识考点】在数轴上表示不等式的解集.【思路分析】根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.【解题过程】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.【总结归纳】本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.计算:﹣=.【知识考点】二次根式的加减法.【思路分析】先化简=2,再合并同类二次根式即可.【解题过程】解:=2﹣=.故答案为:.【总结归纳】本题主要考查了二次根式的加减,属于基础题型.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 231 801“射中9环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).【知识考点】利用频率估计概率.【思路分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解题过程】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.【总结归纳】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.【知识考点】规律型:数字的变化类.【思路分析】根据题意可得前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解题过程】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.【总结归纳】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.以原点为中心,把点M (3,4)逆时针旋转90°得到点N,则点N的坐标为.【知识考点】坐标与图形变化﹣旋转.【思路分析】如图,根据点M (3,4)逆时针旋转90°得到点N,则可得点N的坐标为(﹣4,3).【解题过程】解:如图,∵点M (3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.18.如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质;轨迹.【思路分析】如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB =120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解题过程】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长==π.故答案为π.【总结归纳】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:﹣(﹣1)+32÷(1﹣4)×2.【知识考点】有理数的混合运算.【思路分析】直接利用有理数的混合运算法则计算得出答案.【解题过程】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.【总结归纳】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.(6分)先化简,再求值:÷(x﹣),其中x=3.【知识考点】分式的化简求值.【思路分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得答案.【解题过程】解:原式=÷(﹣)=÷=•=,当x=3时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF,证出AB∥DE,由AB=DE,即可得出结论.【解题过程】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.【总结归纳】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a 8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.【知识考点】用样本估计总体;频数(率)分布表;中位数;众数;统计量的选择.【思路分析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.【解题过程】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b==91,c=100;(2)估计成绩不低于90分的人数是1600×=1040(人);(3)中位数,在被调查的20名学生中,中位数为91分,有一半的人分数都是再91分以上.【总结归纳】考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)过B作PM⊥AB于C,解直角三角形即可得到结论;(2)在Rt△BCM中,解直角三角形求得∠CBM=60°,即可求得∠CBG=45°,BC=40nmile,即可得到结论.【解题过程】解:(1)过B作BM⊥AC于M,由题意可知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM=45°,AB=40nmile,∴BM=AM=AB=20nmile,∴渔船航行20nmile距离小岛B最近;(2)∵BM=20nmile,MC=20nmile,∴tan∠MBC===,∴∠MBC=60°,∴∠CBG=180°﹣60°﹣45°﹣30°=45°,在Rt△BCM中,∵∠CBM=60°,BM=20nmile,∴BC==2BM=40nmile,故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【总结归纳】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h 共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.【知识考点】二元一次方程组的应用;一次函数的应用.【思路分析】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.【解题过程】解:(1)1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨,由题意可知:,解得:,答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20,∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时,此时40≤b≤80,∴w=20×a+0.8×12(100﹣2a)=0.8a+960,当a=10时,此时w有最小值,w=968万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960,当a=35时,此时w有最小值,w=918万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时,w有最小值,此时w=930,答:选购A型号机器人35台时,总费用w最少,此时需要918万元.【总结归纳】本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.。

广西壮族自治区南宁市2024届中考数学适应性模拟试题含解析

广西壮族自治区南宁市2024届中考数学适应性模拟试题含解析

广西壮族自治区南宁市2024届中考数学适应性模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .2.-2的绝对值是()A .2B .-2C .±2D .12 3.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( )A .a e a =B .e b b =C .1a e a =D .11a b a b= 4.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110 B .19 C .16 D .155.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A .6B .8C .10D .126.如图所示的几何体,它的左视图是( )A .B .C .D .7.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .428.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π9.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2 B .y =(x +1)2+2 C .y =(x -1)2-2 D .y =(x +1)2-210.2018的相反数是( )A .12018B .2018C .-2018D .12018- 二、填空题(共7小题,每小题3分,满分21分)11.如图,A 、B 是双曲线y=k x上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若D 为OB 的中点,△ADO 的面积为3,则k 的值为_____.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).13.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.14.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.15.如果关于x的方程2x2x m0-+=(m为常数)有两个相等实数根,那么m=______.16.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).三、解答题(共7小题,满分69分)18.(10分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)12200 1150 12500 13400 15894.09 17490.92 19545.22 20768.73 森林覆盖率12.7% 12% 12.98% 13.92% 16.55% 18.21% 20.36% 21.63% 表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.74 37.88 52.05 58.81森林覆盖率11.2% 8.1% 12.08% 14.99% 18.93% 21.26% 31.72% 35.84% (以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).19.(5分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.20.(8分)先化简,再求值:22()11x x xxx x+÷-++,其中x=2.21.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.22.(10分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.23.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.24.(14分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:填空:这次被调查的同学共有人,a+b=,m=;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.2、A【解题分析】根据绝对值的性质进行解答即可【题目详解】解:﹣1的绝对值是:1.故选:A.【题目点拨】此题考查绝对值,难度不大3、B【解题分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【题目详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【题目点拨】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.4、A【解题分析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.5、B【解题分析】由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为12,△BPQ与△CNH相似比为13,由相似三角形的性质,就可以求出1S,从而可以求出2S.【题目详解】∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴12AB BQAD DM==,13AB BQAC CH==,∵EF=FG= BD=CD,AC∥EH,∴四边形BEFD、四边形DFGC是平行四边形,∴∠BPQ=∠DKM=∠CNH ,又∵∠BQP=∠DMK=∠CHN ,∴△BPQ ∽△DKM ,△BPQ ∽△CNH , ∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =, 1320S S +=,∴11920S S +=,即11020S =,解得:12S =,∴214S S =42=⨯8=,故选:B .【题目点拨】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S 2=4S 1,S 3=9S 1是解题关键.6、D【解题分析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、B【解题分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【题目详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∴∠EAF=∠FBD ,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC ,∴AD=BD ,在△ADC 和△BDF 中CAD DBF AD BDFDB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDF ,∴DF=CD=4,故选:B .【题目点拨】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.8、A【解题分析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°AB=2∴S △ABC =12根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯ =2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.9、A【解题分析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x ﹣1)2+2,故选A.考点:二次函数图象与几何变换.10、C【解题分析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【题目详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【题目点拨】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解题分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B (2x,),故CD=,AD=﹣,再由△ADO的面积为1求出k的值即可得出结论.解:如图所示,过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.12、9π【解题分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=12 AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.【题目详解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=12AB=12×6=3(cm),∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=2120?6360π﹣21203360π=11π﹣3π=9π(cm1).故答案为9π.【题目点拨】本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.13、132013201 502 x x-= -【解题分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【题目详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据题意得132013201502x x-=-.故答案为132013201502x x-=-.【题目点拨】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.14、【解题分析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【题目详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S阴影=S扇形ODB−S△DOE+S△BEC故答案为:.【题目点拨】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.15、1【解题分析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为116、1【解题分析】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=12×12×3=1.故答案为1.【题目点拨】本题考查正多边形和圆;扇形面积的计算.17、1.【解题分析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.三、解答题(共7小题,满分69分)18、(1)四;(2)见解析;(3)0.2715ab.【解题分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【题目详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;故答案为四;(2)补全折线统计图,如图所示:(3)根据题意得:ab×27.15%=0.2715ab,则全国森林面积可以达到0.2715ab万公顷,故答案为0.2715ab.【题目点拨】此题考查了折线统计图,弄清题中的数据是解本题的关键.19、(1)①点C的坐标为(-33,9);②滑动的距离为6(3﹣1)cm;(2)OC最大值1cm.【解题分析】试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=1,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'O B'中,由勾股定理得,(6﹣x )2+(6+x )2=12,解得:x=6(﹣1), ∴滑动的距离为6(﹣1); (2)设点C 的坐标为(x ,y ),过C 作CE ⊥x 轴,CD ⊥y 轴,垂足分别为E ,D ,如图3:则OE=﹣x ,OD=y ,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB ,又∵∠AEC=∠BDC=90°,∴△ACE ∽△BCD , ∴,即, ∴y=﹣x ,OC 2=x 2+y 2=x 2+(﹣x )2=4x 2, ∴当|x|取最大值时,即C 到y 轴距离最大时,OC 2有最大值,即OC 取最大值,如图,即当C'B'旋转到与y 轴垂直时.此时OC=1,故答案为1.考点:相似三角形综合题.20、2【解题分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【题目详解】解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x++=⋅+2.x x+=当x =原式1=+ 【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.21、参见解析.【解题分析】分析:先证∠ACB=∠CAD ,再证出△BEC ≌△DFA ,从而得出CE=AF .详解:证明:平行四边形ABCD 中,AD BC ,AD BC =,ACB CAD ∴∠=∠.又BE DF ,BEC DFA ∴∠=∠,BEC DFA ∴≌,∴ CE AF =点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、证明见解析【解题分析】证明:(1)∵DF ∥BE ,∴∠DFE=∠BEF .又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB (SAS ).(2)由(1)知△AFD ≌△CEB ,∴∠DAC=∠BCA ,AD=BC ,∴AD ∥BC .∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS ),这一判定定理容易证明△AFD ≌△CEB .(2)由△AFD ≌△CEB ,容易证明AD=BC 且AD ∥BC ,可根据一组对边平行且相等的四边形是平行四边形.23、(1);(2),见解析.【解题分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【题目详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24、50;28;8【解题分析】【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【题目详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.即扇形统计图中扇形C的圆心角度数为144°;(3)1000×2850=560(人).即每月零花钱的数额x元在60≤x<120范围的人数为560人.【题目点拨】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.。

广西南宁市直属学校四大学区2020年中考第一次模拟联考数学试题(含答案)

广西南宁市直属学校四大学区2020年中考第一次模拟联考数学试题(含答案)

2020年南宁市直属学校四大学区中考第一次模拟联考数 学(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡...上对应题目的答案标号涂黑.) 1.如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是A .B .C .D .2.在数轴上表示不等式组 -2 ≤ x <4,正确的是A .B .C .D .3. 2019年10月1日在北京举行的国庆70周年阅兵活动中,15000名将士接受了党和人民的检阅,将数据15000用科学记数法表示为A .150×102B .15×103C .1.5×104D .0.15×105 4. 下列说法正确的是A. 要调查现在人们在数字化时代的生活方式,宜采用全面调查方式;B. 要调查某品牌圆珠笔芯的使用寿命,宜采用抽样调查方式;C. 一组数据3,4,4,6,8,5的中位数是5;D. 若甲组数据的方差2甲s = 0.128,乙组数据的方差2乙s = 0.036,则甲组数据更稳定. 5.下列计算正确的是A .(x -y )2=x 2-y 2B .2x 2+x 2=3x 2C .(-2x 2)3=8x 6D .x 3÷x =x 36.如图,四边形ABCD 是平行四边形,用直尺和圆规作∠BAD 的 平分线AG 交BC 于点E ,若AB =5,BF =6,则AE 的长为 A .8 B .10C .11D .127. 从一个装有2个红球、3个白球的盒子里(球除颜色外其他 都相同),先摸出一个球,不再放回,再摸出一个球,恰好(第1题图)(第6题图)摸到一个红球、一个白球的概率是 A.101 B.103 C.53 D.2512 8. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的 瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分 别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴 影区域)的概率为 A .61 B .71 C .121 D .131 9.某地区2月初感染新冠病毒确诊人数6千人,通过社会各界的努力,4月初确诊人数减少至1千人.设2月初至4月初该地区确诊人数的月平均下降率为x ,根据题意列方程为 A .6(1-2x )=1 B .6(1+2x )=1 C .6(1-x )2 =1 D .6(1+x )2 =1 10. 某同学想测量一栋教学楼AB 的高度,如图,大楼前有一段斜坡BC ,已知BC 的长为16米,它的坡度i =1:3,在离C 点45米的D 处, 测得教学楼顶端A 的仰角为37°,则教学楼AB 的高度约为 (结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)A .25.9米B .36.1米C .39.8 米D .44.1米 11. 如图,矩形ABCD 的边AB 在x 轴上,反比例函数y =xk(k ≠0) 的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1, 则k 的值是A .4B .3C .25D .2 12. 如图,在△ABC 中,∠ABC =90°,AB =6,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的 最小值是3,则△ABC 的面积为 A .18 B .27C .36D .54第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题卡对应题号后的横线上)(第8题图)(第10题图)(第11题图)(第12题图)13.如果二次根式2-x 有意义,则x ▲ . 14.分解因式:4x 3-16x = ▲ .15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若AB =6,AD =8,则四边形ABOM 的周长为 ▲ . 16.若s 2=41[(3.2-x )2+(5.7-x )2+(4.3-x )2+(6.8-x )2 ] 是小华同学在求一组数据 的方差时写出的计算过程,则其中的x = ▲ .17.如图,在扇形AOB 中,∠AOB =120°,半径OC 交弦AB 于点D ,且OC ⊥AO ,若OA =6,则阴影部分的面积为 ▲ .18. 二次函数y =x 2的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3,…,A 2020 在y 轴的正半轴上,点B 1,B 2,B 3 ,…,B 2020在二次函数y =x 2位于第一象限 的图象上,△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3 ,…,△A 2019B 2020A 2020都是直角 顶点在抛物线上的等腰直角三角形,则△A 2019B 2020A 2020的斜边长为 ▲ . 三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分6分)计算:(-2)2-(-4)+ 6÷(-2)+(3-1)220.(本题满分6分)先化简,再求值:6311212--÷⎪⎭⎫ ⎝⎛+-a a a ,其中13-=a . 21.(本题满分8分)如图,△ABC 三个顶点的坐标分别为A (1,2),B (3,0),C (5,3) (1)请画出△ABC 向下平移5个单位长度后得到的△A 1B 1C 1;(2)请画出△ABC 关于y 轴对称的△A 2B 2C 2; (3)若坐标轴上存在点M ,使得△A 2B 2M 是以A 2B 2为底边的等腰三角形,请直接写 出满足条件的点M 坐标.(第15题图)(第17题图)(第18题图)(第21题图)22.(本题满分8分)为了了解学生对“预防新型冠状病毒”知识的掌握情况,学校组织了一次线上知识培训,培训结束后进行测试,在全校2000名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.【收集数据】15名男生生测试成绩统计如下:(满分100分)78,90,99,93,92,95,94,100,90,85,86,95,75,88,9015名女生测试成绩统计如下:(满分100分)77,82,83,86,90,90,92,91,93,92,92,92,92,98,100【整理、描述数据】70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5男生111 5 52女生01237 2 【分析数据】(1)两组样本数据的平均数、众数、中位数、方差如下表所示:性别平均数众数中位数方差男生90909044.9女生90x y32.8在表中:x=▲.y=▲;(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中“预防新型冠状病毒”知识测试合格的学生有多少人?(3)通过数据分析得到的结论,你认为男生和女生中谁的成绩比较好?请说明理由.23.(本题满分8分)如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(第23题图)24.(本题满分10分)某商场准备采购一批特色商品,经调查,用5000元采购A型商品的件数是用2000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共200件进行试销,其中A型商品的件数不大于B型商品的件数,且不小于80件. 已知A型商品的售价为80元/件,B型商品的售价为60元/件,且A,B型商品均全部售出. 设购进A型商品m件,求该商场销售完这批商品的利润y与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,商场决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元(0<a<20),若该商场售完A、B型所有商品并捐献资金后获得的最大收益是4800元,求出a值.25.(本题满分10分)如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=8,AD=6,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.(第25题图)26.(本题满分10分)如图,抛物线)0(82≠++=a bx ax y 经过A (-2,0),C (4,0)两点,点B 为抛物线的顶点,抛物线的对称轴与x 轴交于点D . (1)求抛物线的解析式;(2)动点P 从点B 出发,沿线段BD 向终点D 作匀速运动,速度为每秒1个单位长度,运动时间为t ,过点P 作 PM ⊥BD ,交BC 于点M ,以PM 为正方形的一边, 向上作正方形PMNQ ,边QN 交BC 于点R ,延长 NM 交AC 于点E .① 当t 为何值时,点N 落在抛物线上;② 在点P 运动过程中,是否存在某一时刻,使得四边形ECRQ 为平行四边形?若存在,求出此 时刻的t 值;若不存在,请说明理由.(第26题图)参考答案一、选择题(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBBACDCBAB二、填空题(本大题共6小题,每小题3分,共18分)13. 2≥x ; 14.)2)(2(4-+x x x ; 15.18 ; 16. 5 ; 17.π333+ ; 18.4040 . 三、解答题(本大题共66分) 19.(本题满分6分)(-2)2-(-4)+ 6÷(-2)+(3-1)21323344+-+-+= ······························································ 4分329-= ················································································ 6分20.(本题满分6分)解:原式=)2(3)1)(1(21--+÷--a a a a a , ················································· 2分 =)1)(1()2(321-+-⨯--a a a a a , ····························································· 3分 =13+a , ·················································································· 4分 把13-=a 代入上式,得:原式=3331133==+- ························· 6分21.(本题满分8分)解:(1)如图,△A 1B 1C 1即为所求........3分(2)如图,△A 2B 2C 2即为所求........6分 (3)满足条件的M 的坐标为:(-1,0),(0,-1) .......8分22.(本题满分8分)解:(1)x =92, y =92; ··················································· 2分(2)2000×3027=1800(人) ......................................................................... 4分 即估计全校学生中“预防新型冠状病毒”知识合格的学生有1800人; .......... 5分 (3) 女生的成绩比较好. ............................................. 6分 ∵虽然男、女生成绩的平均数相同,但女生成绩的众数、中位数都高于男生, 男生成绩的方差大于女生成绩的方差 ............................................................ 8分 ∴女生掌握知识的整体水平比男生好.(只要叙述合理都可以得分)23.(本题满分8分)解:(1)证明:∵点O 是AC 的中点,∴AO =CO , ........................ 1分 ∵AM ∥BN ,∴∠DAC =∠ACB , ........................ 2分在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COB AOD CO AO BCO DAO , ........................ 3分∴△ADO ≌△CBO (ASA ) .......................... 4分 (2)证明:由(1)得△ADO ≌△CBO , ∴AD =CB , .......................... 5分 又∵AM ∥BN ,∴四边形ABCD 是平行四边形, ........................ 6分 ∵AM ∥BN , ∴∠ADB =∠CBD , ∵BD 平分∠ABN , ∴∠ABD =∠CBD ,∴∠ABD =∠ADB , ........................ 7分∴AD =AB ,∴平行四边形ABCD 是菱形. ........................ 8分24.(本题满分10分)解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x +10)元.由题意:22000105000⨯=+xx , ..................... 1分 解得: x =40, ..................... 2分检验: 把x =40代入 (),010≠+x x ⸫ x =40是分式方程的解,..................... 3分 x+10=50(元)答:一件B 型商品的进价为40元,则一件A 型商品的进价为50元; (2)因为商场购进A 型商品m 件,所以购进B 型商品(200-m )件.由题意:y =(80-50)m +(60-40)(200﹣m )=10m +4000, ..................... 5分∵ 80≤m ≤200﹣m , ∴ 80≤m ≤100; ..................... 6分 (3)设利润为w 元.则w =(80-50-a )m +(60-40)(200-m )=(10-a )m + 4000,......7分 或4000)10(400010+-=-+=-=m a ma m ma y w① 当10-a >0时,即0<a <10时,w 随m 的增大而增大,所以m =100时,最大利润为:(10-a )×100 + 4000 = 5000-100a ∴5000-100a =4800 解得 a =2 ..................... 8分 ② 当10-a =0时,最大利润为4000元,不合题意. ..................... 9分 ③ 当10-a <0时,即10<a <20时,w 随m 的增大而减小,所以m =80时,最大利润为(10-a )×80 + 4000 =(4800﹣80a )元. 4800﹣80a =4800,解得a =0 (不合题意,舍去). ..................... 10分答:若该商场售完A 、B 型所有商品并捐献资金后获得的最大收益是4800元,则a 值为2.25.(本题满分10分)(1)证明:连接OC ,如图1所示:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵OC =OB , ∴∠B =∠OCB ,∵∠DCA =∠B , ∴∠DCA =∠OCB , ..................... 1分 ∴∠DCO =∠DCA +∠OCA=∠OCB +∠OCA=∠ACB =90°, ..................... 2分∴CD ⊥OC , ∵ OC 是半径∴CD 是⊙O 的切线; ..................... 3分(2)解:∵AD ⊥CD ∴∠ADC =∠ACB =90° 又∵∠DCA =∠B∴△ACD ∽△ABC ..................... 4分∴AC ADAB AC =, ..................... 5分 即ACAC 68=∴AC =34 即AC 的长为34 ..................... 6分(3)解:AC =BC +2EC ; 理由如下:在AC 上截取AF 使AF =BC ,连接EF 、BE ,如图2所示: ∵AB 是直径,∴∠ACB =∠AEB =90°, ∵∠DAB =45°,∴△AEB 为等腰直角三角形,∴∠EAB =∠EBA =∠ECA =45°,AE =BE , ............... 7分在△AEF 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠=BC AF EBC EAF BEAE ,∴△AEF ≌△BEC (SAS ), ..................... 8分 ∴EF =CE ,∴∠ECF =∠EFC =45°,∴△EFC 为等腰直角三角形.∴CF =2EC , ..................... 9分∴AC =AF +CF =BC +2EC . ..................... 10分26.(本题满分10分)解:(1)∵)0(82≠++=a bx ax y 经过A (-2,0),C (4,0)两点, ∴⎩⎨⎧=++=+-084160824b a b a , ..................... 1分 解得⎩⎨⎧=-=21b a , 所以,抛物线的解析式为y =822++-x x ..................... 2分 (2)∵y =822++-x x =9)1(2+--x ,∴点B 的坐标为(1,9), ..................... 3分∵抛物线的对称轴与x 轴交于点D ,∴BD =9,CD =4-1=3,∵PM ⊥BD , ∴PM ∥CD ,∴△BPM ∽△BDC ,∴CD PM BD BP = 即39PM t = 解得PM =31t , ..................... 4分 所以,OE =1+31t , ∵四边形PMNQ 为正方形,ME = PD = 9-t∴NE =t t 319+-=t 329-..................... 5分 ①点N 的坐标为(1+31t ,t 329-), 若点N 在抛物线上,则 t t 3299)1311(2-=+-+- ..................... 6分 整理得,t (t -6)=0, 解得t 1=0(舍去),t 2=6,所以,当t =6秒时,点N 落在抛物线上; ..................... 7分 ②存在.理由如下:∵PM =31t ,四边形PMNQ 为正方形, ∴QD =NE =t 329-, 设直线BC 的解析式为y =kx +m ,将B (1,9),C (4,0)两点坐标分别代入,得⎩⎨⎧=+=+049m k m k ,解得⎩⎨⎧=-=123m k 所以直线BC 的解析式为y =-3x +12, ..................... 8分则y R = y N ⸫-3x +12=t 329-, 解得x =92t +1, 所以, QR =92t +1-1=92t , ..................... 9分 又EC =CD -DE =313-t , 根据平行四边形的对边平行且相等可得QR =EC ,即 92t =313-t ,解得t =527 ..................... 10分 此时点P 在BD 上, 所以,当t =527时,四边形ECRQ 为平行四边形.方法二:(2)① 由822++-=x x y 可得顶点B 的坐标为(1,9) ..................... 3分 ∵BP = t ∴PD =9- t ∴P 的坐标可表示为(1,9- t )∵B(1,9),C (4,0) ∴直线BC 的解析式为:123+-=x y∵BD PM ⊥ ∴P M y y =∵点M 在直线BC 上令t x -=+-9123,得31t x += ∴)9,31(t t M -+∴31)31(t t y y PM P M =-+=-= ..................... 4分 ∵四边形PMNQ 是正方形∴3t PM NM == ∵3293)9(t t t NM y y M N -=+-=+= ∴)329,31(t t N -+ ..................... 5分 ∵点N 落在抛物线上 ∴3298)31(2)31(2tt t -=++++- ..................... 6分 解得)(01舍去=t ,62=t∴当t =6秒时,点N 落在抛物线上..................... 7分。

2020年广西南宁市中考数学一模试卷 (含答案解析)

2020年广西南宁市中考数学一模试卷 (含答案解析)

2020年广西南宁市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.在下列实数中,无理数是()D. −9A. 0B. √2C. 122.下列图形是中心对称图形的是()A. B. C. D.3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A. 3.5×107B. 3.5×108C. 3.5×109D. 3.5×10104.下列运算中,计算结果正确的是()A. a2⋅a3=a6B. (a2)3=a5C. a3+a3=2a3D. (a2b)2=a2b25.以下问题不适合全面调查的是()A. 调查某班学生每周课前预习的时间B. 调查某中学在职教师的身体健康状况C. 调查全国中小学生课外阅读情况D. 调查某校篮球队员的身高6.一元二次方程2x2−5x−4=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判定该方程根的情况7.如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40°B. 45°C. 50°D. 60°8.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是()A. 23B. 58C. 38D. 169.如图,在边长为9的正方形ABCD中,F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于()A. 1B. 1.5C. 2D. 2.510.某次列车平均提速20km/ℎ.用相同的时间,列车提速前行驶400km,提速后比提速前多行驶100km.设提速前列车的平均速度为xkm/ℎ,下列方程正确的是()A. 400x =400+100x+20B. 400x=400−100x−20C. 400x =400+100x−20D. 400x=400−100x+2011.老师要求同学们设计一个测量某池塘两端A、B距离的方案,王兵设计的方案如下:如图,在池塘外选一点C,测得∠CAB=90°,∠C=30°,AC=36m,则可知AB的距离为()A. 19√3mB. 19mC. 12√3mD. 12√2m12.如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交y=1x(x>0)于C,D两点,若BD=2AC,则4OC2−OD2的值为()A. 5B. 6C. 7D. 8二、填空题(本大题共6小题,共18.0分)13.不等式的解集在数轴上表示如图所示,则该不等式可能是______ .14.计算:√18−√32=______.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数501002004008001000“射中9环以上”的次数3882157317640801“射中9环以上”的频率0.7600.8200.7850.7930.8000.801根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______.(结果保留小数点后一位)16.某礼堂的座位排列呈圆弧形,横排座位按下列方式设置:排数1234…座位数20242832…根据提供的数据得出第n排有________个座位.17.在平面直角坐标系中,点A(4,2),B(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.18.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.如图,当点E在线段CB的延长线上,且∠EAB=15°时,点F到BC的距离为______.三、解答题(本大题共8小题,共66.0分))2.19.计算:24÷(−2)3−9×(−1320.先化简,再求x−3x ÷(x−9x),其中x=√7−3.21.如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≅△DFE;(2)连结AF,BD,求证:四边形ABDF是平行四边形.22.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40名学生成绩的频数分布统计表如下:(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在70≤x<80这一组的是:70707071727373737475767778c.甲、乙两校成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是______;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.23.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).24.入冬以来,我省的雾霾天气烦发,空气质量较差,容易引起多种上呼吸道疾病,某电器商场代理销售A、B两种型号的家用空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价高200元;2台A型空气净化器的进价与3台B型空气净化器的进价相同,(1)求A、B两种型号的家用空气净化器的进价分别是多少元;(2)若商场购进这两种型号的家用空气净化器共50台,其中A型家用空气净化器的数量不超过B型家用空气净化器的数量,且不少于16台,设购进A型家用空气净化器m台.①求m的取值范围;②已知A型家用空气净化器的售价为800元每台,销售成本为每台2n元;B型家用空气净化器的售价为每台550元,销售成本为每台n元,若25≤n≤100,求售完这批家用空气净化器的最大利润w(元)与n(元)的函数关系式(每台销售利润=售价−进价−销售成本)25.如图,已知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是BD⏜的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE⋅EF的值最大?最大值是多少?26.在平面直角坐标系中,直线AB过点A(94,74)、点B(4,0),直线AC为y=13x+1交x轴于C,交y轴于D,点E为直线AB上的动点,(1)求C、D两点的坐标和直线AB的解析式;(2)求△ADE与△ABC相似时,点E的坐标.-------- 答案与解析 --------1.答案:B解析:解:A、0是有理数;B、√2是无理数;C、1是分数,为有理数;2D、−9是有理数;故选:B.先把能化简的数化简,然后根据无理数的定义逐一判断即可得.本题主要考查无理数的定义,属于简单题.2.答案:D解析:本题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:A.不是中心对称图形,故此选项错误;B.不是中心对称图形,故此选项错误;C.不是中心对称图形,故此选项错误;D.是中心对称图形,故此选项正确;故选D.3.答案:B解析:解:350 000 000=3.5×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9−1=8.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.答案:C解析:解:A、a2⋅a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、a3+a3=2a3,正确;D、(a2b)2=a4b2,故此选项错误;故选:C.根据题意,逐项判断即可.本题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.答案:C解析:解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.答案:A解析:解:△=(−5)2−4×2×(−4)=57>0,所以方程有两个不相等的实数根.故选:A.先计算出判别式的值,然后根据判别式的意义确定方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.解析:本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了等腰三角形的性质,属于基础题.利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°−40°−40°=100°,∠ACB=50°.∴∠BCG=12故选:C.8.答案:C解析:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.画树状图得出所有等可能的情况数,找出恰有两只雄鸟的情况数,即可求出所求的概率.解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雄鸟的情况数有3种,.则P=38故选C.解析:解:∵四边形ABCD是正方形,∴AD=AB=BC=9,∠A=∠B=90°,∵FE⊥CF,∴∠EFC=90°,∴∠AEF+∠EFA=90°,∠AFE+∠CFB=90°,∴∠AEF=∠CFB,∴△AEF∽△BFC,∴AEBF =AFBC,∴AE9−3=39,∴AE=2,故选:C.根据正方形性质得出AD=AB=BC=9,∠A=∠B=90°,求出∠AEF=∠CFB,证△AEF∽△BFC,得出比例式,即可求出答案.本题考查了正方形的性质,相似三角形的性质和判定的应用,解此题的关键是推出△AEF∽△BFC,注意:相似三角形的对应边的比相等.10.答案:A解析:本题考查了由实际问题抽象出分式方程.根据“提速前后的时间相同”列出方程即可.解:提速前列车的平均速度为xkm/ℎ,则提速后列车的平均速度为(x+20)km/ℎ,提速前行驶400km需要400xℎ,提速后行驶(400+100)km需要400+100x+20ℎ,根据时间相等可得400x =400+100x+20,故选A.11.答案:C解析:解:∵∠CAB=90°,∠C=30°,AC=36m,∴设AB=x,则BC=2x,∴AC2+AB2=BC2,即362+x2=(2x)2,解得:x=12√3.故选:C.直接利用直角三角形的性质结合勾股定理得出答案.此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.答案:B解析:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及勾股定理,利用勾股定理及配方找出4OC2−OD2是解题的关键.设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,1m ),点D的坐标为(n,1n),利用勾股定理进一步求得答案.解:设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,1m ),点D的坐标为(n,1n),∴BD=n−1n ,AC=1m−m,∵BD=2AC,∴n−1n =2(1m−m),4OC2−OD2=4(m2+1m2)−(n2+1n2),=4[(m−1m)2+2]−[(n−1n)2+2]=4(m−1m)2+8−4(m−1m)2−2=6.故选B.解析:不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.解:由图示可看出,从1出发向左画出的线且1处是实心圆,表示x≤1.所以这个不等式为x≤1.故答案为x≤1.14.答案:−√2解析:此题考查二次根式的加减,注意先化简再合并.先化简,再进一步合并同类二次根式即可.解:原式=3√2−4√2=−√215.答案:0.8解析:本题考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.根据大量的实验结果稳定在0.8左右即可得出结论.解:∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为0.8.解析:解:根据表格中数据所显示的规律可知:第1排有16+4=20个座位,第2排有16+4×2=24个座位,第3排有16+4×3=28个座位,故第n排有16+4n个座位.通过分析数据可知,后面每加个排,就加四个座位,再通过计算推断得出第n排的座位数.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.答案:(−1,3)解析:本题主要考查了旋转变换和三角形全等的判定与性质有关知识,根据题意画出图形,易证△ABE≌△BCD,求出CD、OD的长即可求出C的坐标.解:如图所示,点A绕点B逆时针旋转90°得到点C,∵A(4,2),B(1,0),∴AE=2,BE=4−1=3,由旋转的性质可得∠ABC=90°,AB=BC,∴∠CBD+∠ABE=90°,∵∠ABE+∠A=90°,∴∠A=∠CBD,在△ABE和△CBD中{∠A=∠CBD∠AEB=∠CDB=90°AB=BC,∴△ABE≅△BCD(AAS),∴CD=BE=3,BD=AE=2,∵OB=1,∴OD=2−1=1,∴点C的坐标为(−1,3).故答案为(−1,3).18.答案:3−√3解析:【试题解析】解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2√3,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2√3,∴EB=EG−BG=2√3−2,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,{∠BAE=∠CAF BA=AC∠B=∠ACF,∴△BAE≌△CAF(ASA),∴∠ABE=∠ACF=120°,EB=CF=2√3−2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2√3−2,∴CH=√3−1.∴FH=√3(√3−1)=3−√3.∴点F到BC的距离为3−√3,故答案为3−√3过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,解直角三角形求出AG和BE的长度,再证明△BAE≌△CAF,于是证明得到BE=CF,最后解直角三角形求出FH的长度即可.本题主要考查了菱形的性质、全等三角形的判定与性质以及等边三角形的知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考常考题目.19.答案:解:原式=24÷(−8)−9×19=−4.解析:此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.直接利用有理数的混合运算法则计算得出答案.20.答案:解:原式=x−3x ÷x 2−9x=x −3x ×x (x +3)(x −3) =1x +3当x =√7−3时,原式=1√7−3+3=1√7=√77.解析:本题主要考查的是分式的化简求值,掌握法则是解题的关键.先把括号里的通分,再根据分式减法的法则计算,然后把除法转化为乘法,再约分把原式化简,最后把x 的值代入化简后的代数式计算即可.21.答案:证明:(1)∵BE =FC ,∴BC =EF ,在△ABC 和△DFE 中,{AB =DFAC =DE BC =EF,∴△ABC≌△DFE(SSS);(2)解:如下图所示:由(1)知△ABC≌△DFE ,∴∠ABC =∠DFE ,∴AB//DF ,∵AB =DF ,∴四边形ABDF 是平行四边形.解析:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.(1)由SSS 证明△ABC≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC =∠DFE ,证出AB//DF ,即可得出结论. 22.答案:解:(1)这组数据的中位数是第20、21个数据的平均数,=72.5;所以中位数n=72+732(2)甲;这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,故选甲;(3)在样本中,乙校成绩优秀的学生人数为14+2=16.=320.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为800×1640解析:本题主要考查频数分布表、中位数及样本估计总体,解题的关键是根据表格得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.(1)根据中位数的定义求解可得;(2)根据甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.23.答案:解:过点P作PH⊥AB于点H,由题意得∠PAB=30°,∠PBA=45°,设PH=x,则AH=√3x,BH=x,PB=√2x,∵AB=16,∴√3x+x=16,解得:x=8√3−8,∴PB=√2x=8√6−8√2,答:灯塔P与B之间的距离为(8√6−8√2)km.解析:本题考查的是解直角三角形的应用−方向角问题,注意在解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.作PH ⊥AB ,由题意得∠PAB =30°,∠PBA =45°,设PH =x ,则AH =√3x ,BH =x ,PB =√2x ,由AB =16可得关于x 的方程,解之可得.24.答案:解:(1)设A 型号的家用空气净化器的进价是x 元,B 型号的家用空气净化器的进价为y 元. 根据题意可列方程组为{x −200=y 2x =3y解得{x =600y =400. 答:A 型号的家用空气净化器的进价是600元,B 型号的家用空气净化器的进价是400元.(2)①∵A 型家用空气净化器为m 台,∴B 型家用空气净化器为(50−m)台.根据题意{m ≤50−m m ≥16, 解得16≤m ≤25.∴m 的取值范围为16≤m ≤25.②根据题意,w =m(800−600−2n)+(50−m)(550−400−n)=(50−n)m −50n +7500 ∵25≤n ≤100,当25≤n <50时,50−n >0,w 随着m 的增大而增大,∵16≤m ≤25,∴当m =25时,w 最大,此时w =8750−70n ;当n =50时,m 的取值不会对w 用影响,此时w =7500−50n ;当50<n ≤100时,50−n <0,w 随着m 的增大而减小,∴当m 取16时,w 最大,此时w =8300−66n .综上,最大利润w(元)与n(元)的函数关系式为{w =8750−70n(25≤n <50)w =7500−50n(n =50)w =8300−66n(50<n ≤100).解析:(1)为二元一次方程组的应用题,根据一台A 型空气净化器的进价比一台B 型空气净化器的进价高200元;2台A 型空气净化器的进价与3台B 型空气净化器的进价相同,找到等量关系列式即可.(2)①根据商场购进这两种型号的家用空气净化器共50台,其中A 型家用空气净化器的数量不超过B 型家用空气净化器的数量,且不少于16台,列出不等关系求m 得取值范围即可.②根据一次函数得性质,当k>0时,w随m的增大而增大,当k<0时,w随m的增大而减小.先对n的范围进行讨论,再对m的取值进行讨论.此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,及一次函数的性质.25.答案:解:(1)如图1,连接OE.∵ED⏜=BE⏜,∴∠BOE=∠EOD,∵OD//BF,∴∠DOE=∠BEO,∵OB=OE,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)连接OE,过O作OM⊥BE于M,∵OB=OE,∴BE=2BM,∵OD//BF,∴∠COD=∠B,在△OBM与△ODC中{∠OCD=∠OMB=90°∠COD=∠BOD=OM,∴△OBM≌△ODC,∴BM=OC,∴BE=2OC;(3)∵OD//BF,∴△COD∽△CBF,∴OCBC =ODBF,∵AC=x,AB=4,∴OA=OB=OD=2,∴OC=2−x,BE=2OC=4−2x,∴2−x4−x =2BF,∴BF=8−2x2−x,∴EF=BF−BE=−2x2+6x2−x,∴BE⋅EF=−2x2+6x2−x ⋅2(2−x)=−4x2+12x=−4(x−32)2+9,∴当x=32时,最大值=9.解析:(1)首先连接OE,由ED⏜=BE⏜,OD//BF,易得∠OBE=∠OEB=∠BOE=60°,又由CF⊥AB,即可求得∠F的度数;(2)连接OE,过O作OM⊥BE于M,由等腰三角形的性质得到BE=2BM,根据平行线的性质得到∠COD=∠B,根据全等三角形的性质得到BM=OC,等量代换即可得到结论.(3)根据相似三角形的性质得到OCBC =ODBF,求得BF=8−2x2−x,于是得到EF=BF−BE=−2x2+6x2−x,推出BE⋅EF=−4x2+12x=−4(x−32)2+9,即可得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,二次函数的最大值,圆周角定理,平行线的性质,证得△COD∽△CBF是解决(3)小题的关键.26.答案:解:(1)∵直线AC为y=x+1交x轴于C,交y轴于D,∴当x=0时,y=1,即D(0,1),当y=0时,x=−3,即C(−3,0),设直线AB为y=kx+b,∵点A(94,74)、点B(4,0),∴代入得方程组74=94x+b和0=4k+b,解得:k=−1,b=4,即直线AB的解析式为y=−x+4.(2)∵A(94,74),B(4,0),C(−3,0),D(0,1),∴AB =√(94)2+(74−0)2=7√24,AD =3√104,AC =7√104, ∵点E 在直线AB :y =−x +4上,∴可设E(x,−x +4),∵∠CAB 为钝角,∴x >94, ∴AE =√(94−x)2+(74−x +4)2=√2(x −94), ∵∠DAE =∠CAB(公共角),当△ADE∽△ACB 时,ADAC =AEAB ,∴3√1047√104=√2(x−94)7√24,∴x =3,即E(3,1),当△ADE∽△ABC 时,AD AB =AE AC ,即3√1047√24=√2(x−94)7√104,解得x =6,即E(6,−2),综上所述,当E 为(3,1)或(6,−2)时满足题意.解析:本题考查的是待定系数法求解析式,两点间的距离公式,一次函数的图象和性质,一次函数的应用等有关知识.(1)先求出D,C点的坐标,设直线AB为y=kx+b,将点A(94,74)、点B(4,0)代入得方程组,求解即可;(2)先分别求得AB,AD,AC,然后再根据△ADE∽△ACB进行解答即可.。

2020年广西南宁市中考数学试卷(附答案解析)

2020年广西南宁市中考数学试卷(附答案解析)

2020年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列实数是无理数的是()A.B.1C.0D.-52.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×1064.(3分)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2 5.(3分)以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量6.(3分)一元二次方程x2-2x+1=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°8.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.9.(3分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.3010.(3分)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.-=B.=-C.-20=D.=-2011.(3分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸12.(3分)如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=(x>0)于点C,D.若AC=BD,则3OD2-OC2的值为()A.5B.3C.4D.2二、填空题(本大题共6小题,每小题3分,共18分.)13.(3分)如图,在数轴上表示的x的取值范围是______.14.(3分)计算:-=______.15.(3分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).16.(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.(3分)以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.(3分)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:-(-1)+32÷(1-4)×2.20.(6分)先化简,再求值:÷(x-),其中x=3.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.22.(8分)小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.(8分)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A 处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.(10分)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.(10分)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△F AD∽△DAE;(3)若tan∠OAF=,求的值.26.(10分)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【试题答案】一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.A【解答】解:无理数是无限不循环小数,而1,0,-5是有理数,因此是无理数。

南宁市2020年中考数学一模考试试卷(I)卷

南宁市2020年中考数学一模考试试卷(I)卷

南宁市2020年中考数学一模考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2011·湛江) 下面四个几何体中,主视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个2. (2分)点(3,2)关于x轴的对称点为A . (3,﹣2)B . (﹣3,2)C . (﹣3,﹣2)D . (2,﹣3)3. (2分)(2019·嘉定模拟) 如果A(-2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图像上,那么这个函数的解析式可能是()A .B .C .D .4. (2分)(2019·嘉定模拟) 如图,在平行四边形ABCD中,设 , ,那么向量可以表示为. ()A .B .C .D .5. (2分)(2019·嘉定模拟) 三角形的重心是()A . 三角形三条边上中线的交点B . 三角形三条边上高线的交点C . 三角形三条边垂直平分线的交点D . 三角形三条内角平行线的交点6. (2分)(2019·嘉定模拟) 下列四个选项中的表述,一定正确是()A . 经过半径上一点且垂直于这条半径的直线是圆的切线;B . 经过半径的端点且垂直于这条半径的直线是圆的切线;C . 经过半径的外端且垂直于这条半径的直线是圆的切线;D . 经过一条弦的外端且垂直于这条半径的直线是圆的切线.二、填空题 (共12题;共12分)7. (1分)(2018·青羊模拟) 如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为________8. (1分) (2017八下·海淀期中) 若将直线的图象向上,则平移后直线的解析式________.9. (1分)(2019·嘉定模拟) 在某一时刻测得一根高为1.8m的竹竿的影长为0.9m,如果同时同地测得一栋的影长为27m,那么这栋楼的高度为________m10. (1分)(2019·嘉定模拟) 在△ABC中,D、E分别是边AB、AC上的点,如果AD=2,DB=1,AE=4,EC=2,那么的值为________11. (1分)(2019·嘉定模拟) 抛物线的顶点坐标为________12. (1分)(2019·嘉定模拟) 如果抛物线的对称轴为y轴,那么实数b的值等于________13. (1分)(2019·嘉定模拟) 将抛物线向右平移两个单位后,所得抛物线的表达式为________14. (1分)(2019·嘉定模拟) 已知抛物线经过点和,那么y1________y2(从“>”或“<”或“=”选择)15. (1分)(2019·嘉定模拟) 如图,有一个斜坡AB,坡顶B离地面的高度BC为30m,斜坡的坡度i=1:2.5,那么该斜坡的水平距离AC的长________m16. (1分)(2019·嘉定模拟) 如果正多边形的边数是n(n≥3),它的中心角是°,那么关于n的函数解析式是________17. (1分)(2019·嘉定模拟) 如图,的半径长为5cm,内接于,圆心O在的内部,如果, cm,那么的面积为________cm18. (1分)(2019·嘉定模拟) 在中,,,,把绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点、,如果恰好经过点A,那么点A与点的距离为________三、解答题 (共7题;共65分)19. (5分)(2012·贵港)(1)计算:|﹣ |+2﹣1+ (π﹣)0﹣tan60°;(2)解分式方程:.20. (10分)(2019·嘉定模拟) 已知不等臂跷跷板AB长为3米,跷跷板AB的支撑点O到地面上的点H的距高OH=0.6米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁市2020年中考数学模拟试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,已知△ABC与△CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC 与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的个数为()
A.2B.3C.4D.5
2 . 已知是关于x的方程的一个根,则方程的另一个根与c的值是()
A.,1B.,
C.,-1D.,
3 . 一元二次方程的二次项系数、一次项系数及常数项分别是()
A.,,
B.,,C.,,D.,,
4 . 如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是
A.55°B.60°C.65°D.70°
5 . 下列说法正确的是()
A.平分弦的直径垂直于弦
B.圆是轴对称图形,任何一条直径都是圆的对称轴
C.相等的弧所对弦相等
D.长度相等弧是等弧
6 . 如图,关于抛物线,下列说法错误的是()
A.顶点坐标为(1,)
B.对称轴是直线x=l
C.开口方向向上
D.当x>1时,y随x的增大而减小
7 . 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米B.4米C.5米D.6米
8 . 若正多边形的一个中心角是30°,则该正多边形的边数是()
A.6B.12C.16D.18
9 . 方程x2+x﹣1=0的一个根是()
A.1﹣
B.C.﹣1+
D.
10 . 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)
之间(不包括这两点),对称轴为直线x=.则下列结论:① x>3时,y<0;② 4a+b<0;③﹣<a<0;④ 4ac+b2<4a.其中正确的是()
A.②③④B.①②③C.①③④D.①②④
11 . 已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()
x﹣2024
y甲5432
y乙65 3.50
A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<4
12 . 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()
A.B.C.D.
二、填空题
13 . 已知方程的两根为,,那么=________.
14 . 一个口袋中装了三个球,其中两个是红球,另外一个是白球,若从口袋中随机地摸出两球,假如两球是
同一色,则规定甲胜,假如两球不是同一色,则规定乙胜,则_______获胜的机会大(填“甲”或“乙”).
15 . 已知y=n是二次函数,则n的值为_____________.
16 . 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x…-5-4-3-2-10…
y…40-2-204…
下列说法:①抛物线的开口向下;②当x>-3时,y随x的增大而增大;③二次函数的最小值是-2;④抛物线的对称轴是x=-2.5.其中正确的是____________.(填序号)
17 . 函数y=2x2中,自变量x的取值范围是____,函数值y的取值范围是____.
18 . 如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=________度.
19 . 一个扇形的半径为3cm,面积为,则此扇形的圆心角为.
三、解答题
20 . 平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,4)
(1)下列各点中,与点C互为反等点;
D(﹣3,﹣4),E(3,4),F(﹣3,4)
(2)已知点G(﹣5,4),连接线段CG,若在线段CG上存在两点P,Q互为反等点,求点P的横坐标xP的取值范围;
(3)已知⊙O的半径为r,若⊙O与(2)中线段CG的两个交点互为反等点,求r的取值范
围.
21 . 将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4.将△AD E 绕点A逆时针方向旋转一个角度α(0°≤α≤180°),BD的延长线交直线CE于点P.
(1)如图2,BD与CE的数量关系是, 位置关系是;
(2)在旋转的过程中,当AD⊥BD时,求出CP的长;
(3)在此旋转过程中,求点P运动的路线
长.[
22 . 某中学举行经典诵读大赛,对各年级同学的获奖情况进行了统计并绘制了如下两幅不完整的统计图.
请根据图中相关信息解答下列问题:
(1)请将条形统计图补全;
(2)扇形统计图中获二等奖的圆心角为;
(3)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选2人参加市经典诵读大赛,请通过列表法或画树状图的方法求所选出的2人中既有七年级同学又有九年级同学的概率.
23 . 某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,•那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(•用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份用电量(千瓦时)交电费总金额(元)
3 80 25
4 4
5 10
根据上表数据,求电厂规定的A值为多少?
24 . 已知关于x的方程x2﹣2kx+k﹣=0的一个根大于1,另一个根小于1,求实数k的取值范围.
25 . 郑万高铁开通后,极大地方便了沿线城市人民的出行.高铁开通前,从地到地需乘普速列车绕行地,已知,车速为高铁开通后,可从地乘高铁以的速度直达地,其中在
的北偏东方向,在的南偏东方向.甲、乙两人分别乘高铁与普速列车同时从出发到地,结果乙比甲晚到小时.试求两地的距离.
26 . (1)写出图1中函数图象的解析式y1=_________________.
(2)如图2,过直线y=3上一点P(m,3)作x轴的垂线交y1的图象于点C,交y= -x- 1于点
A.
①当m>0时,试比较PC与PD的大小,并证明你的结论.
②若CD<3时,求m的取值范围.
27 . 随着经济的发展,私家车越来越多,为缓解停车矛盾,某小区投资30万元建成了若干个简易停车位,建造费用分别为顶棚车位15000元/个,露天车位3000元/个.考虑到实际因素,露天车位的数量不少于12个,但不超过顶棚车位的2倍,则该小区两种车位各建成多少个?试写出所有可能的方案.
28 . 用适当的方法解下列方程:
(1)x2=49
(3)2x2+4x-3=0(公式法)(4)(x+8)(x+1)=-12
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
二、填空题
1、
2、
3、
4、
5、
6、
7、
三、解答题
1、
2、
3、
4、
5、
6、
7、
8、
9、。

相关文档
最新文档