肌球蛋白磷酸化的研究进展

肌球蛋白磷酸化的研究进展
肌球蛋白磷酸化的研究进展

肌球蛋白磷酸化的研究进展

摘要:肌球蛋白是肌原纤维粗丝的组成单位,由多条重链与多条轻链组成,被视为一种分子马达。在肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等生理过程中起重要作用。目前肌球蛋白磷酸化是研究的一个热点,它对细胞的迁移、收缩、胞质分裂以及其他未知功能都有着至关重要的作用。肌球蛋白磷酸化分为重链的嶙酸化与轻链的磷酸化。根据国内外的最新相关研究报道,分别从肌球蛋白的结构与功能、磷酸化的作用机制、磷酸化的生物学功能以及最新研究成果等方面,对肌球蛋白的嶙酸化研究进展进行阐述。关键词:肌球蛋白;β-抑制蛋白;肌球蛋白重链磷酸化;肌球蛋白轻链磷酸化中图分类号:Q71文献标识码:A 文章编号:1007-7847(2015)02-0154-06Progresses on Myosin PhosphorylationHAO Li-juan,KANG Zhi-qiong,MA Shang-shang,LU Peng,YAO Qin,CHEN Ke-ping*(Life Sciences Institute,Jiangsu University,Zhenjiang 212013,Jiangsu,China)Abstract :Myosin is the unit of myofibril raw silk,composed of multiple heavy chains and light chains,is regarded as a kind of molecular motors. It mainly works on muscle contraction,chemotaxis cytoplansmic* division,cell function,vesicular transport and signal transduction. Recently myosin phosphorylation is a hot topic,as it plays an important role in cell migration,contraction,cytokinesis and other unknown functions. Myosin phosphorylation is divided into heavy chain and light chain phosphorylation. According to the latest reports,it mainly elaborates the research progress on the phosphorylation of myosin on the structures and functions,the action mechanism of phosphorylation,the biological function of phosphorylation and the latest research results.Key words:myosin;β-Arrestin;phosphorylation of myosin heavy chain;phosphorylation of myosin light chain (LifeScienceResearch,2015,19(2):154-159)l肌球蛋白的结构与功能肌球蛋白主要存在于平滑肌中,它是肌原纤维粗丝的组成单位。其分子形状如豆芽状,由多条重链与多条轻链组成。肌球蛋白的家族较大,目前发现的肌球蛋白有24种,但依据其来源又可分为传统的肌球蛋白和非传统的肌球蛋白,如传统的肌球蛋白为肌肉的肌球蛋白,即肌球蛋白Ⅱ,但非肌肉细胞也存在肌球蛋白Ⅱ,为非肌肉肌球蛋白Ⅱ;非传统的肌球蛋白是指肌肉中不含有的肌球蛋白,如肌球蛋白I、Ⅲ、IV、V,只存在于非肌肉细胞中;肌球蛋白VⅢ、XI和XⅡ只存在于植物当中。此外,肌球蛋白I在生物体内的作用是细胞运动,胞引作用和泡液收缩;骨骼肌肌球蛋白Ⅱ的作用是使骨骼肌肌肉收缩;肌球蛋白v主要功能是靶向小包运输和mRNA的靶向运输[1]。在生物有机界中,利用化学含故化学势能进行机械做功的生物大分子,称为分子马达。而肌球蛋白作为一种分子马达[2],参与了肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等活动[1]。目前研究得较多的是肌球蛋白Ⅱ,其最早发现于动物细胞的肌肉组织和细胞质中,形状如“Y”型,是一个六聚体的大分子蛋白质,包括两条相对分子质量约为220kD的重链、两条约17kD的必须轻链和两条约20kD的调节性轻链[3]。根报重链在细胞内所起的作用,按照结构和功能不同可划分为3个区域:1)位于重链的N末端形成-个球状的头部,含有一个肌动蛋白(actin)结合位点和ATP结合位点的催化区域,负责释放化学能;2)重链的C末端则形成一个细长的a-螺旋状的尾部,尾部结构域含有决定尾部是同膜结合还是同其他

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展 病毒所梁晓声200628012415030 细胞信号传导过程中磷酸酶/磷酸激酶对蛋白磷酸化程度的调控控制了细胞信号传递与否,信号强度等等细胞信号传导的过程从某种程度上说就是信号传导相关分子磷酸化水平的调节过程。 磷酸酶/磷酸激酶作为胞内信号直接或间接的靶酶通过磷酸化程度控制其它酶类或蛋白质的活性,一般情况下被磷酸化的酶有活性,脱磷酸后的酶没有活性。通过这种方式可以在不改变细胞内酶或相关蛋白的浓度的情况下将部分酶活冻结或解冻。在有外界信号刺激的时候可以迅速解冻酶活而不必合成新的酶。 由于酶反应具有高度专一性,使得蛋白质磷酸化与去磷酸化这种方式在胞内介导胞外信号时具有专一应答的特点。这就使得细胞信号传导途径的上游成分只能针对一个或几个的下游成分起作用,使信号传递具有很强的专一性。同时对信号的灭活也不会由于识别的错误而影响其他信号传导途径。 磷酸化与去磷酸化在细胞对外界信号的持续反应中具有重要的作用。信号引起的细胞生理学效应中,有许多是相当持久的,如细胞的分裂、分化等。虽然胞内信号分子的寿命可以很短,但蛋白激酶一旦激活,其活性却可以通过某些方式(如自身磷酸化)维持较长时间;更重要的是被它磷酸化所调节的蛋白质和酶类,其效应可以维持更长时间,直到被蛋白磷酸酶脱磷酸化为止。 蛋白磷酸化对外界信号具有放大作用,由于是酶促反应,一个酶分子可以催化成百上千个底物分子,即使只有很弱的胞外信号也可以通过酶促反应得到充分的放大。 蛋白质激酶 蛋白质激酶是一类磷酸转移酶,其作用是将ATP的磷酸基转移到它们的底物上特定氨基酸残基上去。依据这些氨基酸残基的特异性,将这些激酶分为4类。其中主要的两类是蛋白质丝氨酸/苏氨酸激酶(STK),和蛋白质酪氨酸激酶(PTK)。这两类酶的蛋白质激酶结构域的大小约为250-300个氨基酸残基。二者的催化域在进化上是密切相关的,并认为它们有共同的祖先。因此,它们的催化域的氨基酸残基序列在很大程度上也是一致的。更重要的是,这些序列表现为一组组高度保守的,甚至是完全保守的氨基酸模体,这些模体却嵌埋在氨基酸残基序列保守性很差的区域之内。一共有11种这类高度保守的短氨基酸残基序列模体。它们都以罗马数字命名,从最N-端的I开始,到最C-端的XI。对这些酶的结晶进行X-射线结构分析,发现这些模体对这些蛋白质激酶催化结构域的磷酸转移酶活性十分重要。据以为,亚域I,II和VII在结合ATP中起重要作用;而亚域VIII则在识别肽底物中起主要作用。对酪氨酸激酶家族来说,在亚域VIII中,紧靠关键模体上游的氨基酸残基有十分有趣的差异,它们是-KWTAPE- 或-KWMAPE-,看来这些序列造成了激酶家族的这个分支的底物专一性。 蛋白磷酸酯酶 丝氨酸/苏氨酸蛋白磷酸酯酶,选择性地作用于含磷酸丝氨酸或磷酸苏氨酸残基的肽链,使之脱去磷酸基团并改变生物活性。主要成员:PPl,PP2A,PP2B,PP2C等。 酪氨酸蛋白磷酸酯酶(PTPase)分胞质型(非受体型)和受体型(PTPR)

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

β2-微球蛋白临床意义

2013年检验科开展新技术、新项目 β2-微球蛋白临床意义 β2-MG是一种低分子蛋白质,其分子量为11800,是由100个氨基酸残基组成的一条多肽链,易被肾小球滤过。β2-MG从肾小球滤过后,其中99.9%的部分由近曲小管以胞饮方式摄取,转运到溶解体降解为氨基酸,所以滤过的β2-MG 并不回到血循环中。正常人血中β2-MG含量极微,且合成和分泌非常稳定。血中β2-MG反映肾脏的滤过功能,是判断肾脏早期受损敏感而特异的指标。β2-MG 是检查肾功能的一种方法,估计肾小球滤过率(GFR)较SCr敏感,可以早期判断肾脏受损。临床上检测血或尿中的β2-MG浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β2-MG的检测对脑膜白血病的诊断有特别的意义。 1、评价肾功血β2-MG是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β2-MG升高。 (1)长期糖尿病引起肾小球动脉硬化,使肾小球滤过机能下降,从而导致血β2-MG增高,动态地观察糖尿病人血清β2-MG变化对于早期糖尿病性肾病的诊断、治疗及预后有极其重要的意义。 (2)血清β2-MG含量随原发性高血压患者的病程增长而增加,其原因可能是肾小动脉硬化的数量增多,致使肾小球滤过明显降低,肾小管重吸收功能障碍所致,因此,高血压患者检测血清β2-MG有利于发现早期轻度肾功能损害程度。 (3)长期血液透析病人血β2-MG升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。 (4)血β2-MG有助于动态观察、诊断早期肾移植排斥反应。 2、诊断恶性肿瘤 (1)血β2-MG是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血β2-MG浓度明显增加。 (2)可用于评价骨髓瘤的预后及治疗效果 3、评估自身免疫性疾病的活动程度 自身免疫性疾病时血β2-MG增高,尤其是系统性红斑狼疮(SLE)活动期。50%类风湿关节炎患者血β2-MG升高,并且和关节受累数目呈正相关。目前认为测定血β2-MG可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标。 其他:病毒感染,如人巨细胞病毒、EB病毒、乙肝或丙肝病毒及HIV感染时,血β2-MG可增高。 4、收费及应用 1、β2-MG价格20元; 2、设在肾功Ⅱ

肌球蛋白重链(MyHC)与心肌肥厚

MyHC与心肌肥厚 心肌肥厚包括原发性心肌肥厚(即肥厚型心肌病)和继发性心肌肥厚(主要指左心室肥厚)。肥厚型心肌病(HCM)是导致年轻人猝死的主要病因,在中国,HCM的发病率约为8/万,估计中国目前有HCM患者约100万人。继发性左心室肥厚(LVH)是心血管疾病患病率和死亡率增加的独立危险因素。LVH患者AMI和HF的患病率明显增加,复杂性室性心律失常的患病率也明显高于正常人群,由此导致的猝死发生率也升高。LVH是中风尤其是缺血性中风的独立危险因素。LVH的发病率约为20-60%,我们在中国社区高血压人群中的调查发现,LVH在高血压人群中的发病率为30-40%。 尽管目前已公认HCM是编码肌小节基因突变所导致的疾病,但HCM的临床表型受修饰基因和环境的共同作用。不同基因的突变可以表现为相同的表型;而同一基因突变的患者的临床表现和预后也有很大的差异,即使携带同一突变的同一家系成员之间,发病的年龄和临床症状也有很大的不同。我们由此可以认为,修饰基因在HCM的发病及预后中有重要意义。目前认为,HCM和LVH存在许多共同的信号传导通路,如ACE基因同时是HCM修饰基因和LVH的易感基因,对LVH而言,遗传因素能够解释左室重量指数变异的60%。 心脏收缩-舒张是一个非常复杂的生理过程,受诸多生理性和/或病理性因素影响而发生变化,因此而影响心功能。尤其临床上许多疾病都伴有心功能改变,严重时出现心功能障,心肌收缩力下降,心输出量减少。 随着分子生物学等相关学科的迅猛发展,人们从细胞水平、分子水平对心肌收缩-舒张过程及其调节的诸多参与成分各自的作用及相互间作用有了更进一步的了解和认识。近十几年来,人们针对糖尿病、甲状腺功能异常(包括功能亢进和低下)、心肌肥厚、心肌病、缺氧等病理条件下引起的心功能改变,特别是收缩蛋白、调节蛋白与心功能的关系做了大量深入细致的工作。 组成心脏的主要蛋白分子按照功能分类包括收缩蛋白和调节蛋白。其中收缩蛋白主要为肌球蛋白和肌动蛋白;调节蛋白主要为原肌球蛋白和肌钙蛋白。肌球蛋白、肌动蛋白、原肌球蛋白和肌钙蛋白共同组成心肌收缩的主要结构和功能单位,即肌小节。在与心肌收缩功能有关的疾病中,如心衰、心肌病等,都可能与

免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。 实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 一免疫球蛋白的基本结构 The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

β2微球蛋白临床意义教程文件

2 微球蛋白临床意 义

https://www.360docs.net/doc/ad153221.html,/products/product.htm B 2—微球蛋白(B2-MG)临床意义 临床上检测血或尿中的B 2MG浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿 瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中 B 2MG的检测对脑膜白血病的诊断有特别的意义。 血B 2MG检测的临床意义 1、肾功能是影响血B 2MG浓度的最主要因素,用血B 2MG估测肾功能。 (1 )血B 2MG是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血B 2-MG升咼。 (2 )血B 2MG是反映高血压病和糖尿病肾功能受损的敏感指标。 (3 )长期血液透析病人血B 2MG升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。 (4 )血B 2MG有助于动态观察、诊断早期肾移植排斥反应。 2、恶性肿瘤时的血B 2MG。 (1 )血B -MG是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血 B 2MG浓度明显增加。 (2)可用于评价骨髓瘤的预后及治疗效果。 3、病毒感染,如人巨细胞病毒、EB病毒、乙肝或丙肝病毒及HIV感染时,血B 2MG可增高。 4、自身免疫性疾病时血B 2MG增高,尤其是系统性红斑狼疮( SLE )活动期。50%类风湿关节炎患者血B 2MG升高,并且和关节受累数目呈正相关。目前认为测定血 B -MG可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标。 尿B 2MG检测的临床意义 尿B 2MG浓度主要与肾小管功能有关。 1、检测尿B 2IG是诊断近曲小管损害敏感而特异的方法。当近曲小管轻度受损时,尿 B 2MG明显增加,且与肾小管重吸收率呈正相关。 2、尿蛋白/尿B -MIG比值有助于鉴别肾小球或肾小管病变。单纯肾小球病变时,尿蛋白/尿B -MIG比值大于300 ;单纯肾小管病变时,比值小于10 ;混合性病变时,其比值介于两者之间。 3、用于鉴别上、下尿路感染。上尿路感染时,尿液 B 2MG浓度明显增加;而下尿路感染时,则基本正常。 4、用于判断肾移植的排斥反应。肾移植无排斥反应者,尿 B 2IG浓度常无明显增高;当出现急性排斥反应,在排斥前数天即见尿B -MG明显增加,在排斥高危期,连续测定有一定预示价值。 5、糖尿病、高血压病人早期尿 B 2IG与其肾功能损害程度显著相关。 6、恶性肿瘤、自身免疫性疾病肾损害时,尿中 B 2MG明显增高。 7、重金属中毒肾损害的流行病调查,尿 B 2MG可用为筛选试验。

肌球蛋白轻链在血管平滑肌舒缩中的机制研究进展

?1452?CHINEsEJOURNAl.OFINTEGRATIVEMEDlC.1NEONCARDIO-/CEREBROVAsA;UI。ARDISEASEDecember2009V01.7No.12 [14][183[16]DT][18][19][20][21][22][23][24][25][26][27] 龚跃颞.十昧补益药中游离的氨基酸分析[J].巾草药,1987.18 (11):37—39. 倪慕云。边宝林。姜莉.地黄及其炮制品巾游离氨蔫酸的分析比较 [J].中国中药杂志.1989.14(3):21—22. 川口义夫.地黄的炮制及所含成分的变化[J].国外医学:巾医中 药分册,1984。6(5):44. 倪慕云.边宝林.地黄及其炮制品微量元素的分析比较[J].中药 通报。1988。13(4):210—211. 张国山,姬景章,王德龙.等.100种常用中药钾.钠,氧和酸碱度 的测定[J].中草药。1981.12(6):9—10. 倪慕云,边宅林。f宏生.千地黄化学成分研究[J].巾国中药杂 志.1992.17(5):297—298. 贺玉琢.f1本对地黄的研究[J].国外医学:中医巾药分册.1997, 19(4):13—17. 阿部博子.地黄及八味地黄丸的药效药理[J].围外医学:中医中 药分册,1992。14(2):18. 豫北医学々科学校中药研究室。河南中医研究所.炮制熟地黄时 加酒与不加酒的比较[J].药学通报.1982,17(2):50—53. 陈丁丁.戴德哉.麝涛,等.地黄煎刺消退I。一甲状腺索诱发的大鼠 心肌肥厚并抑制其升高的心、脑线粒体Na+、K+一ATP酶活力 [J].中药药理与临床。1997,13(4):27—28. 陈丁丁,戴德哉,章涛。等.地黄煎荆抑制异丙肾上腺索诱发的缺 血大鼠脑Ca“、M92+一ATP酶活办升高[Jj.中药药理与临床, 1996.12(5):22一弘. 刘鹤香,曹中亮.常东明。等.怀地黄的降压镇静抗炎作用及有效 部分分析[J].新乡医学院学报,1998。15(3):218—221. KimSS.SonYO。ChunJC。eta1.Antioxidantpropertyofanactive componentpurlfledfromtheleavesofparaquat——tolerantReh—- manniaglutinosa[J].RedoxRep.2005。10(6):311—318. ParkC,SoHS.KimSJ,eta1.Samulextractprotectsagainstthe Hz02一InducedapoptosisofH9c2cardiomyoblastsviaactivation ofextracellularregulatedkinases(Erk)1/2[J].AmJChinMed。 2006,34(6):695—706. [28]杨焕斌,蔡敏,汪小红,等.地黄饮子治疗冠心病心绞痛临床观察 [J].巾固医药学报,2001。16(4);69—70. [293杨焕斌,罗陆一.吴泽铭,等.地黄饮子对冠心病心绞痛患者NO, NOS、SOD影响的临床研究[J].中围巾医药科技,2002.9(6);325— 326. [30]罗陆,-。冯润芬。蔡敏。等.地黄饮子对冠一tl,病心绞痛患者血ET、 MDA、CRP影响的临床研究[J].中国巾医药科技,2004.1l(6): 323—324. [31]手辉.加味地黄汤治疗糖尿病并发冠心病心绞痛33例[J].现代 中西医结合杂志,2005,14(18):2363—2364. [32]吴颂希,林夏也.六味地黄丸影响高血压患者vWF水平的I晦床研 究[J].福建中医药.2000。31(6):5—6. [33]陈康远.六昧地黄汤加味治疗原发性高血征377例疗效观察[J]. 新巾医,2003,35(5):4l一42. [34]叶妙琛.吴佳茵.天麻地黄汤治疗阴虚阳亢型高血压病31例疗效 观察[J].新中医。2003,35(3):39—40. [35]陈修常.加味地黄汤治疗阴虚阳亢型高血压病疗效观察[J].中原 医刊,2003,30(2i):41. [36]王玉红,陈光辉.张琰琴,等.地黄低聚糖对脂肪间充质千细胞增 殖的影响Uj.毹放军药学学报。2008,24(1):19—22. [37]王玉红.t舒,张琰琴,等.地黄低聚糖抗过氧化氧诱导的脂肪问 充质1二细胞凋亡的保护作用[J].中国康复理论与实践,2008,14 (4):314—315. 作者简介:王玉红。现下作于北京军区总医院(邮编:100700)I程霞,工作 于北京军区总医院;陈光辉,工作于巾国人民解放军总医院。 (收稿日期:2009—08—04) (本文编辑郭怀印) 肌球蛋白轻链在血管平滑肌舒缩中的机制研究进展D 焦东东,蔡辉 中图分类号:R392.5文献标识码:A文章编号:1672—1349(2009)12—1452—03 血管舒缩在人体局部牛理活动中有重要的意义。对于局部 血压的形成和控制起着重要的作用,并可影响组织的血供。肌球蛋向是血管平滑肌(vascularsmoothmuscle。VSM)的一种收缩蛋白,其轻链的磷酸化与去磷酸化是血管舒缩调控的终末路径,也是血管舒缩调节机制中信号转导的重要介质。 1肌球蛋白结构及功能 肌球蛋白是粗丝的基本组成蛋白,是一个六聚体的大分子蛋白质,包括两条质量约220kDa的霞链(myosinheavychain,MHC)、2条约17kDa的基本轻链和2条约20kDa的调节性轻链(MLC20)。其中。重链具有ATP酶活性,参与肌丝滑动。20kDa轻链是肌球蛋白的主要调节性结构域,主要功能通过肌球蛋白轻链激酶(myosinlightchainkinase,MLCK)与肌球蛋白轻链磷酸酶(myosinlightchainphosphatase,MLCP)完成磷酸化及去磷酸化,从而调控平滑肌的舒缩。17kDa轻链功能尚不完全明确,一项关于早期幼鼠肺的研究证实它在正常肺动脉上表达,在发育过程中其表达的中断能影响肺组织形态学分化fJ]。 1)为南京军区南京总医院青年基金项目(No.Q2008042)2血管平滑肌舒缩机制 目前广泛被接受的平滑肌收缩机制是肌丝滑行学说[2]:肌细胞受刺激发生兴奋时,胞外钙经胞膜上的钙通道内流,进而触发肌浆膜的钙引起的钙释放通道开放释出大量内钙,使胞浆中游离钙浓度迅速增高。增高的Ca2+与胞浆内无活性的钙调蛋白(calmodulin,CaM)结合成为具有活性的ca”一CaM复合体,并激活胞内MI。CK,在ATP和Mg“参与下,肌球蛋白头邴形成的横桥摆动,靠近肌动蛋白拖动细肌丝滑行,从而完成一次平滑肌收缩。此后,MLCP催化去磷酸化反应,平滑肌舒张。 3肌球蛋白轻链在血管平滑肌舒缩中的作用 血管平滑肌舒缩机制是公认的经典的肌丝滑行学说,近来也有人不断提出非钙依赖途径及非激酶途径。肌球蛋白轻链在各种途径中有重要的作用。 3.1经典途径调节传统认为肌球蛋白调节性轻链的磷酸化与去磷酸化,以及胞内钙浓度的变化是血管平滑肌收缩机制中 万方数据

β2微球蛋白临床意义

β2—微球蛋白(β2-MG)临床意义 临床上检测血或尿中的β 2-MG 浓度为临床肾功能测定、肾移植成活、糖尿病肾病、重金属镉、汞中毒以及某些恶性肿瘤的临床诊断提供较早、可靠和灵敏的指标。脑脊液中β 2-MG 的检测对脑膜白血病的诊断有特别的意义。 血β 2-MG 检测的临床意义 1 、肾功能是影响血β 2-MG 浓度的最主要因素,用血β 2-MG 估测肾功能。 ( 1 )血β 2-MG 是反映肾小球滤过功能的灵敏指标,各种原发性或继发性肾小球病变如累及肾小球滤过功能,均可致血β 2-MG 升高。 ( 2 )血β 2-MG 是反映高血压病和糖尿病肾功能受损的敏感指标。 ( 3 )长期血液透析病人血β 2-MG 升高与淀粉样变、淀粉骨关节病及腕综合征的发生相关。 ( 4 )血β 2-MG 有助于动态观察、诊断早期肾移植排斥反应。 2 、恶性肿瘤时的血β 2-MG 。 ( 1 )血β 2-MG 是以淋巴细胞增殖性疾病的主要标志物,如多发性骨髓瘤、慢性淋巴性白血病等,血β 2-MG 浓度明显增加。 ( 2 )可用于评价骨髓瘤的预后及治疗效果。 3 、病毒感染,如人巨细胞病毒、 EB 病毒、乙肝或丙肝病毒及 HIV 感染时,血β 2-MG 可增高。 4 、自身免疫性疾病时血β 2-MG 增高,尤其是系统性红斑狼疮( SLE )活动期。 50% 类风湿关节炎患者血β 2-MG 升高,并且和关节受累数目呈正相关。目前认为测定血β 2-MG 可用于评估自身免疫性疾病的活动程度,并可作为观察药物疗效的指标。 尿β 2-MG 检测的临床意义 尿β 2-MG 浓度主要与肾小管功能有关。 1 、检测尿β 2-MG 是诊断近曲小管损害敏感而特异的方法。当近曲小管轻度受损时,尿β 2-MG 明显增加,且与肾小管重吸收率呈正相关。 2 、尿蛋白 / 尿β 2-MG 比值有助于鉴别肾小球或肾小管病变。单纯肾小球病变时,尿蛋白 / 尿β 2-MG 比值大于 300 ;单纯肾小管病变时,比值小于 10 ;混合性病变时,其比值介于两者之间。 3 、用于鉴别上、下尿路感染。上尿路感染时,尿液β 2-MG 浓度明显增加;而下尿路感染时,则基本正常。 4 、用于判断肾移植的排斥反应。肾移植无排斥反应者,尿β 2-MG 浓度常无明显增高;当出现急性排斥反应,在排斥前数天即见尿β 2-MG 明显增加,在排斥高危期,连续测定有一定预示价值。 5 、糖尿病、高血压病人早期尿β 2-MG 与其肾功能损害程度显著相关。 6 、恶性肿瘤、自身免疫性疾病肾损害时,尿中β 2-MG 明显增高。 7 、重金属中毒肾损害的流行病调查,尿β 2-MG 可用为筛选试验。

蛋白磷酸酶PHLPP与PI3K/Akt信号通路的研究进展

蛋白磷酸酶PHLPP与PI3K/Akt信号通路的研究进展 近年来有关肿瘤形成机制的研究发现,多数肿瘤细胞中促细胞生存基因Akt的活性升高,并且证实Akt激酶活性的平衡对细胞生长与凋亡具有重要的调节作用。如何抑制Akt活性随之成为抑制肿瘤生长研究的热点。2005年新发现的一种天然抗癌基因——PHLPP(PH domain Leucine-rich repeat Protein Phosphatase)能特异性地使Akt C末端的疏水基团去磷酸化,降低Akt的活性和表达水平,从而抑制肿瘤的生长。这为抗肿瘤药物的研制提供了新的方向,PHLPP 的研究也日益受到重视。现将PHLPP与PI3K/Akt信号通路的研究进展综述如下。 Akt/蛋白激酶B(PKB)即丝/羟丁氨酸蛋白激酶,作为磷脂酰肌醇激酶-3(PI3K)的一个靶分子被发现至今已有十余年[1]。Akt基因所表达的蛋白激酶,可被PI3K磷酸化激活。生理状态下,PI3K/Akt信号通路作为细胞内重要信号转导通路之一,通过影响下游多种效应分子的活化状态,在细胞内发挥着抑制凋亡、促进增殖的关键作用。但是,如Akt基因表达异常增高时,则导致细胞生长与凋亡失衡,不仅可使正常细胞生长分裂加速,并且可抑制细胞凋亡,从而参与肿瘤生成,与人类多种肿瘤的发生、发展密切相关。研究表明,该信号通路在人类大多数恶性肿瘤中都出现异常,在肿瘤的增殖、存活和抵抗凋亡、血管发生以及细 胞运动中发挥了重要作用。 2005年由美国加州大学圣地亚哥分校医学院药理学系的科研人员在人体中发现的PHLPP基因位于人体18号和16号染色体上,它所编码的PHLPP蛋白为蛋白磷酸酶,其生理作用是特异性地将磷酸化激活的Akt脱磷酸化而失去蛋白激酶活性,从而抑制Akt的促细胞生长作用。而且,PHLPP在人体各组织器官及细胞中均有广泛表达。通过对人体多种肿瘤细胞进行分子和生化分析,发现某些肿瘤(如结肠癌)细胞中PHLPP水平显著降低,而Akt的磷酸化水平明显升高。提示,PHLPP可能参与肿瘤生长的负性调节。因此,PHLPP作为肿瘤抑制因子 将可能用于所有与Akt水平升高的有关癌症的治疗。 1 PI3K/Akt信号转导通路的组成及其功能 1.1 PI3K的结构和功能由Whitman M等首先发现的磷脂酰肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)是参与细胞内信号转导的信号分子之一。根据其作用底物的不同,PI3K一般被分为Ⅰ型(ⅠA型,ⅠB型)、Ⅱ型、Ⅲ型3个亚型[2]。Ⅰ型PI3K在细胞内主要磷酸化PI-4,5-P2,此酶的产物主要是磷脂

血清2微球蛋白对慢性乙型肝炎临床意义的研究

实用医技杂志2013年2月第20卷第2期Journal of Practical Medical Techniques,February2013,Vol.20,No.2 ·医学检验·血清β2-微球蛋白对慢性乙型肝炎临床意义的研究 山东省莱州市人民医院(261400)曲旭亮周伟玲 β2-微球蛋白(β2-MG)是瑞典学者Beggard等在1968年 首次于肾小管病变患者的尿液中分离获得,是一种未糖基 化的单链肽,由119个氨基酸残基组成,相对分子质量是 11.8×103。随后在恶性肿瘤、结缔组织病患者的血清中均发现 β2-MG浓度较高,感染性疾病患者的脑脊液、浆膜腔积液和血 清中也可分离出β2-MG。本研究通过检测230例慢性乙型肝 炎患者血清中β2-MG的水平,研究血清β2-MG与乙型肝炎肝 功能损伤程度的关系,对其临床意义进行进一步的探讨。 1资料与方法 1.1一般资料 按照2000年第十次全国传染病和寄生虫学术会议修订 的诊断标准,选择2007—2009年在本院住院的慢性乙型肝 炎患者230例,排除可引起血清中β2-MG升高的其他疾病。其中男性148例,女性82例,年龄31~67岁,平均(44±3)岁。患者皆有乙型病毒性肝炎病史和(或)血清乙型肝炎病毒标志物检测证实感染有乙型肝炎病毒,接种过乙型肝炎疫苗的不在选择范围之内。其中轻度慢性乙型肝炎患者64例,中度慢性乙型肝炎患者72例,重度慢性乙型肝炎患者34例,门诊无症状乙型肝炎病毒携带者(ASC)60例,对照组200例均来自体检中心健康体检者,其中男性123名,女性77名,年龄18~65岁,平均(41±6)岁。 1.2检测仪器、试剂和方法 1.2.1仪器和试剂:仪器为Axsym全自动分析仪,试剂来源为雅培公司,正常参考值0.9~3.3ng/L。 1.2.2方法:每日早晨8:00~12:00采空腹静脉血3mL分离血清并于2h之内检测完毕。定标和质量控制均由雅培公司提供,严格按照说明书操作,采用免疫比浊法原理检测。 1.3统计学处理 SPSS13.0统计软件包处理,实验数据以x±s表示。2组间资料比较采用t检验,组间比较用单因素方差分析,以P<0.05为差异有统计学意义。 2结果 各组β2-MG水平见表1。对照组β2-MG浓度为(1.80±0.26)mg/L,ASC组与对照组之间β2-MG检测结果差异无统计学意义(P>0.05)。乙型肝炎各组血清β2-MG高于对照组和ASC组,差异有统计学意义(P<0.01),而且轻、中、重度组之间差异也有统计学意义(P<0.01)。 慢性乙型肝炎轻、中、重度患者的血清β2-MG均增高,各组乙型肝炎与健康对照组比较差异有统计学意义(P<0.01)。血清β2-MG值在慢性乙型肝炎轻、中、重度之间进行比较差异也有统计学意义(重度与中度:t=1.747,P<0.05;中度与轻度:t=2.5417,P<0.05)。 3讨论 β2-MG存在于成熟红细胞和胎盘滋养细胞以外的所有有核细胞表面,少量游离于血浆,主要由淋巴细胞产生。其本质是细胞表面人类白细胞抗原(HLA)的β链(轻链)部分,为一条单链多肽。β2-MG分子量小,血中β2-MG可从肾小球滤过,约99.9%被近曲小管重吸收,经肾小管上皮细胞胞饮作用而转入溶酶体内,分解成氨基酸,仅0.1%从尿液中排出。β2-MG几乎全部在肾脏进行代谢而不能原形重吸收入血。血中β2-MG浓度受肾功能有核细胞的转化及免疫激活的影响。在某些肾脏疾病、自身免疫性疾病、恶性肿瘤、病毒感染、重金属中毒、肝脏疾病(慢性肝炎、肝癌)等均可升高[1,2]。 在病毒性肝炎时,β2-MG升高的机制可能与细胞免疫有关[3,4]。一类是迟发型超敏反应,效应细胞是CD4+辅助性T 细胞,通过释放淋巴因子诱导炎症反应而损伤靶细胞;一类是T细胞毒性反应;效应细胞是CD8+细胞毒性T细胞(CTL);此类是主要的肝细胞免疫病理损害,CTL攻击靶细胞需依赖所谓“双识别”,即只有表达靶抗原(肝细胞膜上HBcAg和HBeAg)和HLA抗原的肝细胞,才可能被CTL识别、攻击和破坏。正常的肝细胞表面人类白细胞抗原(HLA)-Ⅰ类抗原分布极少,感染肝炎病毒后,机体免疫系统被激活,肝细胞表面HLA-Ⅰ类抗原表达明显增强,由于β2-MG是HLA-Ⅰ类抗原的轻链,所以血中β2-MG水平升高,且与肝损害呈正相关。 本研究资料结果显示,对照组与ASC组β2-MG水平差异无统计学意义(P>0.05),慢性乙型肝炎轻、中、重度各组β2-MG水平显著高于对照组和ASC组,差异有统计学意义(P<0.01),而且在这3组之间β2-MG水平差异也有统计学意义(P<0.01),由此说明慢性乙型肝炎患者血清中β2-MG含量与肝细胞的溶解坏死相一致,可以反映患者病情严重程度,这与文献[4]报道基本相符。 表1慢性乙型肝炎患者血清中 β2-MG检测结果(x±s) 组别例数β2-MG(mg/L) 对照组200 1.8±0.26 ASC组60 1.8±0.17 轻度组64 2.5±0.391) 中度组72 3.3±0.731)2) 重度组34 4.7±0.831)3) 1)与中度组比较P<0.01。 2)与轻度组比较P<0.05。 3)与对照组比较P<0.05。 167 ··

肌球蛋白磷酸化的研究进展

肌球蛋白磷酸化的研究进展 摘要:肌球蛋白是肌原纤维粗丝的组成单位,由多条重链与多条轻链组成,被视为一种分子马达。在肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等生理过程中起重要作用。目前肌球蛋白磷酸化是研究的一个热点,它对细胞的迁移、收缩、胞质分裂以及其他未知功能都有着至关重要的作用。肌球蛋白磷酸化分为重链的嶙酸化与轻链的磷酸化。根据国内外的最新相关研究报道,分别从肌球蛋白的结构与功能、磷酸化的作用机制、磷酸化的生物学功能以及最新研究成果等方面,对肌球蛋白的嶙酸化研究进展进行阐述。关键词:肌球蛋白;β-抑制蛋白;肌球蛋白重链磷酸化;肌球蛋白轻链磷酸化中图分类号:Q71文献标识码:A 文章编号:1007-7847(2015)02-0154-06Progresses on Myosin PhosphorylationHAO Li-juan,KANG Zhi-qiong,MA Shang-shang,LU Peng,YAO Qin,CHEN Ke-ping*(Life Sciences Institute,Jiangsu University,Zhenjiang 212013,Jiangsu,China)Abstract :Myosin is the unit of myofibril raw silk,composed of multiple heavy chains and light chains,is regarded as a kind of molecular motors. It mainly works on muscle contraction,chemotaxis cytoplansmic* division,cell function,vesicular transport and signal transduction. Recently myosin phosphorylation is a hot topic,as it plays an important role in cell migration,contraction,cytokinesis and other unknown functions. Myosin phosphorylation is divided into heavy chain and light chain phosphorylation. According to the latest reports,it mainly elaborates the research progress on the phosphorylation of myosin on the structures and functions,the action mechanism of phosphorylation,the biological function of phosphorylation and the latest research results.Key words:myosin;β-Arrestin;phosphorylation of myosin heavy chain;phosphorylation of myosin light chain (LifeScienceResearch,2015,19(2):154-159)l肌球蛋白的结构与功能肌球蛋白主要存在于平滑肌中,它是肌原纤维粗丝的组成单位。其分子形状如豆芽状,由多条重链与多条轻链组成。肌球蛋白的家族较大,目前发现的肌球蛋白有24种,但依据其来源又可分为传统的肌球蛋白和非传统的肌球蛋白,如传统的肌球蛋白为肌肉的肌球蛋白,即肌球蛋白Ⅱ,但非肌肉细胞也存在肌球蛋白Ⅱ,为非肌肉肌球蛋白Ⅱ;非传统的肌球蛋白是指肌肉中不含有的肌球蛋白,如肌球蛋白I、Ⅲ、IV、V,只存在于非肌肉细胞中;肌球蛋白VⅢ、XI和XⅡ只存在于植物当中。此外,肌球蛋白I在生物体内的作用是细胞运动,胞引作用和泡液收缩;骨骼肌肌球蛋白Ⅱ的作用是使骨骼肌肌肉收缩;肌球蛋白v主要功能是靶向小包运输和mRNA的靶向运输[1]。在生物有机界中,利用化学含故化学势能进行机械做功的生物大分子,称为分子马达。而肌球蛋白作为一种分子马达[2],参与了肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等活动[1]。目前研究得较多的是肌球蛋白Ⅱ,其最早发现于动物细胞的肌肉组织和细胞质中,形状如“Y”型,是一个六聚体的大分子蛋白质,包括两条相对分子质量约为220kD的重链、两条约17kD的必须轻链和两条约20kD的调节性轻链[3]。根报重链在细胞内所起的作用,按照结构和功能不同可划分为3个区域:1)位于重链的N末端形成-个球状的头部,含有一个肌动蛋白(actin)结合位点和ATP结合位点的催化区域,负责释放化学能;2)重链的C末端则形成一个细长的a-螺旋状的尾部,尾部结构域含有决定尾部是同膜结合还是同其他

肌球蛋白与心脏功能解读

肌球蛋白与心脏功能 心脏收缩-舒张是一个非常复杂的生理过程,受诸多生理性和/或病理性因素影响而发生变化,因此而影响心功能。尤其临床上许多疾病都伴有心功能改变,严重时出现心功能障,心肌收缩力下降,心输出量减少。 随着分子生物学等相关学科的迅猛发展,人们从细胞水平、分子水平对心肌收缩-舒张过程及其调节的诸多参与成分各自的作用及相互间作用有了更进一步的了解和认识。近十几年来,人们针对糖尿病、甲状腺功能异常(包括功能亢进和低下)、心肌肥厚、心肌病、缺氧等病理条件下引起的心功能改变,特别是收缩蛋白、调节蛋白与心功能的关系做了大量深入细致的工作。 1 收缩蛋白和调节蛋白 收缩蛋白包括肌球蛋白和肌动蛋白。肌球蛋白是由学者Kuhne于1859年首先报道的,半个多世纪之后,对肌球蛋白的生化分析才开始进行。肌球蛋白是心肌粗肌丝的主要成分,分子呈杆状,一端具有两个球形区域,似豆芽的头部,由两条重链(MHC)和两对轻链(MLC)构成,是肌球蛋白重要生物活性所在地,另一端是一个丝状“尾巴”,由两股α-螺旋肽链绞在一起形成一种盘卷螺旋结构[1]。肌球蛋白具有二个生物学作用:一是具有ATP酶活性,能裂解ATP,释放化学能;二是具有与肌动蛋白结合的能力。研究表明心脏的MHC是由两种基因编码,即α-MHC和β-MHC基因,这些基因产物在肌球蛋白分子中形成二聚体,所以相应的有三种分子异构体存在,即V1(α、α同源体)、 V2(α、β异源体)、V3(β、β同源体)。由于α、β-MHCATP酶活性不同,因此不同的异构体之间所具有的ATP酶活性及收缩活性也不同。肌球蛋白ATP酶活性主要由心肌所含V1或V3的量多少而决定,故肌球蛋白以V1占优势的心肌ATP酶活性最高,肌肉收缩速率最快,耗能也最多,而以V3占优势的心肌情况正相反,以V2占优势的心肌表现介于两者之间[2,3]。肌球蛋白异构体之间的转换是心肌的适应性改变,是心脏本身负荷和能量供应两方面调节适应的结果。V1通过增加心肌收缩速度来增加供能达到能量供求平衡,V3通过减少耗能而适应压力超负荷。当能量供不应求时,肌球蛋白异构体向V3转化,使ATP酶活性下降,心肌收缩功能降低,表现为Vmax下降,最大张力正常,而达到最大张力的时间延长,心肌作功时耗氧量下降,结果使心脏在节能的情况下产生同样的张力,所以V3增加虽可使心肌速度变慢但是却提高了机械效率。 正常哺乳动物和人的心室肌球蛋白异构体的分布与种属、年龄等因素有关。成年人左心室心肌肌球蛋白以V3为主占60%~90%,而小哺乳类动物左心

磷酸化蛋白的研究进展

多学科的相互渗透和研究技术手段的高速发展,生命科学在20世纪取得了巨大的进步。特别是在基因组研究方面已取得了许多的成果,包括人类基因组在内的多种生物的基因组全序列测定已陆续完成,面对庞大的遗传信息,人们开始关注这些序列信息与生命活动之间的直接或间接的联系。基因的功能是什么?它们又是如何发挥这些功能的? 蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。蛋白质磷酸化是一种重要的翻译后修饰,它参与和调控生物体内的许多生命活动。随着蛋白质组技术的不断发展,蛋白质磷酸化的研究越来越受到广泛的重视。本文介绍了蛋白质磷酸化定义、修饰的主要类型与功能、磷酸化蛋白质鉴定技术、检测方法并综述了近年来国内外的主要研究进展。 蛋白质磷酸化:指由蛋白质激酶催化的把ATP或GTP上的磷酸基转移到底物蛋白质氨基酸残基上的过程,是生物体内一种普通的调节方式,在细胞信号转导的过程中起重要作用。

磷酸化蛋白质根据其磷酸氨基酸残基的不同大致可分为四类,即:O-磷酸盐、N-磷酸盐、酰基磷酸盐和S-磷酸盐。O-磷酸盐是通过羟氨基酸的磷酸化形成的,如丝氨酸、苏氨酸或酪氨酸,羟脯氨酸或羟赖氨酸磷酸化仍不清楚;N-磷酸盐是通过精氨酸、赖氨酸或组氨酸的磷酸化形成的;酰基磷酸盐是通过天冬氨酸或谷氨酸的磷酸化形成;而S-磷酸盐通过半胱氨酸磷酸化形成。 蛋白质磷酸化具有以下功能: (1) 磷酸化参与酶作用机制,在此过程磷酸化为反应性中间产物(多为S-或N-磷酸盐) ,如在磷酸烯醇型丙酮酸羧激酶依赖的磷酸转移酶系统( PTR) 的组氨酸蛋白激酶(HPr) 。 (2) 磷酸化介导蛋白活性,蛋白分子通过蛋白激酶发生磷酸化,如蛋白激酶A(丝氨酸和苏氨酸残基) 或不同的受体酪氨酸激酶(酪氨酸残基) 。 (3) 天冬氨酸、谷氨酸和组氨酸的磷酸化在细菌趋化反应的感觉性传导中发生解离。 [32 P]放射性标记法是最经典的磷酸化蛋白质检测方法。体内代谢培养用[32P]标记磷酸盐作为磷酸基团供体,被[32P]标记的蛋白质进行一维或二维凝胶电泳分离,用放射自显影或磷储屏检测磷酸化蛋白质。磷蛋白酸水解产物用二维磷酸肽作图法分析可以确定蛋白质的磷酸化氨基酸类型。磷蛋白水解肽段经HPLC分离,通过监测放射性活度收集到磷酸肽,用Edman测序或串联质谱分析都可以确定磷酸化位点,当然这需要有足够量的磷蛋白用于分析。早在1991年, Arrigo等就采用[32P]代谢标记和二维凝胶电泳分析的方法观察了细胞在耐热处理后再经热刺激和肿瘤坏死因子刺激后热休克蛋白hsp28磷酸化程度的变化,发现耐热处理后细胞在热刺激和肿瘤坏死因子刺激下所引起的hsp28的磷酸化程度会显著降低。[32P]放射性标记可以非常灵敏、直观地检测磷蛋白,尤其是与二维凝胶电泳结合后可以从蛋白质组的角度整体观察细胞内蛋白质磷酸化程度的变化,它的缺点是不能标记组织样本,并且存在放射性污染的问题。

相关文档
最新文档