最大利润问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数最大利润问题导学案

例题一

某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)

(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是元;

(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是;

(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元.

练习1、台东某电器商场销售一种品牌的手机,每部进货价1000元。市场调研表明:当销售价为每部1600元时,平均每天能售出20部;而当销售价每降低50元时,平均每天就能多售出5部。

(1)当售价定为多少元时,平均每天获利最高?最高是多少?

(2)该商场要想使这种手机的销售利润平均每天不低于15000元,每部手机的定价应为多少元

2、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.

(1)求平均每天的销售量y(箱)与销售价x(元/箱)之间的函数关系式;

(2)求该批发商平均每天的销售利润W(元)与销售价x(元/箱)之间的函数关系式;

(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

例2、(2010山东省青岛市,22,10)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:10500

y x

=-+.

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?

(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?

(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?

(成本=进价×销售量)

练习1(2011山东省青岛市,22,10)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.

(1)写出销售量y件与销售单价x元之间的函数关系式;

(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;

(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任

务,则商场销售该品牌童装获得的最大利润是多少?

例3、(2012山东省青岛市,22,10)(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:

⑴试判断y与x 之间的函数关系,并求出函数关系式;

⑵若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;

⑶若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

练习1、(2012山东省荷泽市,20,10)2012年牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元/件) …

20 30 40 50 60 ……

每天销售量y(件) …

500 400 300 200 100 ……

(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)当销售单价为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)

(3)荷泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销工艺品每天获得的利润最大?

2、(2006青岛中考)在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:

(1)在如图的直角坐标系内,作出各组有序数对

(x,y)所对应的点.连接各点并观察所得的图形,

判断y与x之间的函数关系,并求出y与x之间的函

数关系式;

(2)若樱桃进价为13元/千克,试求销售利润

P(元)与销售价x (元/千克)之间的函数关系式,

并求出当x取何值时,P的值最大?

3、(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;

(2)求销售单价为多少元时,该文具每天的销售利润最大;

(3)商场的营销部结合上述情况,提出了A、B两种营销方案:

方案A:该文具的销售单价高于进价且不超过30元;

方案B:每天销售量不少于10件,且每件文具的利润至少为25元

请比较哪种方案的最大利润更高,并说明理由.

销售价x(元/千克)…25 24 23 22 …

销售量y(千克)…2000 2500 3000 3500 …

4、(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那

5、(2007青岛)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:

(1)求y与x的关系式;

(2)当x取何值时,y的值最大?

(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?6、(2008青岛)某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).

(1)求y与x之间的函数关系式;

(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?

7、凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。

(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。

(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由

y(件)

相关文档
最新文档