发动机的振动噪声

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机的振动噪声机理

发动机的机械噪声源于发动机零部件的振动,而主要零部件的振动都直接或间接与曲轴的振动有关。一般将发动机噪声分为三种类型:燃烧噪声、机械噪声和空气动力学噪声。

内燃机结构振动的传播和辐射噪声产生的机理和传递途径,这些途径主要有:

1,燃烧所引起的气体力,使缸盖产生振动,进而传播到气缸盖罩和进、排气歧管等零件;

2.,作用在活塞上的燃烧气体力和惯性力使活塞产生垂向振动。燃烧产生的冲击

能量大部分是通过活塞-连杆-曲轴机构传到机体表面,引起表面振动,称为燃烧激振,由此诱发的噪声称为燃烧机械噪声;

3,与此同时,这些作用力乂引起活塞横向敲击,激发起缸套和气缸体的振动, 进而导致正时齿轮室盖、机油冷却器等零件的振动;由于活塞与气缸壁之间存在有间隙,作用在活塞上的气体压力、惯性力呈周期性变化,这使得活塞对气缸壁的侧推力也呈两边反复作用的特性,活塞在一个工作循环中不断地由一侧接触,变换为与另一侧相接触,产生了活塞对于缸壁的不断敲击现象。称为活塞敲击激振,相应产生的噪声,称为活塞敲击(机械)噪声。

4,进排气流的压力波动激发进排气歧管及附件的表面振动。

另外,配气机构、喷油泵、齿轮冲击和进排气压力波动等交变力激振都要产生机械噪声。

发动机工作中结构振动响应的大小不仅与结构的固有特性有关,还与激励力的

频谱特性有关。

原则上应从以下几个方面来降低发动机的燃烧噪声:一是从根源上改变气体力频谱曲线,降低中高频频率成分的幅值;二是从传播途径上,增加发动机结构对燃烧噪声的衰减,可通过提高缸体刚度增大阻尼或采取隔声措施的方法;另外,在传播途径上需要控制各连接副之间的间隙,增加油膜厚度,避免在运动过程中产生更大的冲击。

降低活塞敲击噪声除从传播途径上降低结构对输入的衰减能力(如提高刚度和增大阻尼)之外,还需要关注活塞组的设计。通过增大活塞裙部刚度、减小活塞重量、设计合理的活塞型线和配缸间隙、或采取其他措施,降低活塞对缸套的敲击力是降低活塞敲击噪声的关键。

1.1燃烧噪音

1.1.1燃烧噪声产生机理

燃烧噪声是由于气缸内周期变化的气体压力的作用而产生的。它主要取决于燃

烧的方式和燃烧的速度。燃烧噪声是由于燃烧室内气压急剧上升,致使发动机各部件振动而引起的噪声。

1.1.2燃烧噪声的控制策略

(1)采用隔热活塞以提高燃烧室壁温度,缩短滞燃期,降低空间雾化燃烧系统的直喷式柴油机的燃烧噪声。

(2)提高压缩比和应用废气再循环技术也可降低柴油机的燃烧噪声。但压缩比主要决定了柴油机的机械负荷与热负荷水平。废气再循环技术通过降低气缸最高压力,在抑制NOx产生的同时,也降低了燃烧噪声。

(3)采用双弹簧喷油阀实现预喷。即将原本打算一个循环一次喷完的燃油分两次

喷。第一次先喷入其中的小部分,提前在主喷之前就开始进行着火的预反应,这样可减少滞燃期内积聚的可燃混合气数量。

(4)共轨喷油系统是一种很有前途的直喷式轿车柴油机电子控制高压燃油喷射系统,它能减少滞燃期内喷入的燃油量,特别有利于降低燃烧噪声。

(5)采用增压。柴油机增压后进入气缸的空气充量密度、温度和压力增加,从而改善了混合气的着火条件,使着火延迟期缩短。

(6)燃烧室的选择和设计。对于分开式燃烧室,精确的喷油通道、扩大通道

面积、控制喷射方向和预燃室进气涡流半径的优化,均能抑制预混合燃烧,促进

扩散燃烧,从而降低由低负荷到高负荷较宽范围的燃烧噪声、燃油消耗和碳烟排放。

活塞顶燃烧室结构对燃烧噪声有很大影响。孔口较小、深度较深者,燃烧噪

声就小得多,排放也明显较好。再加上缩口形,减噪效果就更趋好转。因此,设计时在变动许可范围内,最好选用缩口并尽可能加深些的3形燃烧室。

(7)减小供油提前角。供油提前角小,喷油时间延迟,气缸内温度和压力在

燃油喷入时较高,燃油一经喷入即雾化,瞬间达到着火点,缩短了滞燃期。最先喷入的燃油爆发燃烧,而后续喷入火焰中的燃油因氧气不足而不会立即燃烧,这样,由于初期燃烧的燃油量少,压力升高率低,可使燃烧噪声减小。大多数柴油机的燃烧噪声随供油提前角的减小而有所降低。

(8)选用十六烷值高的燃料,着火延迟期较短,从而影响在着火延迟期内形成的可燃混合气数量,使压力升高率降低和减小燃烧噪声。

1.2机械噪声

机械噪声是由于运动件之间以及运动件与固定件之间周期性变化的机械运动而产生的,它与激发力的大小、运动件的结构等因素有关。主要有活塞敲击噪声和气门机械噪声。

1.2.1活塞敲击噪声

发动机运转时,活塞在上、下止点附近受侧向力作用产生一个由一侧向另一侧的横向移动,从而形成活塞对缸壁的强烈敲击,产生了活塞敲击噪声。产生敲击的主要原因是活塞与气缸套之间存在间隙,以及作用在活塞上的气体压力。

降低活塞敲击噪声的措施有:

(1)采取活塞销孔偏置,即将活塞销孔适当地朝主推力面偏移1〜2mm。

(2)采用在活塞裙部开横向隔热槽,活塞销座镶调节钢件,裙部镶钢筒,采用椭圆锥体裙等方式来减小活塞40 C冷态配缸间隙。

(3)增加缸套的刚度,不仅可以降低活塞的敲击声,也可以降低因活塞与缸壁摩擦而产生的噪声。为了增加缸套的刚度,可采用增加缸套厚度或带加强肋的方法。

(4)改进活塞和气缸壁之间的润滑状况,增加活塞敲击缸壁时的阻尼,也可以减小活塞敲击噪声。

1.2.2传动齿轮噪声

传动齿轮的噪声是齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。在内燃机

上,齿轮承载着交变的动负荷,这种动负荷会使轴产生变形,并通过轴在轴承上引起动负荷,轴承的动负荷乂传给发动机壳体和齿轮室壳体,使壳体激发出噪声。此外,曲轴的扭转振动也会破坏齿轮的正常啮合而激发出噪声。传动齿轮噪声与齿轮的设计

参数和结构型式、加工精度、齿轮材料配对、齿轮室结构以及运转状态有关。

降低传动齿轮噪声的措施有:

(1)控制齿轮齿形,提高齿轮加工精度,减小齿轮啮合间隙,即降低齿轮啮合时相互撞击的能量,从而降低齿轮啮合传动噪声。

(2)采用新材料,如高阻尼的工程塑料齿轮,采用工程塑料齿轮代替原钢制齿轮后,整机噪声降低约0.5dB(A)左右,效果明显。

(3)合理布置齿轮传动系位置,如将正时齿轮布置在飞轮端,可有效减少曲轴系扭振对齿轮振动的影响。

(4)采用正时齿形同步带传动代替正时齿轮转动,可明显降低噪声。

1.2.3降低配气机构噪声

内燃机大都采用凸轮、气门配气机构,机构中包括凸轮轴、挺柱、推杆、摇臂、气门等零件。配气机构中零件多、度差,在运动中易于激起振动和噪声,包括气门和气门座的撞击,由气门间隙引起的传动撞击,挺柱和凸轮工作面之间的摩擦振动,高速时气门不规则运动引起的噪声。配气机构噪声与气门机构的型式、气门间隙、气门落座速度、材料、凸轮型线、凸轮和挺柱的润滑状态、内燃机的转速等因素有关。

降低配气机构噪声的措施主要有:

(1)良好的润滑能减少摩擦,降低摩擦噪声。凸轮转速越高,油膜越厚。所以内燃机高速运转时,配气机构的摩擦振动和噪声就不突出了。

(2)减少气门间隙可减少摇臂与气门之间的撞击,但不能使气门间隙太小。采用液力挺柱可以从根本上消除气门间隙,降低噪声。

(3)缩短推杆长度是减轻系统重量、提高刚度的有效措施,顶置式凸轮轴取消了推杆,对减少噪声特别有利。

1.3空气动力噪声

由于气体扰动以及气体和其他物体相互作用而产生的噪声称为空气动力噪声,在发动机中,它包括进气噪声、排气噪声和风扇噪声。

1.3.1进气噪声

发动机工作时,高速气流经空气滤活器、进气管、气门进入气缸、在此气流流动过程中会产生一种强烈的空气动力噪声,有时比发动机本身噪声高出 5 dB(A)左右,成为仅次于排气噪声的主要噪声源。该噪声随着发动机转速的提高而增强,与负荷的变化无关,其成分主要包括:周期性压力脉动噪声、涡流噪声、气缸的玄姆霍兹共振噪声和进气管的气柱共振噪声。

进气噪声的控制策略主要是:

(1)合理的设计和选用空气滤活器。合理设计进气管道和气缸盖进气通道,减少进气系统内压力脉动的强度和气门通道处的涡流强度。

(2)引进消声措施。

1.3.2排气噪声

排气噪声主要在排气开始时,废气以脉冲形式从排气门缝隙排出,并迅速从排气口冲入大气,形成能量很高、频率很复杂的噪声,包括基频及其高次谐波的成分。该噪声是汽车及发动机中能量最大最主要的噪声源,它的噪声往往比发动机整机噪声高10dB(A)〜15dB(A)。除基频噪声及其高次谐波噪声外,排气噪声还包括排气总管和排气歧管中存在的气柱共振噪声、气门杆背部的涡流噪声、排

相关文档
最新文档