结构力学2结构的几何构造分析

合集下载

结构力学 2几何组成分析

结构力学 2几何组成分析

II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?


还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变

结构力学《第二章几何组成分析》龙奴球

结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4

1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律

四川大学锦城学院结构力学复习题

四川大学锦城学院结构力学复习题

2、几何常变体系、几何瞬变体系
FP FP
体系受到任意荷载作用,在不考虑材料应变的 前提下,体系产生瞬时变形后,变为几何不变体系, 则称几何瞬变体系。
3
3、自由度
自由度:体系运动时,可以独立改变的几何参数的 数目,即确定体系位置所需要独立坐标的数目
A
y
y y x

A
x
x
1动点= 2自由度
1刚片= 3自由度
A
FAx=120kN FAy=45kN 4m
C
F
G
15kN 4m
15kN 4m
15kN
a.求支座反力 FAy=45kN
FAx=120kN
(对于这种悬臂型结构可不必先求反力)
38
3m FBx=120kN
B
D
E
3m
FNGE XNGE FNGF
YNGE
G
A
C
F
G
4m
15kN 4m
15kN 4m
15kN
15kN
MA
l
MB MA
ql2/8
26
§3-2 静定多跨梁
1.传力关系
组成顺序
基本部分
附属部分1
附属部分2 ¨ ¨ ¨
传力顺序
2.计算原则
与传力顺序相同,先计算附属部分后计算基本部分
27
画出图示梁的弯矩图、剪力图
40kN/m
K 120kN
8m
2m
3m
3m
120kN
40kN/m
60kN 235kN
60kN
36
结点法、截面法
1、结点法
取单结点为分离体, 其受力图为一平面汇 交力系。 它有两个独 立的平衡方程。

清华大学结构力学第2章几何构造分析34

清华大学结构力学第2章几何构造分析34
II
17
5. 关于无穷远瞬铰的情况
1 C II
I A
2
a)
B
III
一个瞬铰C在无穷远处,铰A、B连线与形成 瞬铰的链杆1、2不平行,故三个铰不在同一直 线上,该体系几何不变且无多余约束(图a)。
18
A B
I II C
b)
III 瞬铰B、C在两个不同方向的无穷远处,它 们对应于无穷线上两个不同的点,铰A位于 有限点。由于有限点不在无穷线上,故三铰 不共线,体系为几何不变且无多余约束(见 图b)。
一、复杂链杆与复杂铰
1. 简单链杆与复杂链杆 简单链杆——仅连接两个结点的链杆称为简
单链杆,一根简单链杆相当于一个约束。
复杂链杆——连接三个或三个以上结点的链杆
称为复杂链杆。一根复杂链杆相当于(2n-3) 根简单链杆,其中n为一根链杆连接的结点数。
35
2. 简单铰与复杂铰 简单铰——只与两个刚片连接的铰称为简单铰。
19
A I II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
20
6. 装配格式和装配过程
基本装配(建造、施工)格式
把一个节点固定到一个刚片上;
把一个刚片固定到另一个刚片上;
把两个刚片固定到另一个刚片上。
9
3
I
解: 用混合公式计算。 m=1 j=5 g=2 b=10
W (3 1 2 5) (3 2 10)
13 16 3
41
例2-3-5 求图示体系的计算自由度。
1 2 4 A 3 B 5 6 E 7 C 8 D 10 11

结构力学第2章 结构的几何构造分析

结构力学第2章   结构的几何构造分析

有一根链杆是多余约束
§2-1 几何构造分析的几个概念
5. 瞬变体系
特点:从微小运动的角度看,这是一个可变体系;
经微小位移后又成为几何不变体系;
在任一瞬变体系中必然存在多余约束。 瞬变体系:可产生微小位移 常变体系:可发生大位移
可变体系
§2-1 几何构造分析的几个概念
6. 瞬铰 O为两根链杆轴线的交点,刚片I
可发生以O为中心的微小转动, O点
称为瞬时转动中心。 两根链杆所起的约束作用相当于在链 杆交点处的一个铰所起的约束作用,这个 铰称为瞬铰。
§2-1 几何构造分析的几个概念
7. 无穷远处的瞬铰 两根平行的链杆把刚片I与基础相
连接, 则两根链杆的交点在无穷远处。
两根链杆所起的约束作用相当于无穷远 处的瞬铰所起的作用。
体系计算自由度:
W=2j-b
§2-3 平面杆件不变体系的计算自由度
若W>0,则S >0,体系是几何可变的
若W=0, 则S=n, 如无多余约束则为几何不变,如有多余约束则 为几何可变 若W<0,则n>0, 体系有多余约束 例 2-4 试计算图示体系的W。 方法一:
m=7,h=9,b=3, g=0
W=3m-2h-b=3×7-2×9-3=0 方法二: j=7,b=14
W=2j-b=2×7-14=0
§2-3 平面杆件不变体系的计算自由度
例 2-5 试计算图示体系的W。
将图(a)中全部支座去掉,在G处切开,如图(b) m=1,h=0,b=4, g=3 W=3m-(3g+2h+b)=3×1-(3×3+2×0+4)=-10 体系几何不变,S=0 n=S-W=0-(-10)=10
第2章
§2-1 §2-2

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析
结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析

链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。

结构力学 2几何组成分析(第二、三课)

结构力学 2几何组成分析(第二、三课)
m=9
h=12 b=0
J I G H K
W = 3 × 9 − 2 × 12 = 3
F L I
(1,3)
A
B
C
D E
A
B
C
D E
F L
(1,2)
.
J I G H K
J (2,3) K
G
H
40
作业:2-4 (c),(e),2-8 (a),2-10(a) 作业:
41
(1,2) D
E
无多余约束几何不变体系
26
A
思考: 思考:
B 1
D I E 2 F 3
G II 4 C
刚片I、II中各有一个多余约 刚片 、 中各有一个多余约 整体为有2个多余约束的 束,整体为有 个多余约束的 几何不变体系。 几何不变体系。
哪个连杆是多余约束? 哪个连杆是多余约束?
27
思考题: 思考题:
O
.
. O’
A
C
B
D
10
7、无穷远处虚较
1)每个方向只有一个∞点(即该方向各平行线的 每个方向只有一个∞ 交点) 交点) 2)不同方向有不同的∞点 不同方向有不同的∞ 3)各∞点都在同一直线上,此直线称为∞线 点都在同一直线上,此直线称为∞ 4)各有限点都不在∞线上。 各有限点都不在∞线上。
11
§2-2 几何不变体系的组成规律 讨论没有多余约束的,几何不变体系的组成规律。 讨论没有多余约束的,几何不变体系的组成规律。
2
§2-1 基本概念
1 几何不变体系、几何可变体系 几何不变体系、
体系受到某种荷载作用, 体系受到某种荷载作用,在不考虑材料应变的 前提下,体系若不能保证几何形状、位置不变, 前提下,体系若不能保证几何形状、位置不变,称 几何可变体系。 为几何可变体系。

结构力学-几何组成分析

结构力学-几何组成分析

复铰 等于多少个 单铰?
1连接n个刚片的复铰 = (n-1)个单铰
体系的计算自由度:
结 构 力 学 第 二 章
bicea
计算自由度等于刚片总自由度数 减总联系数
W = 3m-(2h+b) m---刚片数(不包括地基) h---单铰数 b---单链杆数(含支杆)
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
除去联系后,体系的自由度并不 改变,这类联系称为多余联系。
图中上部四根杆 和三根支座杆都是 必要的联系。 下部正方形中任意 一根杆,除去都不增 加自由度,都可看作 多余的联系。
结 构 力 学 第 二 章
bicea
例3: 计算 图示 体系 的自 由度
W=0,但 布置不当 几何可变。 上部有多 余联系, 下部缺少 联系。
找虚铰 无多几何不变
无多几何不变

O12
结 构 力 学 第 二 章
bicea
找 刚 片 O 、 找 虚 铰
23


O13
行吗?
瞬变体系
它可 变吗?
结 构 力 学 第 二 章
bicea
F
G
E
D
找刚片 无多几何不变
结 构 力 学 第 二 章
bicea
F
G E
D
如何变静定? 唯一吗?
C
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
可选小论文题之一 “体系组成分析的计 算机方法” 做这一小论文的 找我要参考资料
结 构 力 学 第 二 章
bicea
可选小论文题之一 “论三刚片六杆 连接体系的可变性” 或 “体系组成分析的计 算机方法”

结构力学 第二章 结构的几何构造分析.

结构力学 第二章 结构的几何构造分析.
2019/9/6
A
B
C

如图示,三刚片用三个不共线的 铰相连,故:该体系为无多余约 束的几何不变体系。
结构力学
36
(Ⅰ,Ⅱ)
Ⅰ (Ⅰ,Ⅲ) Ⅱ

Ⅰ Ⅱ

(Ⅰ,Ⅲ)
三刚片以三个无穷远处虚铰相连 组成瞬变体系
(Ⅱ,Ⅲ)
(Ⅰ,Ⅱ)
(Ⅱ,Ⅲ)
如图示,三刚片以共线三铰相连几何瞬变体系
2019/9/6
结构力学
② 在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的解 题途径。
由若干杆件用各种结点连接而成的杆件体系,当 能承受一定范围内任意荷载时,称为杆件结构。不能 承受任意荷载的体系称为机构。
2019/9/6
结构力学
5
2-1-2 体系的分类
在忽略变形的前提下,体系可分为两类:
静定结构 — 几何特征为无多余约束几何不变。
2019/9/6
结构力学
21
2-2-1 静定结构组成规则
规则1 一刚片规则(二元体规则)
一个刚片与一个 点用两根链杆相连, 且三个铰不在一直线 上,则组成几何不变 的整体,并且没有多 余约束。
2019/9/6
图2-8
结构力学
A C
1 A2
22
在体系上用两个不共线杆件或刚片连接一个新
掌握: 体系的计算自由度的概念及计算,无多余 约束的几何不变体系的几何组成规则,及 常见体系的几何组成分析。
了解: 结构的几何特性与静力特性的关系。
2019/9/6
结构力学
4
§2-1 几何构造分析的几个概念
2-1-1 几何构造分析的目的
① 研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析
A
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I
C 联合装配格式
A
II
III
固定两个刚片的装配格式
B
I C 复合装配格式
29/73
2-2 平面几何不变体系的组成规律 四、体系的装配 多次应用上述基本组成规律或基本装配格式,可以组成各 种各样的几何不变且无多余约束的体系。 装配的过程通常有两种: 1 从基础出发进行装配
x
一个链杆相当于1个约束
若用数学表达式,则应满足以下条件: xB xA 2 yB yA 2 l2
4个坐标参数必须受到上述条件的限制,故只有3个独立运动 几何参数。
14/73
2-1 几何构造分析的几个概念 五、多余约束
如果在一个体系中增加一个约束,而体系的自由度并不因此 而减少,这种约束称为多余约束。
二、刚片
在几何组成分析中,可能遇到各种各样的平面物体,不论其具 体形状如何,凡本身为几何不变者,则均可把它看作为刚片。
6
4 2
5 3
1
5/73
2-1 几何构造分析的几个概念 三、自由度
y A'
A Dx
O
x
平面内一点有两种独立运动方式 (两个坐标x, y可以独立地改变)
一点在平面内有两个自由度
Dy Dy
A
II B
3
I
C
II
B 12
A
3
I
C
几何不变 无多余约束
几何不变 无多余约束
规律3 两个刚片用三个链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,并且没有多余约束。

龙驭球结构力学答案

龙驭球结构力学答案

精选课件
1
2
A
B
结构力学19
铰A、B的连线与1、2 两链杆平行,体系瞬变
习题解答
P.39 2-12
精选课件
结构力学20
S=3m-(3g+2h+b) =3×1-(3×4+2×0+3) =-12
几何不变,12个多余约束
S=3m-(3g+2h+b) =3×8-(3×2+2×9+3) =-3
几何不变,3个多余约束
q
C
D
C
D
ql 2 8
A
B
A
B
l
ql
ql
2
2
q
C
D
C
D
ql 2 8
A
B
A
B
l
ql
ql
2
2
M图
习题解答
P.110 3-3 (j) 速画M图
精选课件
结构力学42
MM
D
C
E
M D M
MM C
M E M
A
B
A
B
MM
D
C
E
M D M
MM C
M E M
A
B
A
B
M图
习题解答
P.110
3-4 (a) 判断M图的正误,并改精正选课错件 误
几何不变,有一个多余约束
习题解答
P.37 2-4(d)
精选课件
O(I、III) O(II、III) I
II
1
2
O(I、II)
结构力学 7
III
铰O(I、II)、 O(II、III)的连线与1、2两链 杆不平行,体系几何不变,无多余约束

(完整版)西北工业大学航空学院结构力学课后题答案第二章结构的几何组成分析

(完整版)西北工业大学航空学院结构力学课后题答案第二章结构的几何组成分析

第二章构造的几何构成剖析2-1 剖析图 2-27 所示平面桁架的几何不变性,并计算系统的剩余拘束数。

2461357(a)(a)解:视杆为拘束,结点为自由体。

C= 11, N= 7×2=14f =11 - 7×2+ 3=0该桁架布局合理,不存在有应力的杆,故为无剩余拘束的几何不变系。

251634(b)(b)解:视杆和铰支座为拘束,结点为自由体。

C= 9+ 2+ 1= 12,N = 6×2= 12f = 12- 6×2= 0该桁架布局合理,不存在有应力的杆,故为无剩余拘束的几何不变系。

251634(c)(c)解:视杆和铰支座为拘束,结点为自由体。

C= 10+ 2×2= 14,N = 6×2= 12f= 14- 12= 2该桁架为有两个剩余拘束的几何不变系。

1213141516177891011612345(d)(d)解:视杆和铰支座为拘束,结点为自由体。

C= 30+ 3= 33, N= 17×2= 34f= 33- 34= -1故该桁架为几何可变系。

36724518(e)(e)解:视杆为拘束,结点为自由体。

C= 13,N = 8×2= 16f= 13- 16+ 3= 0将 1-2-3-4 、5-6-7-8 看作两刚片,杆 3-6、杆 2-7、杆 4-5 互相平行,由两刚片原则知,为刹时可变系统。

1234105139814127116(f)(f)解:视杆和固定铰支座为拘束,结点为自由体。

C= 22+ 3×2= 28,N = 14×2= 28 f= 28- 28= 0将 12-13-14 、 7-11-12、 1-2-3-4-5-6-7-8-9-10 看作三刚片,三刚片由铰 7、铰 12、铰14连结,三铰共线,故该桁架为刹时可变系统。

6a12345678aa119 1614131210 15(g)(g)解:视杆和固定铰支座为拘束,结点为自由体。

结构力学 第2章 平面体系的几何组成分析

结构力学 第2章 平面体系的几何组成分析

2.1 几何不变体系和几何可变体系
一、几何不变体系和几何可变体系
1、几何不变体系——受到任意荷载作用后,若不考虑 材料的应变,其几何形状和位置均能保持不变的体系。
D
FP A A1 弹性变形 EI FP A
几何不变体系:刚体.swf
EI1=∞
B
B
一、几何不变体系和几何可变体系
2、几何可变体系——受到任意荷载作用后,若不考虑材料 的应变,其几何形状和位置仍可以发生改变的体系。
三、体系的几何组成性质与计算自由度之间的关系
a) W=1>0 由此可知:
b) W=0
c) W=-1<0
(1) 若W>0,体系一定是几何可变的。 (2) 若W≤0,只表明具有几何不变的必要条件,但不 是充分条件。因为体系是否几何不变还取决于约束的 布置是否合理。
2.4 平面几何不变体系的基本组成规则
(4)刚片与地基之间的固定支座和铰支座不计入g和h, 而应等效代换为三根支杆或两根支杆计入r。
【例2-1】试求图示体系的计算自由度W。
m1 m4 m7 (3)h m2 m5 (1)h m6 (3)g
(1)h m3 (3)h
m8
(3)r
m9 (3)r
m=9,g=3,h=8, r=6
W = 3m-(3g+2h+r) = 3×9-(3×3+2×8+6) = -4
图a是内部没有多余约束的 刚片,而图b、c、d则是内 部分别有1、2、3个多余约 a) 束的刚片,它们可以看作 在图a的刚片内部分别附加 了一根链杆或一个铰结或 c) 一个刚结。
b)
d)
在应用公式时,应注意以下几点:
(3)刚片与刚片之间的刚结或铰结数目(复刚结或复 铰结应折算为单刚结或单铰结数目)计入g和h。

结构力学龙驭球第四版第二章课后习题答案

结构力学龙驭球第四版第二章课后习题答案
大地之间由支座 A,B 相联即为刚片Ⅰ,易得刚片Ⅱ,l ,三刚片分别由杆 6,7;8,9;10,11 相 联交于(1,2),(2,3),1,3)。三饺不共线﹐故为几何不变体系且无多余约束。
图 2-10-a b. 解:如图 2-10-b 所示刚片 I,ll,IⅢl,三刚片分别由饺(1,3),(2,3)及杆 1,2 交于无穷
图 2-8-a b. 解:如图 2-8-b 所示刚片Ⅰ﹐及大地Ⅲ,I,Ⅱ交于无穷远处饺(1,2),l,Ⅲ由支座链杆相
联交于(1,3),ll,Ⅲ交于(2,3); (1,3)及(2,3)的连线与杆 5,6 平行﹐故体系为瞬变。
图 2-8-b 2-9 试分析所示体系的几何构造。 a. 解:按一般思路分析,如图 2-9-a 所示刚片 I,ll,大地刚片Ⅲ,分别交于饺 A,(1,3),(2,3),
4,5;6,7;8,9;10,1l;12,13 后仍为几何不变,大地视为刚片Ⅱ﹐由不平行且不交于一点的链 14,15,16 相联,所以为几何不变体系且无多余约束。
图 2-2-b c. 解:去掉二元体 8,9,不予考虑。如图 2-2-c 所示刚片 I,ll,Ⅲ由三饺相联,但三个铰在一
条直线上,不满足规则要求,为瞬变体系。
图 2-1-c 2-2 试分析所示体系的几何构造。 a. 解:如图 2-2-a 所示,依次去掉二元体 l,2;3,4;5,6;7,8;9,10;11,12;只剩下大地刚片,为几何
不变体系,且无多余约束。
图 2-2-a b. 解:如图 2-2-b 所示,杆 1,2,3 由不在一条直线上的三个饺相联﹐构成刚片Ⅰ,加上二元体
w= 2j-b= 2×10-(16+4)= o b. 解:w = 3m-(3g +2h+b
=3×14-(3 ×2+2×18) =o

结构力学第二章

结构力学第二章

①抛开基础,只分析上部。 ②在体系内确定三个刚片。 ③三刚片用三个不共线的三铰相连。 ④该体系为无多余约束的几何不变体系。
有一个多余约束的几何不变体系
3.等价变换 一个刚片,无论其大小、形状,只要本身没有多余
联系,则可在不改变与其它部分联结方式的前提下,用一 根链杆或一铰接三角形代替。
例15
o12
2、当体系杆件数较多时,将刚片选得分散些,刚片与刚片
间用链杆形成的瞬铰相连,而不用单铰相连。
E
O13
O23
D
F
O12
A
D
B
C
ⅠF
如将基础、ADE、 EFC作为刚片,将 找不出两两相联
的三个铰。
Aபைடு நூலகம்
B
C

如图示,三刚片用三个不共线的 铰相连,故:该体系为无多余约 束的几何不变体系。
(Ⅰ,Ⅱ)
Ⅰ (Ⅰ,Ⅲ) Ⅱ
o13
II o23 III
I
I
例16
例17
例17
I II
III
III
III
例17
OI,III
III OI,II
I II OII,III
III III
结论:几何不变体系
例18
E
F
D
例18 F
E D
例18
II
III
E
F
D I
例18
OI,II II E
OI,III III F
D I
结论:几何不变体系
系。
1 几何构造分析的几个概念
(7)虚铰(瞬铰) 连接两个刚片的,不直接相连接的两根单链杆构成的联 系,叫虚铰。虚铰的铰心在两根链杆(延长线)的交点 上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)从内部刚片出发构造
例1
1,3
例2 . .1,2
2,3
.
.
无多余约束的几何不变体系 例3
1,2
几何瞬变体系
.
.
1,3 2,3
. 2,3
几何瞬变体系
1,2 1,3
§2-3
• • • • • • • • • • • 体系的自由度S:
平面杆件体系的计算自由度
S=a-c A为各部件自由度总和,c为全部约束中的非多余约束数 计算自由度W: W=a-d d为全部约束的总数 即得: S-W=n 这就是W、S、 n三者之间的关系式。 由于自由度S与多余约束数n都不是负数,即S≥ 0, n ≥ 0 则可得出下面两个不等式:s≥n, n ≥-W 也就是说,W是自由度S的下限,而(-W)则是多余约束n 的下限 。
第二章
结构的几何构造分析
Geometrical Constitution Analysis Of Plane Systems
几何构造分析的目的主要是分析、判断一个体系是否 几何可变,或者如何保证它成为几何不变体系,只有几何不变 体系才可以作为结构。 §2-1 几何构造分析的几个概念
一、几何不变体系和几何可变体系
六、瞬铰
B C’
0 P O
.
. O’
C
A 0'
M 0 0
N3 P r 0
N1 N2 N3
B
D
N3
Pr


七、无限远处的瞬铰:
关于∞ 点和∞线的下列四个结论 1、每个方向有一个 ∞点(即该方向各平行线 的交点) 2、不同方向有不同的 ∞点 3、各∞点都在同一直线上,此直线称为∞线 。 4、各有限点都不在∞线上。
四、自由度与几何体系构造特点
W 0 W 0 W 0
m2 j2 无多余约束时,体系几何不变;h 1 b 8
体系几何可变; 体系有多余约束。W (3 2 2 2) (2 1 8) 0
分析实例 1
F
D C E
F
D C B E
A
A
B
F
D
C A
E
D
E
C
B A B
§2-2 平面几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
1. 一个点与一个刚片之间的组成方式
规律1:一个点与一个刚片之间用两根链杆相连,且三
铰不在一直线上,则组成无多余约束的几何不变体系。
2. 两个刚片之间的组成方式
规律2:两个刚片之间用一个铰和一根链杆相连, 且
II I II
III
三铰不在一直线上,则组成无多余约束的几何不变 体系。
规律4:两个刚片之间用三根链杆相连, 且三根链杆
不交于同一点,则组成无多余约束的几何不变体系。 3. 三个刚片之间的组成方式
规律3:三个刚片之间用三个铰两两相连,且三个
III
铰不在 一直线上,则组成无多余约束的几何不变体系。
I
三角形规律
利用组成规律可以两种方式构造一般的结构: (1)从基础出发构造
不考虑材料应变条件下,体系的位置和形状保持 几何不变体系: 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以 不变的体系。 改变的体系。
二、自由度
杆系结构是由结点和杆件构成的,我们可以抽象为 点和线,分析一个体系的运动,必须先研究构成体系的
点和线的运动。
y A' A 0 Dx Dy
x
y
A' B' D Dy B Dx 0
x
A
自由度: 描述几何体系运动时,所需独立坐标的数目。 几何体系运动时,可以独立改变的坐标的数目。
三、约束有三种:
A C
B
链杆-1个约束
单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
A
A
C
B
• 由于全部约束d与非多余约束数c的差数是多余约束数n
一、平面刚片体系的计算自由度
W=3m-(3g+2h+b)
m---刚片数;
g ---单刚结点数 h ---单铰结点数;
b ---链杆及支杆数。
3
6-2×(1)=4
9-2×(2)=5
单铰:连接两个刚片的铰结点。 复铰:连接两个以上刚片的铰结点。相当于(n-1)个单铰。
W=2×4-4-3=1
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。 连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j7
b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W ( 3m 2 j ) ( 3 g 2h b )
1,2
D C
F E
几何不变体系
几何瞬变体系
分析实例 5
F G H F (1,2) G H
A
C
B D
E
A J
C B K D
(2,3) E
(1,3)
F
G
H
F
G
(2,3) A J B C K D E A
(2,3) B C
(1,2) D
E
几何不变体系
分析实例 2
A B C D E F L
按平面刚片体系计算自由度
W 3m 2 h b
m=9
h=12 b=0
I G H
J K
W 3 9 2 12 3
F L A B C D E F L
(1,2)
A
B
C
D E
.
I G H
J K
I
G
(1,3)
J (2,3)
H
K
分析实例 3
1 2

1 1 2
1 1 2
m=4
h=4
b=3
m=7
h=9
b=3
W=3×4-(2×4)-3=1
W=3×7-(2×9)-3=0
刚片本身不 应包含多余约束
W=3×1-3=0
W=3×1-3-3=-3
W=-3
W=3×1-5=-2
超静定结构
二、平面杆件体系的计算自由度
W=2j-b
j=4
b=4+3
j=8
b=12+4
3
(1,2) 1
(2,3) 2
3
(1,2) 1
2
3
4 6
5
4 6
5
(2,3) 4 6
5
(1,2) 1
2
3
1
2 (2,3) 4 6
3
(1,2)
1
2
3
(1,3)
4 6
5
5
4
5 (1,2) 6
(2,3)
(2,3)
.
几何瞬变体系
分析实例 4
A
B
C E F
D
A
1,3
A 2,3 2,3
B
1,2
C E F
D
1,3 B
相关文档
最新文档