北师大版数学九年级下册第三章 圆 教学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 圆

【学习目标】

1、理解圆的描述定义,了解圆的集合定义.

2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系

【重点难点】

重点:会确定点和圆的位置关系.。

难点:初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.

【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流

并解决。

【自主学习】(自学课本P65---P 67思考下列问题)

1、举例说出生活中的圆。

2、车轮为什么做成圆形

3、你是怎样画圆的你能讲出形成圆的方法有多少种吗

【合作探究】(由自主学习第四题归纳总结下列概念)

1、圆的集合定义 (集合的观点)

2、圆的运动定义:_______________ (运动的观点)

圆心: 半径: 3、圆的表示方法:以点O 为圆心的圆,记作“ ”,读作“ ”. 4、同时从圆的定义中归纳:(1)圆上各点到 (圆心)的距离都等于 半径); (2)到定点的距离等于 的点都在同一个圆上.

5、与圆的有关概念讨论圆中相关元素的定义.如图,你能说出弦、直径、弧、半圆的定义

弦: ; 直径: ; 弧: ;

弧的表示方法: ;

半圆: ; 等圆:

等弧“ 优弧: 劣弧: ;

6、点和圆的位置关系:在平面内任意取一点P ,点与圆有哪几种位置关系若⊙O 的半径为r ,

点P 到圆心O 的距离为d ,那么: 点P 在圆 d r

点P 在圆 d r

点P 在圆 d r

【训练案】

1、设AB=3cm ,作图说明满足下列要求的图形: (1)到点A 和点B 的距离都等于2cm 的所有点组成的图形;(2)到点A 和点B 的距离都小于2cm 的所有点组成的图形。

2、正方形ABCD 的边长为2cm ,以A 为圆心2cm 为半径作⊙A ,则点B 在⊙A ;点C 在⊙A ;点D 在⊙A 。

3、已知⊙O 的半径为5cm.(1)若OP=3cm ,那么点P 与⊙O 的位置关系是:点P 在⊙O ;(2)若OQ= cm ,那么点Q 与⊙O 的位置关系是:点Q 在⊙O 上; (3)若OR=7cm ,那么点R 与⊙O 的位置关系是:点R 在⊙O

【课堂小结】

通过本节课学习,你有哪些收获

⇔⇔⇔

课题: 圆的对称性

【学习目标】

1、 探索圆的对称性,能找出圆的对称轴。

2、 能运用其对称性推出在同一个圆中,圆心角、弧、弦之间的关系。

【重点难点】

重点:在同一个圆中,圆心角、弧、弦之间的关系的推导。 难点:运用在同一个圆中,圆心角、弧、弦之间的关系解决问题。

【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流

并解决。

【旧知链接】

1、在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做 图形,这条直线叫做 。

2、中心对称图形是

【自主学习】

1.通过对折圆,圆是轴对称图形吗如果是,它的对称轴是什么你能找到多少条对称轴(自学课本P70--P 72思考下列问题)

由此得出:

2.一个圆绕它的圆心旋转1800

,与原来的图形重合吗那旋转任意一个角度,还能与原图形重合吗

由此得出:

3.认识弧、弦、直径这些与圆有关的概念 (1)圆弧:

如图:优弧: 劣弧: (2)弦: 如图:弦:

(3)直径:

如图:直径:

【合作探究】

1、按照下列步骤进行小组活动:

⑴在两张透明纸片上,分别作半径相等的⊙O 和⊙O '

⑵在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'

''B O A ,连接AB 、'

'B A

⑶将两张纸片叠在一起,使⊙O 与⊙O '

重合(如图)

⑷固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '

重合

在操作的过程中,你有什么发现___________________________

2、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考你能够用文字语言把你的发现表达出来吗

3、圆心角、弧、弦之间的关系:

4、试一试:如图,已知⊙O 、⊙O '

半径相等,AB 、CD 分别是⊙O 、⊙O '

的两条弦填空: (1)若AB=CD ,则 ,

(2)若AB= CD ,则 ,

(3)若∠AOB=∠CO '

D ,则 ,

5、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢

弧的大小:圆心角的度数与它所对的弧的度数相等

【训练案】 1、判断:

(1) 直径是弦,弦是直径。 ( )(2 )、 半圆是弧,弧是半圆。 ( ) (3)周长相等的两个圆是等圆。 ( )(4 )、 长度相等的两条弧是等弧。 ( ) (5)同一条弦所对的两条弧是等弧。( )(6) 、 在同圆中,优弧一定比劣弧长。( ) 3. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角为________。 4. ⊙O 中,直径AB ∥CD 弦,,则∠BOD=______。

5. 在⊙O 中,弦AB 的长恰好等于半径,弦AB 所对的圆心角为

【课堂小结】

通过本节课学习,你有哪些收获

C ︵ ︵

相关文档
最新文档