单模光纤、多模光纤的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单模光纤(SingleModeFiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。
这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。
1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
多模光纤是指可以传输多个光传导模的光纤。
局域网(LAN)多选用多模光纤,其理由一为多模光纤收发机便宜(比同档次相应单模光纤收发器的价格低一半);二为多模光纤接续简单方便和费用低。
常用的多模光纤主要有IEC-60793-2光纤产品规范中的A1a类(50/125μm)和A1b类(62.5/125μm)两种。
这两种多模光纤的包层直径和机械性能相同,都能提供如以太网、令牌环和FDDI协议在标准规定的距离内所需的带宽,而且二者都能升级到Gbit/s的速率。
单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。
单模光纤的纤芯很小,约4~10um,只传输主模态。
这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。
这种光纤适用于大容量、长距离的光纤通信。
它是未来光纤通信与光波技术发展的必然趋势。
多模光纤又分为多模突变型光纤和多模渐变型光纤。
前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。
由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。
而单模光纤就能用在无中继的光通讯上。
在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。
与光器件的耦合相对容易。
而对于光端模块来讲,严格的说并没有单模、多模之分。
所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。
一般有以下区别:1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好。
单模与多模光纤的区别
1、光纤分类
光纤按光在其中的传输模式可分为单模和多模。
多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。
单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。
故有62.5/125μm、50/125μm、9/125μm 等不同种类。
光纤的工作波长有短波850nm、长波1310nm和1550nm。
光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。
由于OHˉ(水
峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。
2、单模光纤
单模光纤(SingleModeFiber):单模光纤只有单一的传播路径,一般用于长距离传输,中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
后来发现在1310nm波长处,单模光纤的总色散为零。
从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。
这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。
1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。
目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED 系统通过消除了1400nm水峰的影响因素,从而为用户提供了更广泛的传输带宽,用户可以自由使用从1260nm到1620nm的所有波段,因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM粗波分复用技术打下了坚实的基础,TeraSPEED解决方案为园区/城市级理想的主干光纤系统。
3、多模光缆
多模光纤(MultiModeFiber)-芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
因此,多模光纤传输的距离就比较近,一般只有几公里。
提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。
因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。
OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。
采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。
如Gigac的XFP万兆光模块850nm可以传输330米,单模1550nm可以传输80km.
因此,如果要选择多模光缆应从以下几点进行考虑:
A.从未来的发展趋势来讲,水平布线网络速率需要1Gb/s带宽到桌面,大楼主干网需要升级到10Gb/s速率带宽,园区骨干网需要升级到10Gb/s或100Gb/s的速率带宽。
目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆。
B.从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模
62.5/125);由于OM3光缆使用低价的VCSEL和850nm光源设备,使万兆传输造价大大降低。
如果距离不超过150米,选用LazrSPEED150(OM250/125支持万兆150米);LazrSPEED300是300米万兆传输最好的选择;LazrSPEED550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统。
4、光纤传输距离
1 传输速率1Gb/s,850nm
a、普通50μm多模光纤传输距离550m,
b、普通62.5μm多模光纤传输距离275m,
c、新型50μm多模光纤传输距离1100m。
2 传输速率10Gb/s,850nm,
a、普通50μm多模光纤传输距离250m,
b、普通62.5μm多模光纤传输距离100m,
c、新型50μm多模光纤传输距离550m。
3.传输速率2.5Gb/s,1550nm,
a、g.652单模光纤传输距离100km,
b、g.655单模光纤传输距离390km(ofs truewave)。
4 传输速率10Gb/s,1550nm,
a、g.652单模光纤传输距离60km,
b、g.655单模光纤传输距离240km(ofs truewave)。
5 传输速率在40Gb/s,1550nm,
a、g.652单模光纤传输距离4km,
b、g.655单模光纤传输距离16km(ofs truewave)。
ofs truewave:ofs公司出品的真波光纤。
24口光纤配线架又叫光纤终端盒,24口光纤配线架是高密度,大容量设计,它具有外型美观大方,分配合理,便于查找,管理容易,安装方便及良好的操作性等特点。
24口光纤配线架主要分为:FC型光纤配线架、SC型光纤配线架、LC型光纤配线架、ST型光纤配线架。
1、24口光纤配线架的作用
24口光纤配线架是光传输系统中一个重要的配套设备,它主要用于光缆终端的光纤熔接、光连接器安装、光路的调接、多余尾纤的存储及光缆的保护等,它对于光纤通信网络安全运行和灵活使用有着重要的作用。
过去10多年里,光通信建设中使用的光缆通常为几芯至几十芯,24口光纤配线架的容量一般都在100芯以下,这些24口光纤配线架越来越表现出尾纤存储容量较小、调配连接操作不便、功能较少、结构简单等缺点。
现在光通信已经在长途干线和本地网中继传输中得到广泛应用,光纤化也已成为接入网的发展方向。
各地在新的光纤网建设中,都尽量选用大芯数光缆,这样就对24口光纤配线架的容量、功能和结构等提出了更高的要求。
2、24口光纤配线架的特点
近年来,在光通信建设的实际工作中,通过对几种产品的使用比较,我们认为24口光纤配线架的选型应重点考虑以下几个方面。
(1)纤芯容量
一个24口光纤配线架应该能使局内的最大芯数的光缆完整上架,在可能的情况下,可将相互联系比较多的几条光缆上在一个架中,以方便光路调配。
同时配线架容量应与通用光缆芯数系列相对应,这样在使用时可减少或避免由于搭配不当而造成24口光纤配线架容量浪费。
(2)功能种类
24口光纤配线架作为光缆线路的终端设备应具有4项基本功能。
①固定功能:光缆进入机架后,对其外护套和加强芯要进行机械固定,加装地线保护部件,进行端头保护处理,并对光纤进行分组和保护。
②容接功能:光缆中引出的光纤与尾缆熔接后,将多余的光纤进行盘绕储存,并对熔接接头进行保护。
③调配功能:将尾缆上连带的连接器插接到适配器上,与适配器另一侧的光连接器实现光路对接。
适配器与连接器应能够灵活插、拔;光路可进行自由调配和测试。
④存储功能为机架之间各种交叉连接的光连接线提供存储,使它们能够规则整齐地放置。
24口光纤配线架内应有适当的空间和方式,使这部分光连接线走线清晰,调整方便,并能满足最小弯曲半径的要求。
随着光纤网络的发展,24口光纤配线架现有的功能已不能满足许多新的要求。
有些厂家将一些光纤网络部件如分光器、波分复用器和光开关等直接加装到24口光纤配线架上。
这样,既使这些部件方便地应用到网络中,又给24口光纤配线架增加了功能和灵活性。