数学期望与方差填空题

数学期望与方差填空题
数学期望与方差填空题

数学期望与方差

1.设)10(~...-X V R 分布,则=)

()(X E X D _______. 2.设)(~...λP X V R ,且)3()2(===X P X P ,则=)(X E ______,=)(X D __.

3.设)2,1(~2N X ,)1(~πY ,则=+-)12(Y X E _____.

4.设X 是...V R ,1)(=X E ,4))1((=-X X E ,则=)(2X E _____.

5.设X V R ...与Y 相互独立,且2)(=X D ,3)(=Y D ,=-)43(Y X D _.

6.设)2,1(~2N X ,则)(X E 与)(X D 分别为_______.

A .1, 2; B.2, 1; C.1, 4; D.4, 1.

7.设)5,1(~2N X ,且)()(C X P C X P >=<,则常数=C _______.

8.若X V R ...的方差3)(=X D ,则=-)52(X D _______.

A . 6; B.7; C. 12; D. 17.

9.已知随机变量X 和Y 相互独立,且它们分别在区间]3,1[ 

-和]4,2[ 上服从均匀分布,则=)(XY E ____.

10.随机变量X 服从参数为2的泊松分布,则=)(2X E .

11.随机变量X 的概率密度为+∞<<-∞=-x e x f x ,21

)(22

π,则=+)1(X E .

12.随机变量X 、Y 都服从区间]1

,0[ 上的均匀分布,则=+)(Y X E . A .61B .2

1C .1D .2 13.X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是.

A .)()(X D c X D =+

B .c X D c X D +=+)()(

C .c X

D c X D -=-)()(D .)()(X cD cX D =

14.设随机变量X 与Y 相互独立,且2)(=X D ,1)(=Y D ,则=+-)32(Y X D .

15.设随机变量)2,0(~ 

U X ,又设X e Y 2-=,则=)(Y E .

A .)1(214--e

B .)1(414--e

C .4

1D .441--e 16.设随机变量)21,12(~B X ,)3

1,18(~B Y ,且X 与Y 相互独立,则=+)(Y X D _______.

17.设随机变量X 的概率密度为?????<<-= 其他

,011,23)(2

x x x f ,则()=

X X E _____________.

协方差与相关系数

1.两个随机变量的协方差为),cov(Y X =_______.

A.])()[(22EY Y EX X E --;

B. )()(EY Y E EX X E -?-;

C.22)()(EY EX XY E --;

D. EY EX XY E ?-)(.

2.对于任意两个X V R ...与Y ,若)()()(Y E X E XY E =,则有____.

A. X 与Y 相互独立;

B. X 与Y 不独立 ;

C. )()()(Y D X D XY D =;

D. )()()(Y D X D Y X D +=+.

3.设X V R ...与Y 满足)()(Y X D Y X D -=+,则必有____.

A. X 与Y 相互独立;

B. X 与Y 不相关 ;

C. 0)(=Y D ;

D. 0)()(=?Y D X D .

4.设二维随机变量),(Y X 的分布律为

则),(Y X 的协方差Cov(X,Y)=____.

A .9

1- B .0 C .91 D .31 5.设1X ,2X 与Y 均为随机变量,已知1),(1-=Y X Cov ,3),(2=Y X Cov ,则=+),2(21Y X X Cov _____.

6.设)(X E ,)(Y E ,)(X D ,)(Y D 及),(Y X Cov 均存在,则=-)(Y X D ____.

A .)()(Y D X D +

B .)()(Y D X D -

C .),(2)()(Y X Cov Y

D X D -+D .),(2)()(Y X Cov Y D X D +-

7.设随机变量)2,1(~2 N X ,)2,1(~ 

N Y ,已知X 与Y 相互独立,则Y X 23-的方差为____.

A .8

B .16

C .28

D .44

8.设X 、Y 为随机变量,25)(=X D ,16)(=Y D ,8),(=Y X Cov ,则相关系数

=XY ρ____.

9.设随机变量X 与Y 相互独立,且它们分别在区间]3,1[ -和]4,2[ 上服从均匀分布,

则=)(XY E ____.

A .1

B .2

C .3

D .4

10.设随机变量X ,Y 的数学期望与方差都存在,若53+-=X Y ,则相关系数

=XY ρ____.

11.设),(Y X 为二维随机向量,0)()(==Y E X E ,16)(=X D ,25)(=Y D ,6.0=XY ρ,则有=),(Y X Cov .

12.设二维随机向量)2

1,9,4,1,1(~),(N Y X ,则=),(Y X Cov ____. A .2

1B .3 C .18 D .36 13.设X V R ...与Y 的方差分别为4)(=X D ,1)(=Y D ,相关系数6.0=XY ρ,

求方差)23(Y X D -.

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习 一、单选题(共16题;共32分) 1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是() A. , B. , C. , D. , 2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=() A. 0.683 B. 0.853 C. 0.954 D. 0.977 3.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=() A. B. C. D. 4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=() A. 0.6826 B. 0.3413 C. 0.4603 D. 0.9207 5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是() A. B. C. D. 6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是() A. B. C. D. 7.下面说法中正确的是() A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值 B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平 C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平 D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值 8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为() A. B. C. D. 9.已知随机变量,则() A. B. C. D. 10.设随机变量的分布列为,,则等于() A. B. C. D. 11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

《数学期望与方差》习题解答

概率论《数学期望与方差》 习题参考解答 1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为 ξ 0 1 P 1/3 2/3 因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3 2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示: 而求出的周长ζ的分布律如下表所示: 长的分布计算. 解: 由长和宽的分布率可以算得 E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9 E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×(29.9+20)=99.8 而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质. 4. 连续型随机变量ξ的概率密度为 ?? ?><<=其它 )0,(10)(a k x kx x a ? 又知E ξ=0.75, 求k 和a 的值。 解: 由性质?+∞ ∞ -=1)(dx x ? 得11 1 )(| 10 1 1 =+= += =++∞ ∞ -??a k x a k dx kx dx x a a ?

即k =a +1 (1) 又知 75.02 2 )(| 10 2 1 1 =+= += = = +++∞ ∞ -?? a k x a k dx kx dx x x E a a ?ξ 得k =0.75a +1.5 (2) 由(1)与(2)解得 0.25a =0.5, 即a =2, k =3 6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较. 解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为 (10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17 7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值(计算时以组中值为代表). E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959 8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有 E ξi =10, D ξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此 ∑== 100 1 i i ξ ξ,则ξ的数学期望和标准差为

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

北师大版高数选修23第6讲:数学期望与方差及正态分布(1)

数学期望与方差及正态分布 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解离散型变量的数学期望与方差的概念. 2.熟练掌握离散型变量的数学期望与方差的公式. 3.熟练掌握离散型变量的数学期望与方差的性质. 4.能利用数学期望与方差解决简单的实际问题. 5.理解概率密度曲线和正态分布的概念. 1.离散型随机变量X 的数学期望 一般地,若离散型随机变量X 的概率分布如下表所示,则称______________________为离散型随机变量X 的数学期望,记为______,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=L 2.离散型随机变量X 的方差 则称____________________________________为离散型随机变量X 的方差,记为_________,即2 ; σi p ≥0,i =1,2,…,n ,121,n p p p +++=L ()E X μ= 3.离散型随机变量X 的标准差 随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=_____________ 4.必备公式 (1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=____________________________; V (X )=_____________________________________________;

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲 二项分布及应用 随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2. 互斥事件概率的加法公式:如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). 3.对立事件的概率:若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 4.条件概率的加法公式:若B 、C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 5.独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=Ck n p k ·(1-p ) n -k (k =0,1,2,…, n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验.(2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X 的分布列为P (ξ=x i )=p i ,i =1,2,…,n . (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望. (2)方差:D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,其算术平方根D X 为随机变量X 的标 准差. (3)均值与方差的性质:(1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 8.两点分布与二项分布的均值、方差 变量X 服从两点分布: E (X )=p , D (X )=p (1-p ); X ~B (n ,p ): E (X )=np ,D (X )=np (1-p ) 典例精析 例1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.

选修2-3期望方差练习题

1 ?某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 组 研发新产品 A ,乙组研发新产品 B,设甲、乙两组的研发相互独立. (1) 求至少有一种新产品研发成功的概率; (2) 若新产品A 研发成功,预计企业可获利润 120万元;若新产品 B 研发成功,预计企 业可获利润100万元,求该企业可获利润的分布列和数学期望.阿 解:记E = {甲组研发新产品成功}, F = {乙组研发新产品成功}. 2 — 1 3 — 2 由题设知 P (E ) = 5 ,P ( E ) = 5 , RF ) = 5 , R F ) = 5 . 且事件E 与F , E 与 匸,"E 与F , "E 与T 都相互独立. ⑴ 记H ^ {至少有一种新产品研发成功 },则"H = "E ~F ,于是 1 2 2 R H ) = R E )P ( F ) = 3x 5 =命 — 2 13 故所求的概率为 RH ) = 1-P ( H ) = 1-亦=15. (2)设企业可获利润为 X 万元),则X 的可能取值为0,100,120,220. 1 2 2 RX = 0) = P ( E F ) = x-^-, 3 5 15 13 3 RX = 100) = P ( EF ) = 3X 5 =亦, RX = 120) = P (E?) = |x 5 =盒 RX = 220) = P (EF = I x 5= 15. 故所求的X 分布列为 E (X ) = 300十 48°+ 1 320 15 15 15 15 15 140. 2?现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向 左、右两边落下?游戏规则为:若小球最终落入 A 槽,得10张奖票;若落入 B 槽,得5张 奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过 3次. (1)求投球一次,小球落入 B 槽的概率; 2 3 3和 5,现安排甲 2 100 15 数学期望为

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

二项分布数学期望与方差专题复习word有详解重点中学用

第十讲二项分布及应用随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立. 2. 互斥事件概率的加法公式:如果事件A与事件B互斥,则P(A+B)=P(A)+P(B). 3.对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B). 4.条件概率的加法公式:若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) 5.独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k·(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n次独立重复试验.(2)随机变量是否为在这n次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X的分布列为P(ξ=x i)=p i,i=1,2,…,n. (1)均值:称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望. n (2)方差:D(X)=∑ (x i-E(X))2p i为随机变量X的方差,其算术平方根D X为随机变量X的标准差.i=1 (3)均值与方差的性质:(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X).(a,b为常数) 8.两点分布与二项分布的均值、方差 变量X服从两点分布:E(X)=p,D(X)=p(1-p);X~B(n,p): E(X)=np ,D(X)=np(1-p) 典例精析 例1.【2015高考四川,理17】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

高中数学-离散型随机变量的期望与方差练习

高中数学-离散型随机变量的期望与方差练习 一、选择题 1.投掷一颗骰子的点数为ξ,则( ) A .Eξ=3.5,Dξ=3.52 B .Eξ=3.5,Dξ=35 12 C .Eξ=3.5,Dξ=3.5 D .Eξ=3.5,Dξ=35 16 解析:ξ的分布列为: ∴Eξ=3.5,Dξ=3512 . 答案:B 2.设随机变量ξ~B (n ,p ),且Eξ=1.6,Dξ=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 解析:由已知????? np =1.6,np (1-p )=1.28, 解得? ???? n =8, p =0.2. 答案:A 3.如果ξ是离散型随机变量,η=3ξ+2,那么( ) A .Eη=3Eξ+2,Dη=9Dξ B .Eη=3Eξ,Dη=3Dξ+2 C .Eη=3Eξ+2,Dη=9Eξ+4 D .Eη=3Eξ+4,Dη=3Dξ+2 答案:A 4.设离散型随机变量ξ满足Eξ=-1,Dξ=3,则 E [3(ξ2-2)]等于( ) A .9 B .6 C .30 D .36 解析:由Dξ=Eξ2-(Eξ)2,∴Eξ2=Dξ+(Eξ)2=4.∴E [3(ξ2-2)]=3Eξ2-6=6. 答案:B 二、填空题 5.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以 数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________. 解析:随机变量ξ的取值为0,1,2,4,P (ξ=0)=34,P (ξ=1)=19,P (ξ=2)=19,P (ξ=4)=1 36 ,

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

期望-方差公式-方差和期望公式

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1i i i p a ,如果i i i p a ∑∞ =1=∞,则数学期望不存在。[]1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1, 2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差 知识点 一、离散型随机变量的数学期望 1.定义 一般地,如果离散型随机变量的分布列为 则称n n i i p x p x p x p x X E +++++=ΛΛ2211)(为随机变量X 的数学期望或均值。 2.意义:反映离散型随机变量取值的平均水平。 3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义 一般地,如果离散型随机变量的分布列为 则称∑=-= n i i i p X E x X D 1 2 )) (()(为随机变量的方差。 2.意义:反映离散型随机变量偏离均值的程度。 3.性质:)()(2 X D a b aX D =+ 三、二项分布的均值与方差 如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值 【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=() A.0.2 C.-0.2 D.0.4 【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为() A.0.6 B.1 C.3.5 D.2 【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________. 【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (1)求X的分布列; (2)若要求P(X≤n)≥0.5,确定n的最小值; (3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

选修期望方差练习题含答案

1.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和3 5,现安排甲 组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率; (2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.阿 解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}. 由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=2 5. 且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立. (1)记H ={至少有一种新产品研发成功},则H =E F ,于是 P (H )=P (E )P (F )=13×25=2 15 , 故所求的概率为P (H )=1-P (H )=1-215=13 15 . (2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. P (X =0)=P (E F )=13×25=2 15, P (X =100)=P (E F )=13×35=3 15, P (X =120)=P (E F )=23×25=4 15, P (X =220)=P (EF )=23×35=6 15. 故所求的X 分布列为 数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 100 15= 140. 2.现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A 槽,得10张奖票;若落入B 槽,得5张奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过3次. (1)求投球一次,小球落入B 槽的概率; (2)设玩一次游戏能获得的奖票数为随机变量X ,求X 的分布列及数学期望.

数学期望与方差的关系_理解数学期望与方差之间的群关系

数学期望与方差的关系_理解数学期望与 方差之间的群关系 随机变量的数学期望与方差是高考的重要考点, 也是学习数学的难点。你知道两者之间的关系吗?下面就由和你说说吧。 数学期望与方差的关系方差指一组数据中每个元素间的离散程度,方差小则离散程度小,反之则大. 期望值指一个人对某目标能够实现的概率估计,即:一个人对目标估计可以实现,这时概率为最大(P=1);反之,估计完全不可能实现,这时概率为最小(p=0).因此,期望(值)也可以叫做期望概率.一个人对目标实现可能性估计的依据是过去的经验,以判断一定行为能够导致某种结果或满足某种需要的概率. 什么是数学期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。 需要注意的是,期望值并不一定等同于常识中的“期望”;;“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 公式 X1,X2,X3,……,Xn为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函

数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 什么是方差方差的概念与计算公式,例1 两人的5次测验成绩如下:X:50,100,100,60,50 E(X)=72;Y:73,70,75,72,70 E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX)=C2 D(X) (常数平方提取); 证: 特别地D(-X) = D(X), D(-2X ) = 4D(X)(方差无负值) 3.若X 、Y 相互独立,则证:记则 前面两项恰为D(X)和D(Y),第三项展开后为 当X、Y 相互独立时, 故第三项为零。

相关文档
最新文档