随机变量的数学期望与方差
概率与统计中的随机变量的数学期望与方差
概率与统计中的随机变量的数学期望与方差概率与统计是数学的一个重要分支,主要研究随机事件的发生规律和统计数据的分析方法。
在概率与统计中,随机变量是一个映射,将随机试验的结果与实数建立关联。
随机变量的数学期望与方差是两个重要的概念,用来描述随机变量的平均值和离散程度。
本文将讨论概率与统计中的随机变量的数学期望与方差的定义与计算方法。
一、随机变量的定义在概率与统计中,随机变量是一个函数,将样本空间中的每个样本点映射到实数上。
随机变量可以分为离散型随机变量和连续型随机变量两种类型。
对于离散型随机变量,其取值有限或可数,并且每个取值与一个概率相关联。
如掷骰子的点数就是一个离散型随机变量,取值为1、2、3、4、5、6,每个取值发生的概率为1/6。
对于连续型随机变量,其取值在一个区间内,并且每个取值的概率为0。
取值区间的概率由概率密度函数给出。
如身高、体重等连续型随机变量的取值范围是无限的。
二、数学期望的定义与性质数学期望是用来描述随机变量的平均值的一个指标。
对于离散型随机变量,数学期望的定义为每个取值乘以其概率的和。
设X是一个离散型随机变量,其取值为$x_1, x_2, ..., x_n$,对应的概率为$p_1,p_2, ..., p_n$,则随机变量X的数学期望为:E(X) = x_1p_1 + x_2p_2 + ... + x_np_n$$对于连续型随机变量,数学期望的定义为随机变量X的取值乘以概率密度函数f(x)的积分。
设X是一个连续型随机变量,其概率密度函数为$f(x)$,则随机变量X的数学期望为:$$E(X) = \int xf(x)dx$$数学期望具有线性性质,即对于常数a和随机变量X、Y,有:$$E(aX + bY) = aE(X) + bE(Y)$$三、方差的定义与性质方差是用来描述随机变量离散程度的一个度量。
方差的定义为随机变量与其数学期望之差的平方的数学期望。
设X是一个随机变量,其数学期望为μ,则随机变量X的方差为:$$Var(X) = E[(X - \mu)^2]方差的开方称为标准差,用来度量随机变量的离散程度。
期望方差协方差
随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)),(-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。
随机变量的数学期望与方差
随机变量的数学期望与方差随机变量是概率论和统计学中的重要概念,用来表示随机试验的结果。
在研究随机变量时,我们常常关注它们的数学特征,其中最常用的指标是数学期望和方差。
一、数学期望数学期望是描述随机变量平均取值的一个指标,记作E(X)。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X = x))其中,x 表示随机变量可能的取值,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的平均取值。
例如,假设我们抛一枚公平的硬币,正面为1,反面为0。
随机变量 X 表示硬币正面朝上的次数,那么 X 的所有可能取值及其概率为:X = 0,P(X = 0) = 1/2X = 1,P(X = 1) = 1/2根据数学期望的计算公式,我们可以计算得到该随机变量的数学期望为:E(X) = 0 * 1/2 + 1 * 1/2 = 1/2这意味着,在多次独立重复抛硬币的实验中,硬币正面朝上的平均次数大约为 1/2。
对于连续型随机变量,数学期望的计算公式稍有不同,可以使用积分的方法计算。
二、方差方差是描述随机变量取值分散程度的一个指标,记作Var(X)或σ²。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))² * P(X = x))其中,x 表示随机变量可能的取值,E(X)表示随机变量的数学期望,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的方差。
方差的计算公式可以拆解为方差等于随机变量与数学期望的偏差的平方乘以概率的和。
这意味着方差可以用来衡量随机变量的取值与其期望值之间的差异程度。
例如,我们继续以抛硬币的例子来说明方差的计算过程。
在之前的例子中,我们已经计算出随机变量 X 的数学期望为 1/2。
现在,我们可以使用方差的公式来计算方差:Var(X) = (0 - 1/2)² * 1/2 + (1 - 1/2)² * 1/2 = 1/4这意味着在多次独立重复抛硬币的实验中,硬币正面朝上的次数与其期望值的差异程度可以用方差 1/4 来描述。
连续型随机变量的数学期望与方差
(1)D( )
E[
E( )]2
[x
E( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
例2 随机变量的概率密度函数
6x(1 x),当0 x 1
p(x)
0
当x 0或x 1时
求随机变量的方差。
12
4、方差的性质 设 k ,b,c均为常数,则有
E( ) xp(x)dx
15
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
16
(二)连续型随机变量ξ取值的方差
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
13
下页
三、练习
• 课本第90页 第6题
14
四、小结 (一)连续型随机变量ξ取值的数学期望
1、连续型随机变量的数学期望的定义 p(x) 设连续型随机变量 的密度函数为
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
x0 x1 x2 L xn
xi xi1 xi
b i
【xi
,
xi
)
+1
y p(x)
o
x0b0 x1 xi bi xi1
xn x
6
连续型随机变量ξ的概率分布
ξ 【x0 , x1)【x1, x2)
随机变量的数学期望与方差
| x | 2
2
f ( x)dx
f ( x)dx
2
| x |
| x |
2 2 ( x ) f ( x)dx 2
1
切比雪夫不等式也可以写成 2 P(| X | ) 1 2
注意点
在概率论中" X E( X ) " 称为大偏差.
2
1
3
2
0
1
= 7/6 Var(X) = E(X2)[E(X)2] = 7/6 1 = 1/6
课堂练习
设
则方差 Var(X)=(
)。
随机变量的标准化
X E( X ) 设 Var(X)>0, 令 Y Var( X )
则有 E(Y)=0, Var(Y)=1. 称 Y 为 X 的标准化.
例2.2.3
e x , 设X的密度函数为f ( x) 0, 解: 依题意, X的概率密度为
e x , f ( x) 0,
x0 , 求E ( X ) x0
x0 x0
于是有
E ( X ) xf ( x)dx xex dx
其概率 P X E ( X ) 称为大偏差发生的概率。
例2.3.2 xn x e x0 p( x ) n ! 设 X~
0
证明 P(0 X 2(n 1))
x0
n n 1
xn x 证明: E(X) = x e dx 1 (n 2) = n+1 0 n! n! xn x 2) = x 2 e dx 1 (n 3) = (n+1)(n+2) E(X 0 n! n! 所以, Var(X) = E(X2)(EX)2 = n+1, 由此得
概率论中的期望与方差计算技巧
概率论中的期望与方差计算技巧概率论是数学中的一个重要分支,它研究的是随机事件的规律性。
在概率论中,期望和方差是两个重要的概念,它们能够帮助我们描述和分析随机变量的特征和变异程度。
本文将介绍一些计算期望和方差的技巧,帮助读者更好地理解和应用概率论。
首先,我们来了解一下期望的概念。
在概率论中,期望是随机变量的平均值,它是对随机变量取值的加权平均。
对于离散型随机变量,期望的计算公式为:E(X) = ΣxP(X=x)其中,X表示随机变量,x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。
这个公式的意义是,将每个取值乘以其对应的概率,然后将所有结果相加,即可得到期望。
对于连续型随机变量,期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)表示随机变量的概率密度函数。
这个公式的意义是,将每个取值乘以其对应的概率密度,然后对所有结果进行积分,即可得到期望。
接下来,我们来讨论一下方差的计算技巧。
方差是用来衡量随机变量的离散程度的指标,它表示随机变量与其期望之间的差异。
方差的计算公式为:Var(X) = E[(X-E(X))^2]其中,E(X)表示随机变量的期望。
这个公式的意义是,将随机变量与其期望的差值平方,然后对所有结果进行加权平均,即可得到方差。
在实际计算中,计算期望和方差可能会遇到一些复杂的情况。
下面,我们将介绍一些常见的计算技巧,帮助读者更好地应用概率论。
首先,对于独立随机变量的期望和方差计算,可以利用期望和方差的性质进行简化。
如果X和Y是独立随机变量,那么它们的期望和方差的计算可以分别简化为:E(X+Y) = E(X) + E(Y)Var(X+Y) = Var(X) + Var(Y)这个性质在实际计算中非常有用,可以简化复杂问题的求解过程。
其次,对于二项分布和泊松分布的期望和方差计算,可以利用分布的特性进行简化。
对于二项分布,期望和方差的计算公式为:E(X) = npVar(X) = np(1-p)其中,n表示试验次数,p表示每次试验成功的概率。
随机变量的数学期望与方差
随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。
一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。
数学期望可以理解为长期重复试验中,随机变量取值的平均结果。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。
对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。
二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。
方差描述的是随机变量取值与其数学期望之间的偏离情况。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。
对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。
三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。
假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。
我们可以定义骰子的随机变量X表示投掷后骰子的结果。
1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。
2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。
随机变量的期望与方差知识点
随机变量的期望与方差知识点统计学中的随机变量是指在一次试验中可以取得不同数值的变量。
对于随机变量,我们常常关注它的期望与方差,这些是描述随机变量性质的重要指标。
本文将介绍随机变量的期望与方差的概念、计算方法以及它们的实际含义。
一、随机变量的期望随机变量的期望是一个数学期望值,用来衡量随机变量的平均取值水平。
对于离散型随机变量X,其期望的计算公式为:E(X) = Σ[x * P(X=x)]其中Σ 表示求和,x 表示随机变量X可以取到的值,P(X=x) 表示随机变量X取到值x的概率。
对于连续型随机变量X,其期望的计算公式为:E(X) = ∫ [x * f(x)]dx其中∫ 表示积分,x 表示随机变量X可以取到的值,f(x) 表示X的密度函数。
期望的计算方法可以帮助我们了解随机变量的平均取值水平。
例如,在某个游戏中,随机变量X表示一次投掷骰子的结果。
假设骰子是均匀的,那么它的每个面出现的概率都是1/6。
我们可以通过计算期望来了解投掷骰子的平均结果是多少。
二、随机变量的方差随机变量的方差是衡量随机变量取值的离散程度,它描述了随机变量偏离期望的程度。
方差的定义如下:Var(X) = E[(X-E(X))^2]其中 E(X) 表示随机变量X的期望。
方差的计算方法可以帮助我们了解随机变量取值的离散程度。
对于同样表示投掷骰子结果的随机变量X,假设我们想知道投掷10次骰子的结果的离散程度。
我们可以通过计算方差来了解。
三、随机变量期望与方差的实际含义随机变量的期望和方差都是对随机变量的性质进行描述的重要指标。
它们不仅有着严格的数学定义,也有着实际的含义。
期望是描述随机变量的平均取值水平,它可以用来预测随机变量的未来表现。
例如,在股票市场中,可以用过去的股价数据计算股票未来收益的期望,帮助投资者做出投资决策。
方差是描述随机变量取值离散程度的指标,它可以用来评估随机变量的风险。
例如,在金融领域中,可以利用方差来衡量投资组合的风险。
高三数学随机变量的期望与方差试题答案及解析
高三数学随机变量的期望与方差试题答案及解析1.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,这2人中成绩在90分以上(含90分)的人数为ξ,则ξ的数学期望为()A.B.C.D.【答案】B【解析】由频率分布直方图知,3×0.006×10+0.01×10+0.054×10+10x=1,解得x=0.018,∴成绩不低于80分的学生有(0.018+0.006)×10×50=12人,成绩在90分以上(含90分)的学生有0.006×10×50=3人.ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为ξ012∴E(ξ)=0×+1×+2×=.选B.2.某游戏的得分为1,2,3,4,5,随机变量表示小白玩游戏的得分.若=4.2,则小白得5分的概率至少为 .【答案】【解析】设=1,2,3,4,5的概率分别为,则由题意有,,对于,当越大时,其值越大,又,因此,所以,解得.【考点】随机变量的均值(数学期望),排序不等式.3.(2011•浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=_________.【答案】【解析】由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:4.已知离散型随机变量ξ1的概率分布为离散型随机变量ξ2的概率分布为求这两个随机变量数学期望、方差与标准差.【答案】4;4;0.2.【解析】E(ξ1)=1×+2×+…+7×=4;V(ξ1)=(1-4)2×+(2-4)2×+…+(7-4)2×=4,σ1==2.E(ξ2)=3.7×+3.8×+…+4.3×=4;V(ξ2)=0.04,σ2=)=0.2.5.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值为E(X)=________.【答案】【解析】用分布列解决这个问题,根据题意易知X=0,1,2,3.列表如下:X0123所以E(X)=0×+1×+2×+3×==.6.为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.(1)求n、p的值并写出ξ的分布列;(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.【答案】(1)n=6,p=,(2)【解析】(1)由E(ξ)=np=3,(σ(ξ))2=np(1-p)=,得1-p=,从而n=6,p=,ξ的分布列为(2)记“需要补种柳树”为事件A,则P(A)=P(ξ≤3),得P(A)=.7.甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概率;(2)设X为二人得分之和,求X的分布列和期望.【答案】(1)0.18;(2)详见解析.【解析】本题主要考查二项分布、独立事件、随机变量的分布列和数学期望等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,由题意分析,“甲乙二人共命中”共有2种情况:一种是甲射击2次中一次、乙没中,一种情况是甲射击2次都没中、乙中一次;第二问,由题意分析:甲乙射击是否命中有以下几种情况:1.甲2次都没中、乙没中,2.甲2次都没中、乙中一次,3.甲2次中一次、乙没中,4.甲2次中1次、乙中1次,5.甲2次都中、乙没中,6.甲2次都中、乙中一次,共6种情况,所以得分情况分别为0分、5分、10分、15分、20分,共5种情况,分别与上述情况相对应,求出每一种情况的概率,列出分布列,再利用计算数学期望.试题解析:(1)记事件“甲、乙二人共命中一次”为A,则P(A)=0.8×0.2×0.5+0.22×0.5=0.18. 4分(2)X的可能取值为0,5,10,15,20.P(X=0)=0.22×0.5=0.02,P(X=5)=0.8×0.2×0.5=0.16,P(X=10)=0.82×0.5+0.22×0.5=0.34,P(X=15)=0.8×0.2×0.5=0.16,P(X=20)=0.82×0.5=0.32.X的分布列为X05101520X的期望为E(X)=0×0.02+5×0.16+10×0.34+15×0.16+20×0.32=13. 12分【考点】二项分布、独立事件、随机变量的分布列和数学期望.8.现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为,乙、丙应聘成功的概率均为,(0<t<2),且三个人是否应聘成功是相互独立的.(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求t的值;(2)记应聘成功的人数为,若当且仅当为=2时概率最大,求E()的取值范围.【答案】(1);(2)【解析】(1)乙、丙有且只有一个人应聘成功分为乙成功且丙不成功和乙不成功且丙成功两种情况,根据相互独立事件有一个发生的概率公式列出关于t的方程,解之即可.(2)写出随机变量的所有可能取值,然后计算出相应的概率,列出分布列,求出E()的表达式,由于=2时概率最大,可得,,,而0<t<2,解得,即得E()的取值范围..试题解析:(1)由题意得,解得. 3分(2)的所有可能取值为0,1,2,3;;;.故的分布列为:7分. 8分由题意得:,,,又因为所以解得的取值范围是. 11分. 12分【考点】1.相互独立事件的概率;2.随机变量的分布列和数学期望.9.甲、乙两人将参加某项测试,他们能达标的概率都是0.8,设随机变量为两人中能达标的人数,则的数学期望为.【答案】1.6【解析】甲、乙两人将参加某项测试,他们能达标的概率都是0.8.所以相当与他们是独立性重复的实验,所以=,即=.【考点】1.独立性重复试验.2.数学期望的公式.10.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:81240328(Ⅰ)试分别估计元件A、元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i)求生产5件元件B所获得的利润不少于300元的概率;(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.【答案】(Ⅰ)元件A为正品的概率为,元件B为正品的概率为(Ⅱ)(i)(ii)所以的分布列为:1509030-30【解析】(Ⅰ)用频率估计概率值;(Ⅱ)设出随机变量,确定随机变量的所有可能取值,求出各个取值的概率,列出概率分布表,从而得出答案.试题解析:(Ⅰ)由题可知元件A为正品的概率为,元件B为正品的概率为。
数学期望和方差的存在性问题
数学期望和方差的存在性问题1. 随机变量的数学期望未必都存在在数学期望的定义中,要求级数绝对收敛或积分绝对可积,我们知道,绝对收敛的级数一定收敛,绝对可积的函数一定可积。
反之都不真,故有数学期望不存在的随机变量存在。
(1) 离散的例子设随机变量X 取值 ,2,1,2)1(1=-=-k k x kk k ,相应的概率为,2,1,21==k p k k 由于∞==∑∑∞=∞=111||k k k k k p x ,所以X 的数学期望不存在 然而2ln 41312111)1(111=+-+-=-=∑∑∞=-∞= k p x k k k k k 若把上式左边级数中的各项进行重排,会收敛到不同的数 例如:2ln 2341715121311=+-++-+2ln 2181613141211=+--+-- 一个随机变量的数学期望只能是一个数,因此数学期望定义中要求的绝对收敛是必要的,它们可以保证k x 顺序的变化不影响数学期望中级数的收敛性(2) 连续的例子,见教材P .141 例5 柯西(Cauchy )分布2. 随机变量的方差未必都存在按定义 2))(()(X E X E X D -=,由于方差被定义为一种特殊形式(即随机变量X 的函数)的数学期望,而随机变量及随机变量函数的数学期望都未必存在,所以随机变量的方差也未必存在。
本章1中所举两例中的随机变量的方差都不存在.3. 数学期望存在但方差不存在参数为n 的t 分布的密度函数是 +∞<<-∞+Γ+Γ=+-x n x n n n x f n n ,)1()2()21()(212π设随机变量)2(~t X ,则其密度函数 2322)21(42)(-+=x x f ⎰+∞∞-==0)()(2dx x xf X E2X 的数学期望不存在,所以X 的方差不存在关于t 分布,其矩有一个特点,当r<n 时,有矩)(r X E ,但)(n X E 不存在,而且当n>2时,0)(=X E ,2)()(2-==n n X E X D ,故在n=2时,∞=)(X D .。
数学期望(均值)、方差和协方差的定义与性质
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
数学期望和方差公式
数学期望和方差公式数学期望和方差是概率论和统计学中重要的概念,在许多领域中有广泛的应用。
它们是度量随机变量分布的指标,可以帮助我们了解随机现象的平均值和离散程度。
本文将详细介绍数学期望和方差的定义、性质以及计算公式。
一、数学期望数学期望,也称为均值或平均值,是衡量随机变量平均值的指标。
对于离散型随机变量X,它的数学期望E(X)的定义如下:E(X) = Σx * P(X = x)其中,x代表随机变量X可能取到的值,P(X = x)表示随机变量取到x的概率。
对于连续型随机变量X,它的数学期望E(X)的定义如下:E(X) = ∫x * f(x) dx其中,f(x)表示X的概率密度函数。
数学期望具有以下性质:1. 线性性质:对于任意实数a和b,以及任意两个随机变量X和Y,有E(aX + bY) = aE(X) + bE(Y)。
2. 递推性质:对于离散型随机变量X,可以通过递推公式E(X) = Σx * P(X = x)来计算。
3. 位置不变性:对于随机变量X和常数c,有E(X + c) = E(X) + c。
数学期望的计算公式可以帮助我们求解随机变量的平均值,进而了解随机现象的集中程度。
二、方差方差是衡量随机变量取值的离散程度的指标,它表示随机变量与其均值之间的差异程度。
对于离散型随机变量X,其方差Var(X)的定义如下:Var(X) = Σ(x - E(X))^2 * P(X = x)对于连续型随机变量X,其方差Var(X)的定义如下:Var(X) = ∫(x - E(X))^2 * f(x) dx方差具有以下性质:1. 线性性质:对于任意实数a和b,以及任意随机变量X和Y,有Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y)。
2. 位置不变性:对于随机变量X和常数c,有Var(X + c) = Var(X)。
3. 零偏性:Var(X) >= 0,当且仅当X是一个常数时,等号成立。
高二数学随机变量的期望与方差试题答案及解析
高二数学随机变量的期望与方差试题答案及解析1.设X为随机变量,X~B ,若随机变量X的数学期望E(X)=2,则P(X=2)等于( ) A.B.C.D.【答案】A【解析】由二项分布X~B 的数学期望E(X)=,知,得,即X~B ,那么P(X=2)=.【考点】服从二项分布的离散型随机变量的均值与方差.2.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是________.【答案】【解析】法一同时取出的2个球中含红球数X的概率分布为P(X=0)==,P(X=1)==,P(X=2)==.E(X)=0×+1×+2×=.法二同时取出的2个球中含红球数X服从参数N=5,M=3,n=2的超几何分布,所以E(X)==.3.马老师从课本上抄录一个随机变量X的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.【答案】2【解析】令“?”为a,“!”为b,则2a+b=1,又E(X)=a+2b+3a=2(2a+b)=2.4.若X是离散型随机变量,,且,又已知,则()A.B.C.D.【答案】C【解析】本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【考点】离散型随机变量的期望方差.5.在个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。
【答案】(1)E(x)=,D(x)=;(2)P(A)=.【解析】(1)依题意可知随机变量ξ的一切可取值为0,1,2,求出相应的概率,可求所含次品数ξ的期望、方差;(2)事件“含有次品”,则随机变量ξ取1,2,从而可求概率.试题解析:(1)依题意可知随机变量的一切可取值为,则,(2)设集合A为抽取的3件产品中含有次品则.【考点】离散型随机变量的期望与方差.6.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.(1)求他不需要补考就可获得证书的概率;(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的分布列及数学期望E.【答案】(1) ;(2) E=【解析】(1)不需要补考就获得证书的事件表示科目第一次考试合格且科目第一次考试合格,这两次考试合格是相互独立的,根据相互独立事件同时发生的概率,得到结果.(2)参加考试的次数为,由已知得,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率写出概率,得到的分布列并求出期望.试题解析:解:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2..............1分(1)不需要补考就获得证书的事件为A1·B1,注意到A1与B1相互独立,则.该考生不需要补考就获得证书的概率为..............4分(2)由已知得,=2,3,4,注意到各事件之间的独立性与互斥性,可得.............6分8分10分234故答:该考生参加考试次数的数学期望为 12分【考点】1、互相独立事件的概率乘法公式;2、离散型随机变量的分布列与数学期望.7.2012年3月2日,江苏卫视推出全新益智答题类节目《一站到底》,甲、乙两人报名参加《一站到底》面试的初试选拔,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次抢答都从备选题中随机抽出3题进行测试,至少答对2题初试才能通过.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;(Ⅱ)求甲、乙两人至少有一人初试通过的概率.【答案】(Ⅰ)分布列如下:0123甲答对试题数ξ的数学期望Eξ=.(Ⅱ)甲、乙两人至少有一人通过的概率为。
数学期望与方差解析
数学期望与方差解析数学期望和方差是统计学中重要的概念,我们经常在数据分析和概率论中会用到这两个概念。
本文将对数学期望和方差进行详细解析,包括定义、性质、计算方法等内容,帮助读者更好地理解和运用这两个概念。
一、数学期望数学期望是随机变量的平均值的概念,用来衡量随机变量的集中趋势。
对于一个随机变量X,其数学期望E(X)定义为:E(X) = Σ x * P(X=x)其中,x为随机变量X的取值,P(X=x)为随机变量X取值为x的概率。
数学期望的计算方法是将随机变量所有可能取值与其对应的概率相乘,然后求和。
数学期望的意义在于它可以用来描述随机变量的平均水平。
数学期望有以下性质:1. 线性性质:对于任意常数a、b和随机变量X、Y,有E(aX + bY) = aE(X) + bE(Y)。
2. 非负性质:对于任意非负随机变量X,有E(X) ≥ 0。
3. 单调性质:若X和Y是两个随机变量,且X≤Y,则E(X) ≤ E(Y)。
二、方差方差是衡量随机变量离散程度的指标,计算随机变量与其数学期望之间的差异。
对于随机变量X,其方差Var(X)定义为:Var(X) = E[(X - E(X))^2]方差的计算方法是将随机变量与其期望之间的差值平方后取期望。
方差越大,表示随机变量的取值波动越大;方差越小,表示随机变量的取值趋于稳定。
方差是衡量随机变量分散程度的量,可以帮助我们更好地理解随机变量的变化情况。
方差的性质包括:1. 非负性质:方差永远不会小于0,即Var(X) ≥ 0。
2. 方差与数学期望之间的关系:Var(X) = E(X^2) - [E(X)]^2。
通过数学期望和方差的解析,我们可以更好地理解随机变量的特征和分布规律,为数据分析和概率推断提供有力支持。
掌握数学期望和方差的计算方法和性质,对于深入学习统计学和概率论具有重要意义。
愿本文对读者有所帮助,引发更多关于概率统计的思考和讨论。
离散型随时机变量的期望与方差
2.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一 旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实 施结果:
投资成功 192次
投资失败 8次
则该公司一年后估计可获收益的期望是________元. 答案:4 760
3.已知 ξ服从二项分布,即ξ~B(100, ),则E(2ξ+3)=________. 解析:由已知Eξ=100× =50,∴E(2ξ+3)=2Eξ+3=103. 答案:103
【答题模板】
解答:根据已知条件随机变量x的取值分别是1,2,3.
P(x=1)=
,P(x=2)=
P(x=3)=
则随机变量ξ的分布列为
x
1
2
3
ξ
Eξ= +1+ =
【分析点评】
1. 离散型随机变量的期望和方差是高考考查离散型随机变量分布列的重 点.高考中也考查二项分布和几何分布相关的分布列及期望和方差.
复试验,故ξ~B(5, ),即有P(ξ=k)=
,k=0,1,2,3,4,5.
由此计算ξ的分布列如解法一.
(2)Eξ=
.
解法三:(1)同解法一或解法二. (2)由对称性与等可能性,在三层的任一层下电梯的人数同分布, 故期望值相等.即3Eξ=5,从而Eξ= .
变式2. 2010年广州亚运组委会向民间招募防暴犬,首先进行入围测试,计划考 查三类问题:①体能;②嗅觉;③反应,这三类问题中只要有两类通过测试, 就可以入围.某驯犬基地有4只优质犬参加测试,已知这4只优质犬通过①类问 题的概率都是 ,通过②类问题的概率都是 , 通过③类问题的概率都是 . (1)求每只优质犬能够入围的概率; (2)若每入围1只优质犬给基地计10分,设基地得分为随机变量ξ,求Eξ.
随机变量及其分布-离散型随机变量的数学期望和方差
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1. 定义则称E(X)=人》• X2p2亠 '亠人口亠I•.亠X n P n为随机变量X的数学期望或均值。
2. 意义:反映离散型随机变量取值的平均水平。
3•性质:若X是随机变量,丫二aXF,其中a,b是实数,则Y也是随机变量,且E(aX b^aE(X) b二、离散型随机变量的方差1. 定义n则称D(X)八,(人-E(X))2p i为随机变量的方差。
i=12. 意义:反映离散型随机变量偏离均值的程度。
23. 性质:D(aX b)二a D(X)三、二项分布的均值与方差如果X ~ B(n, p),则E(X)二np , D(X)二叩(1 - p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)= 1.6,则a— b =( )A.0.2 B . 0.1C.—0.2 D . 0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数E的数学期望为()A . 0.6B . 1C. 3.5 D . 2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为________________________ .【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰•机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;⑵若要求P(X W n)> 0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n= 19与n= 20之中选其一,应选用哪个?【过关练习】1•今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为匕则E( 3等于()A . 0.765B . 1.75C . 1.765D . 0.222•某射手射击所得环数 3的分布列如下:3•已知随机变量 3的分布列为则 x = _______ , P(1< 33) = __________ , E( 3 = ________.4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有 10个粽子,其中豆沙粽 2个,肉粽 3个,白棕5个,这三种粽子的外观完全相同•从中任意选取 3个.(1) 求三种粽子各取到1个的概率;(2) 设X 表示取到的豆沙粽个数,求 X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中 p € (0,1),则( )A . D(X) = p 3B .C . D(X) = p — p 2D .0.9和0.85,设发现目标的雷达的台数为D(X)= p 2 D(X)= pq 2A . 8B . 12 2 C.9D . 16【例 3】若 D(3= 1 ,则 D( 3- D( 3) = _________ .3【例 4】若随机变量 X 1 〜B(n,0.2), X 2〜B(6, p), X 3〜B(n , p),且 E(X 1)= 2, D(X 2)=刁 贝卩 c(X 3)=( )A . 0.5 B. 1.5 C. 2.5D . 3.5【例5】根据以往的经验,某工程施工期 间的降水量X(单位:mm)对工期的影响如下表:降水量X X<300300W X<700700 W X<900X > 900工期延误 天数Y2610该工程施工期间降水量 的均值与方差.【过关练习】1•某人从家乘车到单位,途中有3个路口 .假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为 ( )A . 0.48B . 1.2C . 0.72D . 0.62.设投掷一个骰子的点数为随机变量 X ,则X 的方差为 .3.盒中有2个白球,3个黑球,从中任取 3个球,以X 表示取到白球的个数,n 表示取到黑球的个数.给出6 9 9下列结论:① E(X)= 5, E (n= 5;② E(X 2) = E (n ;③ E (n )= E(X);④ D(X) = D (n = 25. 其中正确的是 _________ .(填上所有正确结论的序号) 4.海关大楼顶端镶有 A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:【例2】设随机变量 ,k = 0,1,2,…,n ,且 E(8 = 24,则 D( 3的值为(历年气象资料表明, E 的分布列为P(E= k) = C n课后练习【补救练习】1. 若随机变量E〜B(n,0.6),且E(8= 3,贝U P( 1)的值为()A . 2 X 0.44B . 2X 0.45C. 3X 0.44 D . 3X 0.642•已知〜B(n, p), E(8= 8, D(3= 1.6,则n与p的值分别为()A . 100 和0.08B . 20 和0.4C. 10 和0.2 D . 10 和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X 甲)= E(X 乙),方差分别为D(X()甲)= 11, D(X乙)=3.4.由此可以估计A •甲种水稻比乙种水稻分蘖整齐B•乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D•甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为__________ ;方差为________ .【巩固练习】1. 现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A. 6B. 7.8C . 9D . 122. —射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A . 2.44 B. 3.376C . 2.376 D. 2.43. 已知随机变量X + Y= 8,若X〜B (10,0.6),贝U E(Y), D(Y)分别是()A . 6,2.4 B. 2,2.4C . 2,5.6 D. 6,5.64•马老师从课本上抄录一个随机变量E的概率分布列如下表:请小牛同学计算E的数学期望•尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(3 = __________ .5•某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历•假定该毕业生得到甲公司面试的2概率为2得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生1得到面试的公司个数,若P(X= 0) = 12,则随机变量X的数学期望E(X) = _____________ .6•随机变量E的分布列如下:1其中a, b, c成等差数列,若E( 3= 3则D(3 = _______________ •7•某城市出租汽车的起步价为6元,行驶路程不超出3 km时按起步价收费,若行驶路程超出3 km,则按每超出1 km加收3元计费(超出不足 1 km的部分按 1 km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18, 0.20, 0.20,0.18,0.12,设出租车行车路程3是一个随机变量,司机收费为n元),则n= 3 3- 3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设3为成活沙柳的株数,数学期望E(3= 3,标准差D 3为中.(1)求n, p的值并写出3的分布列;⑵若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E(3 —3 =( )A . 0B . 1C. 2 D .不确定2•甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛•假设每局甲获胜的概率为2,乙获胜的概率为3各局比赛结果相互独立.(1)求甲在4局以内洽4局)赢得比赛的概率;⑵记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3. A, B两个投资项目的利润率分别为随机变量X i和X2.根据市场分析,X i和X2的分布列分别为:(1)在A, B两个项目上各投资100万元,Y i(万元)和丫2(万元)分别表示投资项目A和B所获得的利润,求方差D(Y”, D(Y2);⑵将x(0w X W 100)万元投资A项目,(100 —x)万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和•求f(x)的最小值,并指出x为何值时,f(x)取到最小值.。
(完整版)随机变量的数学期望与方差
第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。
2.熟练能计算随机变量的数学期望与方差。
教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。
教学学时:2学时。
教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。
因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。
1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。
这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。
对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。
但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。
定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。
常见分布的数学期望与方差
If X
P ( ), then
D(X )
二、常见的连续型随机变量的数学期望与方差
1.均匀分布的方差
分布密度
1 f (x) b a 0 a x b 其 它
E(X )
3 b a 2
1 2
(a b)
2
方差
E(X
2
)
b a
x
2
b a
2
dx
”;此后十年间,航空事业获得较快发展。
筹办航空事宜
处
三、从驿传到邮政 1.邮政
(1)初办邮政: 1896年成立“大清邮政局”,此后又设
邮传部 邮传正式脱离海关。
,
(2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国邮联大会 。
2.电讯 (1)开端:1877年,福建巡抚在 办电报的开端。 (2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。 3.交通通讯变化的影响
2
1
2
常见分布及其期望和方差列表
分布名称 数学期望E(X) 方差D(X)
p np
0-1分布
二项分布 泊松分布
pq
npq
a b 2
(b a ) 12
2
均匀分布
正态分布 指数分布
1
2
1
2
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材· 填要点] 一、铁路,更多的铁路 1.地位
铁路是
交通运输 建设的重点,便于国计民生,成为国民经济
发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 路建成通车。 1888年,宫廷专用铁路落成。 至胥各庄铁 开平
数学期望与方差
数学期望与方差在我们的日常生活和各种科学研究中,数学期望和方差是两个非常重要的概念。
它们帮助我们理解和预测随机现象,做出更明智的决策。
让我们先从数学期望说起。
简单来讲,数学期望就是对随机变量取值的平均水平的一种度量。
想象一下你在玩抛硬币的游戏,正面你赢 1 元,反面你输 1 元。
假设抛硬币正面朝上的概率是 05,反面朝上的概率也是 05。
那么你玩一次这个游戏,平均能赢多少钱呢?数学期望就能回答这个问题。
对于这个抛硬币的例子,赢 1 元的概率是 05,输 1 元的概率也是05。
数学期望就是(1×05)+(-1×05)= 0 元。
这意味着,从平均的角度来看,你长期玩这个游戏,不会赢也不会输。
再举个例子,假设一个抽奖活动,有 10%的机会赢得 100 元,90%的机会什么都得不到。
那么这个抽奖的数学期望就是 100×01 + 0×09= 10 元。
这 10 元就代表了你参与这个抽奖平均能获得的收益。
数学期望在很多实际场景中都有应用。
比如在投资领域,投资者会通过计算不同投资产品的数学期望来决定资金的分配。
如果一项投资的数学期望收益较高,风险在可承受范围内,投资者就可能更倾向于选择它。
说完数学期望,咱们再来说说方差。
方差是用来衡量随机变量取值的分散程度的。
还是拿刚才抛硬币的例子,如果我们抛了很多次硬币,有时候赢 1 元,有时候输 1 元,这些结果的分散程度就可以用方差来描述。
方差越大,说明随机变量的取值越分散;方差越小,说明取值越集中在数学期望附近。
假设我们有两组数据,第一组是 1,2,3,4,5,它们的平均值是 3。
计算方差可以发现,这组数据的方差相对较小,因为数值比较均匀地分布在平均值周围。
而另一组数据是 1,1,5,5,它们的平均值也是 3,但这组数据的方差就比较大,因为数值比较分散。
在实际生活中,方差也有很多用处。
比如在质量控制中,如果一批产品的某个质量指标的方差过大,就说明产品的质量不稳定,需要改进生产工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。
2.熟练能计算随机变量的数学期望与方差。
教学重点:1.随机变量的数学期望For personal use only in study and research; not for commercial use2.随机变量函数的数学期望3.数学期望的性质4.方差的定义For personal use only in study and research; not for commercial use5.方差的性质教学难点:数学期望与方差的统计意义。
教学学时:2学时。
For personal use only in study and research; not for commercial use教学过程:第三章随机变量的数字特征§3.1 数学期望For personal use only in study and research; not for commercial use在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。
然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。
因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。
1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。
这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。
对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。
但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。
定义1 设X 是离散随机变量,它的概率函数是,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。
例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门。
若每把钥匙试开一次后除去,求打开门时试开次数的数学期望。
解 设试开次数为X ,则n k X p 1)(==,n , ,2 ,1 =k于是 ∑=⋅=n k n k X E 11)(2)1(1n n n+⋅=21+=n 2. 连续随机变量的数学期望为了引入连续随机变量数学期望的定义,我们设X 是连续随机变量,其密度函数为)(x f ,把区间) , (∞+-∞分成若干个长度非常小的小区间,考虑随机变量X 落在任意小区间] , (dx x x +内的概率,则有)(dx x X x p +≤<=⎰+dxx x dx t f )(dx x f )(≈由于区间] , (dx x x +的长度非常小,随机变量X 在] , (dx x x +内的全部取值都可近似为x ,而取值的概率可近似为dx x f )(。
参照离散随机变量数学期望的定义,我们可以引入连续随机变量数学期望的定义。
定义2 设X 是连续随机变量,其密度函数为)(x f 。
如果⎰∞∞-dx x f x )(||收敛,定义连续随机变量X 的数学期望为⎰∞∞-=dx x f x X E )()( 也就是说,连续随机变量的数学期望是一个绝对收敛的积分。
由连续随机变量数学期望的定义不难计算:若),(~b a U X ,即X 服从), (b a 上的均匀分布,则2)(b a X E += 若X 服从参数为的泊松分布,则λλ=)(X E若X 服从则 ),,(2σμNμ=)(X E3.随机变量函数的数学期望设已知随机变量X 的分布,我们需要计算的不是随机变量X 的数学期望,而是X的某个函数的数学期望,比如说)(X g 的数学期望,应该如何计算呢?这就是随机变量函数的数学期望计算问题。
一种方法是,因为)(X g 也是随机变量,故应有概率分布,它的分布可以由已知的X 的分布求出来。
一旦我们知道了)(X g 的分布,就可以按照数学期望的定义把)]([X g E 计算出来,使用这种方法必须先求出随机变量函数)(X g 的分布,一般是比较复杂的。
那么是否可以不先求)(X g 的分布,而只根据X 的分布求得)]([X g E 呢?答案是肯定的,其基本公式如下:设X 是一个随机变量,)(X g Y =,则⎪⎩⎪⎨⎧==⎰∑∞∞-∞=连续离散X dx x f x g X p x g X g E Y E k k k ,)()(,)()]([)(1 当X 是离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ;当X 是连续时,X 的密度函数为)(x f 。
该公式的重要性在于,当我们求E [g (X )]时,不必知道g (X )的分布,而只需知道X的分布就可以了,这给求随机变量函数的数学期望带来很大方便。
4.数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
推广到n 个随机变量有∑∑===ni i n i i X E X E 11)(][。
(4)设X 、Y 相互独立,则有 E (XY )=E (X )E (Y )。
推广到n 个随机变量有 ∏∏===ni i n i i X E X E 11)(][5.数学期望性质的应用例2 求二项分布的数学期望。
解 若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。
若设⎩⎨⎧=次试验失败如第次试验成功如第i i X i 01 i =1,2,…,n 则n X X X X +++= 21,因为 P X P i ==)1(,q P X P i =-==1)0(所以p p q X E i =*+*=10)(,则=)(X E np X E X E ni i n i i ==∑∑==11)(][可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 。
需要指出,不是所有的随机变量都存在数学期望。
例3 设随机变量X 服从柯西分布,概率密度为 +∞<<-∞=+x x f x ,)()1(12π 求数学期望)(X E 。
解 依数学期望的计算公式有 dx X E x x⎰+∞∞-+=11)( 因为广义积分dx x x⎰+∞∞-+12不收敛,所以数学期望)(X E 不存在。
§3.2 方差前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是我们要学习的方差的概念。
1. 方差的定义定义3 设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E - (3.1)为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
方差的算术平方根)(X D 称为随机变量X 的标准差,记作)(X σ,即)()(X D X =σ由于)(X σ与X 具有相同的度量单位,故在实际问题中经常使用。
方差刻画了随机变量的取值对于其数学期望的离散程度,若X 的取值相对于其数学期望比较集中,则其方差较小;若X 的取值相对于其数学期望比较分散,则方差较大。
若方差)(X D =0,则随机变量X 以概率1取常数值。
由定义1知,方差是随机变量X 的函数2)]([)(X E X X g -=的数学期望,故⎪⎩⎪⎨⎧--=⎰∑∞∞-∞=连续时当离散时当X dx x f X E x p X E x X D k k k k ,)()]([X ,)]([)(212 当X 离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ;当X 连续时,X 的密度函数为)(x f 。
计算方差的一个简单公式:22)]([)()(X E X E X D -=证22222)]([)(])]([)(2[]))([()(X E X E x E X XE X E X E X E X D -=+-=-=请用此公式计算常见分布的方差。
例4 设随机变量X 服从几何分布,概率函数为1)1(--=k k p p P , k =1,2,…,n其中0<p <1,求)(X D 。
解 记q =1-p∑∞=-=11)(k k kpqX E ∑∞==1)'(k k q p ∑∞==1)'(k k q p )'1(q q p -=p 1= ∑∞=-=1122)(k k pqk X E ])1([1111∑∑∞=-∞=-+-=k k k k kq q k k p ∑∞=''=1)(k k q qp +E (X ) p q q qp 1)1(+''-=p q qp 1)1(23+-=pp q 122+= 22)]([)()(X E X E X D -=22pp -=21p -21p p -= 2. 方差的性质(1)设C 是常数,则D (C )=0。
(2)若C 是常数,则)()(2X D C CX D =。
(3)若X 与Y 独立,则)()()(Y D X D Y X D +=+。
证 由数学期望的性质及求方差的公式得{}{})()()]([)()]([)()()(2)]([)]([)()(2)()()]()([]2[)]([])[()(2222222222222Y D X D Y E Y E X E X E Y E X E Y E X E Y E X E Y E X E Y E x E XY Y X E Y X E Y X E Y X D +=-+-=---++=+-++=+-+=+ 可推广为:若1X ,2X ,…,n X 相互独立,则∑∑===ni i n i i X D X D 11)(][∑∑===ni i i n i i i X D C X C D 121)(][(4) D (X )=0 ⇔P (X = C )=1, 这里C =E (X )。