锂离子电池容量衰减机理和副反应-翻译(个人翻译的外文文献)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Capacity Fade Mechanisms and Side Reactions in
Lithium-Ion Batteries
锂离子电池容量衰减机机理和副反应
Pankaj Arorat and Ralph E. White*
作者:Pankaj Arorat and Ralph E. White*
Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA 美国,南卡罗来纳,年哥伦比亚29208,南卡罗来纳大学,化学工程系,中
心电化学工程
ABSTRACT
The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models.
Introduction
摘要
锂离子电池容量随着循环衰减。容量损失或者衰减的发生主要是由于以下几种反应机理,这些机理起因于或者关联于一些我们不希望发生在电池里的副反应。这些反应发生在过充或者过放中,导致了电解液分解、钝化膜的形成、活性物质溶解和其他现象形成。这些容量损失机理并没有包含在目前我们可接触到的公开的锂离子电池数学模型中。因此,这些模型并不能用在预测电池循环或者滥用条件下的电化学行为。这篇文章提出了当前锂离子电池容量衰减机理的观点,并且试图描述我们需要的信息和方向,这些信息和方向有可能被引入先进的锂离子电池模型的机理中。
前言
The typical lithium-ion cell (Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only recently.Batteries based on this concept have reached the consumer market, and lithium-ion electric vehicle batteries are under study in industry.The lithium-ion battery market has been in a period of tremendous growth ever since Sony introduced the first commercial cell in 1990.With energy density exceeding 130 Wh/kg (e.g., Matsushita CGR 17500) and cycle life of more than 1000 cycles (e.g., Sony 18650) in many cases, the lithium-ion battery system has become increasingly popular in applicationssuch as cellular phones, portable computers, and camcorders.As more lithium-ion battery manufacturers enter the market and new materials are developed,cost reduction should spur growth in new applications. Several manufacturers such as Sony Corporation, Sanyo Electric Company, Matsushita Electric Industrial Company, Moli Energy Limited, and A&T Battery Corporation have started manufacturing lithium-ion batteries for cellular phones and laptop computers. Yoda1 has considered this advancement and described a future battery society in which the lithium-ion battery plays a dominant role.
Several mathematical models of these lithium-ion
典型的锂离子电池主要由以下三大部分组成:碳(石墨)负极;电解液,主要提供锂离子传送通道并且分隔开两种材料;过渡金属氧化物正极材料(例如LiCoO2、LiMn2O4或者LiNiO2)。这种二次电池最近已经商业化。这种理念下的电池已经进入消费市场。在工业上,交通工具使用的动力电池已经在研究。自从1990年,索尼首次引进商业化电池,锂离子电池市场在一段时期内取得了巨大增长。在许多条件下,锂离子电池的体积能量密度超过130Wh/kg,循环次数超过1000次,锂离子电池体系在手机、笔记本电脑、便携式摄像机的使用越来越普遍。随着越来越多的电池制造商进入市场,新材料得到发展、成本降低加速了电池的新应用。一部分制造商例如索尼、三洋、松下、Moli能源、A&T电池公司已经开始制作锂离子电池用于移动电话和掌上电脑。Yoda 已经考虑到这些进步并且描述了一个未来的电池社会,在这个社会里锂离子电池扮演非常重要的角色。
已经有一部分锂离子电池的数学模型被出版。不幸的是,