8.1 空间几何体的结构、三视图和直观图练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.1 空间几何体的结构、三视图和直观图
一、选择题
1.以下关于几何体的三视图的论述中,正确的是( ).
A.球的三视图总是三个全等的圆
B.正方体的三视图总是三个全等的正方形
C.水平放置的正四面体的三视图都是正三角形
D.水平放置的圆台的俯视图是一个圆
解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.
答案 A
2. 设四面体的六条棱的长分别为1,1,1,1a且长为a
棱异面,则a的取值范围是()
(A)(B)(C)(D)
答案 A
3. 下列四个几何体中,几何体只有正视图和侧视图相同的是( )
A.①② B.①③
C.①④ D.②④
解析由几何体分析知②④中正视图和侧视图相同.
答案:D
4.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于( ). A.
24a 2 B .22a 2 C.22a 2 D.223
a 2 解析 根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S 与它的直观图的面积S ′之间的关系是S ′=
2
4
S ,本题中直观图的面积为a 2,所以原平面四边形的面积等于
a 224
=22a 2.故选B.
答案
B
5.将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧视图为( ).
解析 被截去的四棱锥的三条可见侧棱中有两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有选项D 符合. 答案 D
6.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为1
2,则
该几何体的俯视图可能是( ).
解析当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯
视图为B中圆时,几何体为底面半径为1
2
,高为1的圆柱,体积为
π
4
;当俯视图
为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,
高为1,体积为1 2 .
答案 C
7. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( )
解析由正视图可排除A,C;由侧视图可判断该几何体的直观图是B.
答案 B
二、填空题
8.利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上结论正确的个数是________.
解析由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.
答案 1
9.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为________.
解析由三视图中的正(主)、侧(左)视图得到几
何体的直观图如图所示,所以该几何体的俯视图为③.
答案③
10. 用单位正方体块搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值为________,最小值为________.
解析由俯视图及正视图可得,如图所示,由图示可得体积的最大值为14,体积的最小值为9.
答案 14 9
11.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.
解析(构造法)由正视图和俯视图可知几何体是
正方体切割后的一部分(四棱锥C1- ABCD),还原
在正方体中,如图所示.多面体最长的一条棱即
为正方体的体对角线,如图即AC1.由正方体棱长
AB=2知最长棱AC
1
的长为2 3.
答案2 3
【点评】构造正方体,本题就很容易得出结论,此种方法在立体几何问题中较为常见,把抽象问题转化为直观问题解决.
12.如果一个几何体的三视图如图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为________.
解析
可知其底面正六边形的边长为1,棱锥的高为h= 3.由于三视图中“宽相等”,那么侧视图中的三角形的底边边长与俯视图中正六边形的高相等,可得其长度为
3,则该几何体的侧视图的面积为S=1
2
×3×3=
3
2
.
答案3 2
三、解答题、
13.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
解析 (1)如图.
(2)所求多面体的体积
V =V 长方体-V 正三棱锥=4×4×6-13
×⎝ ⎛⎭
⎪⎫12×2×2×2 =284
3
(cm 3). 14.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?
解析 如图所示,正四棱锥S-ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,
OA =SA 2-OS 2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高,
在Rt △SOE 中,∵OE =1
2BC =2,SO =3,
∴SE =5,即侧面上的斜高为 5.