材料力学动载荷课件

合集下载

第十三章动载荷

第十三章动载荷
2. 计算梁内最大静应力 最大弯矩和弯曲正应力发生在跨中截面上
1 M st max = FN st × 4 qst × 6 2 = 6qst = 6 × 165.62 = 993.7 N m 2
σ st max =
M st max 993.7 N m = = 61.7 MPa Wz 16.1×106 m 3
d(l d ) = ε d ( x)dx =
于是, 于是,杆的总伸长量为
σ d ( x)
E
2
dx
l d = ∫ d (l d ) = ∫
0
l
l
γω 2
2 Eg
0
(l x )dx =
2
γω 2 l 3
3Eg
材料力学
中南大学土木建筑学院
20
§13.3 杆件受冲击时的应力和变形
一,冲击现象
下落重物冲击梁
Vεd = V +T
材料力学
1 应变能 Vε d = F d d 2 1 Fd d = W d + T 2
中南大学土木建筑学院 23
线弹性 范围内
F d d σd = = = Kd W st σst
冲击动荷系数
F = KdW, d = Kd st d
2 d
1 F d = Wd +T d 2
2T =0 K 2Kd Wst
Fd = KdW, d = Kd st
v
W
线弹性 范围内 水平冲击 动荷系数
冲击点
v2 Kd = gst
冲击点作用大小等于W st ——冲击点作用大小等于 的水平 冲击点作用大小等于 静载荷时引起该点的静变形. 静载荷时引起该点的静变形.
材料力学 中南大学土木建筑学院 27

材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力

材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力
l
解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h

材料力学(单辉祖)第十五章动载荷问题

材料力学(单辉祖)第十五章动载荷问题
静动问题物性假设 ① σ< σp, 固体Hooke’s Law仍成立 ②材料常数E,G,v仍用static load实验测得
4
动态问题概述
¾ 动载荷
随时间作急剧变化的载荷 作加速运动或转动的系统中构件的惯性力
¾ 动应力 构件在动载荷作用下产生的应力
冲击载荷作用下产生的应力称为冲击应力 随时间作交替变化载荷作用下产生的应力 称为交变应力
34
惯性力引起的动应力
构件作等加速直线运动或等速转动时,构件由于 各质点上的惯性力产生动应力,此时动应力分析 多采用动静法,即除外载荷外,构件内各质点处 应加上惯性力, 然后按静载荷问题进行分析和计算
匀速转动直杆的动应力
设均等截面杆AB绕轴以角速度ω
旋转,杆长为l,横截面面积为A, 计算杆的最大动应力
应变能
U1
=
PΔst 2
lv l
滑轮卡住后,吊索AC内存储的
应变能
U2
=
Pd Δ d 2
吊索内应变能的增加为
A
Δd
Δst
A
P
U
=U2
−U1
=
Pd Δ d 2

PΔst 2
Pd
23
Example-1
根据能量守恒定律
C
D C
D
U =T +V
注意到
Δd
=
Pd k
上式变为
l vl
( ) Pv2
2g
+
P(Δd
C
vG l
a
A
Pd C
A
根据机械能守恒定律
1 2
P g
v2
=
1 2
kΔd2

动载荷

动载荷

材料力学
§2
惯性力问题
动载荷
2、等角速度旋转的构件
•旋转圆环的应力计算 一平均直径为D的薄壁圆环绕通过其圆心且垂直于圆环平面 的轴作等角速度转动。已知转速为,截面积为A,比重为,壁 厚为t。 解:等角速度转动时,环内各
qd
an
D o
t
o
点具有向心加速度,且D>>t 可近似地认为环内各点向心 an 2 D / 2 。 加速度相同, 沿圆环轴线均匀分布的惯性 力集度 q d 为:
圆环横截面上的应力:
式中 v D 是圆环轴线上各点的线速度。强度条件为:
2
d
材料力学
v 2
g
[ ]
§2
惯性力问题
动载荷
•旋转圆环的变形计算
D , 在惯性力集度的作用下,圆环将胀大。令变形后的直径为 则其直径变化 D D D ,径向应变为
t D ( D D) r t D D E d v 2 D
式中 k d 为冲击时的动荷系数,
2
kd st
2H kd 1 1 st
其中 st 是结构中冲击受力点在静载荷(大小为冲击物重量) 作用下的垂直位移。
材料力学
§3
冲击问题
动载荷
因为
Pd d d kd Q st st
所以冲击应力为
d k d st
2H 当 110 时,可近似取 k d st
2 H ,误差<5%。 st 2 H ,误差<10%。 st
4、 k d 不仅与冲击物的动能有关,与载荷、构件截面尺寸有关, 更与 st 有关。这也是与静应力的根本不同点。构件越易变 形,刚度越小,即“柔能克刚”。

《材料力学》第十章 动载荷

《材料力学》第十章 动载荷
第十章 动 载 荷
基本要求: 基本要求: 了解构件作变速运动时和冲击时应力与变形的计 算。 重点: 重点: 1.构件有加速度时应力计算; 2.冲击时的应力计算。 难点: 难点: 动荷因数的计算。 学时: 学时: 4学时
第十章
§lO.1 概述
动 载 荷
§10.2 动静法的应用 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
( 2 )突然荷载 h = 0 : K
d
=2
△st--冲击物落点的静位移
五、不计重力的轴向冲击问题
冲击前∶
动能T1 = Pv 2 / 2 g 势能V1 = 0 变形能V1εd = 0
冲击后:
动能T2 = 0 势能V 2 = 0 变形能V 2εd = Pd ∆ d / 2
ห้องสมุดไป่ตู้
v P
冲击前后能量守恒,且
Pd = K d P
补例10-1 起重机钢丝绳的有效横截面面积为A , 已知[σ], 补例 物体单位体积重为γ , 以加速度a上升,试建立钢丝绳(不计自 重)的强度条件。 外力分析。 解:1.外力分析。包括惯性力 外力分析
惯性力:q a
x a L x m m a Nd qg +qa
=
γA
g
a
2.内力分析。 内力分析。 内力分析 3.求动应力。 求动应力。 求动应力
任何冲击系统都 可简化弹簧系统
能量法(机械能守恒) 三、能量法(机械能守恒)
冲击过程中机械能守恒。即动能 ,势能V,变形能V 冲击过程中机械能守恒。即动能T,势能 ,变形能 εd守恒 冲击前:系统动能为T, 势能为V=Q∆d, 变形能Vεd=0 冲击后:系统动能为0, 势能为V=0, 变形能Vεd

材料力学动载荷(共59张PPT)

材料力学动载荷(共59张PPT)
g 二、动荷系数
Kd
1a1 5 1.51 g 9.8
三、计算物体静止时,绳索所需的横截面积
由强度条件得
三、计算物体静止时,绳索所需的横截面积
因此,吊索受到冲击作用。 〔2〕H =1m, 橡皮垫d2 = 0. 当CD、EF两杆位于铅直平面内时, 冲击点静位移 最大应力为
FNd
Ast P840 0 11 0 3 0 60.51 03
二、构件作等速转动时的动应力
截面为A的薄壁圆环平均直径为 D,以 等角速度ω绕垂直于环平面且过圆心的平面转 动,圆环的比重为γ。求圆环横截面的动应力。
解:一、求薄壁圆环内动内力
(1)
an
2R
2
D 2
F
man
AD 2
g
D 2
(2)
qd
ma n
D
Aan
g
A 2 D
g2
Ro
qd
(2) qdm D na A g anA g 2D 2
P(1 b 2 )
3g
P (1 b 2 )
3g
b 2
P(1 ) 3g
2 P b 2
3g
Pl (1 b2 )
3
3g
Pl (1 b 2 )
3
3g
三、计算 ωmax 。
当CD、EF两杆位于铅直平面内时, CD杆中有最大轴力
FNmax
P
Pb2
g
P (1 b 2 ) 3g
A
P b 2 P
g
bF
E
B
b
解:制动前瞬时,系统的机械能
l
由机械能守恒,得
Td
JGIp l
T11 2J2, V 10, U 10

材料力学课件-第十三章---动荷载

材料力学课件-第十三章---动荷载

解:①
j Qh1 / E1A1 QL / EA
50.024 81030.152
514 10106 0.32
71.5105 m
Kd 1
1 53.4 210.02 71.5105

QL / EA 514
j
10106 0.32
0.707 105 m
Kd 1
1 533 21 0.707105
33
34
1 2
mv
2
mg 2
K
2 d
j
冲击前:
动能T1mv2 /2 势能V10 变形能U10
冲击后:
动能T2 0 势能V2 0 变形能U 2 Pd d /2
动荷系数 Kd
2
g j
17
三、冲击响应计算 等于静响应与动荷系数之积.
[例5 ] 直径0.3m旳木桩受自由落锤冲击,落锤重5kN, 求:桩旳最大动应力。E=10GPa Wv
25
解:⒈ 求冲击点C处旳静位移用能量法可求得冲击点C处旳
静位移
st
Wl13 3EI
Wl 3
3EI
BAl1
W
l13 l 3 3EI
Wl1l GI P
l1
100N 0.3m3 0.8m3
3 200 109 Pa π (0.06m)4
100N (0.3m)2 0.8m 80 109 Pa π (0.06m)4
加速度提起重50kN 旳物体,试校核钢丝绳旳强度。
解:①受力分析如图:
Nd
a Nd (GqL)(1 g )
②动应力
L q(1+a/g) G(1+a/g)
d
Nd A
1 (GqL)(1 A

材料力学(动载荷)

材料力学(动载荷)

UD
Q
2 C
2 D
d
将式(a)和式(d)代入式(14-6)T=UD 得:
Q
H
D
Q
2 C
2 D
化简后得:
2 D
2C D
2HC
0
e
由式(e)可解得: D C 1
1
2H
C
K DC
式中: KD 1
1 2H 14 7
C
称为冲击时的动荷系数。
KD 1
1 2H 14 7
1 2
PD
D
b
构件在动荷载作用下,材料应服从虎克定律
PD Q C (常数) D C
即:
PD
D C
Q
c
式(c)中:PD ——动荷载;Q ——静荷载; D ——动位移;C ——静位移。
UD
1 2
PD
D
b
将式(c)代入式(b)后得:
UD
Q
2 C
2 D
d
T QH D a
(1)计算杆内最大应力; (2)计算杆件的伸长。
解:(1)计算杆内最大应力
例1图
a. 离 A 端为 x 处取一微段, 该微段的惯性力为:
dPD
x
dm
an
W gl
dx
l
x
2
取脱离体图(见图),x 处的内力为:
N
D
x
0x
dPD
x
0x
W gl
l
x
2dx
ND
x
W2
gl
lx
x2 2
脱离体图
b. 绘内力图。确定内力最大的截面,并计算最大应力。
图14-1

材料力学动载荷和交变应力第1节 惯性力问题

材料力学动载荷和交变应力第1节 惯性力问题


100
3
s 1

60 106 7.85 10
3
m/s
87.4 m/s
由线速度与角速度关系
v

R

2n
60
R

2n
60

(D
d) 2
/
2
则极限转速为
n


120v (D d
)

120 87.4 3.14 (1.8 1.4)
r/min
1044 r/min
图,与飞轮相比,轴的质量可以忽略不计。轴的另一
端 A 装有刹车离合器。飞轮的转速为 n 100r/min ,
转动惯量为 J x 600 kg/m2,轴的直径 d 80mm。刹车
时使轴在 10 秒内按均匀减速停止转动。求轴内的最大
动应力。 解:飞轮与轴的角速度
y 制动离合器
0

2n
60

• Kd — 动荷系数:表示构件在动载荷作用下其内力 和应力为静载荷作用 Fst 下的内力和应力的倍数。
说明
Fst mg Axg
1) x
Fst
Fd
危险截面在钢 丝绳的最上端
d max

Kd st max

Kd
(
mg A
gxmax )
2)校核钢丝绳的强度条件 d max Kd st max [ ]
16
例11-4 钢质飞轮匀角速转动如图所示,轮缘外径
D 1.8 m,内径 d 1.4 m ,材料密度 7.85 103 kg/m3。 要求轮缘内的应力不得超过许用应力 [ ] 60 Mpa ,轮

材料力学动载荷、交变应力

材料力学动载荷、交变应力
03
材料力学关注材料在不同载荷条件下的行为,为工 程设计和结构分析提供基础。
材料的基本属性
弹性
材料在受力后恢复到原始状态的 能力。
塑性
材料在应力超过屈服点后发生不 可逆变形的性质。
强度
材料抵抗破坏的能力,通常用极 限应力表示。
疲劳强度
材料在交变应力作用下抵抗疲劳 破坏的能力。
韧性
材料吸收能量的能力,通常用冲 击试验测定。
详细描述
在汽车部件的交变应力分析中,需要考虑发 动机、传动系统等不同部件的工作载荷和交 变应力。通过建立数学模型和进行数值模拟 ,可以预测部件在不同工况下的疲劳寿命和 可靠性,从而为汽车的设计和优化提供依据

案例三:航空材料的疲劳寿命预测
总结词
航空材料的疲劳寿命预测是材料力学在航空航天领域的重要应用,通过分析材料在不同 循环载荷下的响应,可以预测其疲劳寿命和可靠性。
详细描述
在桥梁结构的动载荷分析中,需要考虑车辆、 风、地震等多种外部载荷的作用,以及桥梁 自身的动力学特性。通过建立数学模型和进 行数值模拟,可以预测桥梁在不同载荷下的 变形、应力和振动响应,从而为桥梁的设计 和加固提供依据。
案例二:汽车部件的交变应力分析
总结词
汽车部件的交变应力分析是材料力学在汽车 工程领域的重要应用,通过分析部件在交变 载荷下的响应,可以预测其疲劳寿命和可靠 性。
详细描述
在航空材料的疲劳寿命预测中,需要考虑飞机在不同飞行条件下的循环载荷和交变应力。 通过建立数学模型和进行数值模拟,可以预测材料在不同循环载荷下的疲劳寿命和可靠 性,从而为飞机的设计和优化提供依据。同时,疲劳寿命预测还可以为飞机的维护和检
修提供指导,确保飞机的安全性和可靠性。

材料力学课件第10章 动载荷zym

材料力学课件第10章 动载荷zym

FNd
qd D Aρ D 2 2 = = ω 2 4
(3)截面应力: )截面应力: FNd ρ D 2ω 2 σd = = = ρv2 A 4 (4)强度条件: )强度条件:
σ d = ρ v 2 ≤ [σ ]
2、问题特点: 、问题特点: •截面应力与截面面积 无关。 截面应力与截面面积A无关 截面应力与截面面积 无关。 (三)扭转问题
2)强度计算: )强度计算: (1)确定危险截面: )确定危险截面: 为跨中截面。 为跨中截面。
l 1 l M = F −b − q 2 2 2 a l 1 = Aρ g 1 + − b l 2 g 4
2
(2)建立强度条件: )建立强度条件: M d Aρ g a l σd = = 1 + − b l ≤ [σ ] W 2W g 4 2、问题特点: 、问题特点: 设加速度为零时的应力为σst 则: 设加速度为零时的应力为σ 1 l Aρ g − b l M 2 4 = Aρ g l − b l σ st = st = W W 2W 4 a σ d = σ st 1 + = σ st K d g
P
v
∆d P 即:Fd = ∆ st
代入得: 代入得: 1P 2 1 1 ∆2 d v = ∆ d Fd = P 2g 2 2 ∆ st
∆d =
Kd =
P
∆ st
v2 ∆ st g ∆ st
v2 g ∆ st (10.9)
∆ d = K d ∆ st ,
Fd = K d P,
σ d = K dσ st
= 1057 ×106 Pa
§10 – 5

材料力学11动载荷_2冲击载荷

材料力学11动载荷_2冲击载荷

st
P
[例5] 如图,在转轴 AB 的B 端有一个质量很大的飞轮,在 A 端有 制动装置。若在飞轮转速 n = 100 r/min 时突然在 A 端急刹车,瞬 间停止转动,试求轴内的最大切应力。 已知轴的长度 l = 1 m,直 径 d = 100 mm ,切变模量 G = 80 GPa,飞轮对轴的转动惯量 J = 500 kg·m2 ,轴的质量可以忽略不计。
1.8 MPa
梁内的动荷最大弯曲正应力
d max Kd st max 71.7 1.8 MPa = 129.1 MPa
[例4] 如图,钢丝绳的下端悬挂一重为 P 的重物,以速度 v 匀速下 降,当钢丝绳长度为 l 时,滑轮突然被卡住,试求钢丝绳内的动荷 应力。已知钢丝绳的横截面面积为 A,弹性模量为 E,滑轮与钢丝 绳的质量均忽略不计 。
2)重物落在弹簧上 此时的静荷位移
st

Pl EA

ห้องสมุดไป่ตู้
P k

7.074 106
m + 500106
m
=
507.074 106
m
2)重物落在弹簧上
静荷位移
st 507.074106 m
动荷因数
2h
Kd 1
1 15.08
st
杆内的动荷应力
d Kdst 15.08 0.7074 MPa = 10.7 MPa
4
P
hP
l
d
4)计算动荷应力
d Kdst 126.2 0.0424 MPa = 5.35 MPa
◆ 此时的动荷应力是静荷应力的126.2倍,可见,冲击载荷是 非常大的。
[例2] 钢制圆截面杆如图,其上端固定,下端固连一无重刚性托盘 以承接落下的环形重物。已知杆的长度 l = 2 m ,直径 d = 30 mm , 弹性模量 E = 200 GPa。若环形重物的重力 P = 500 N,自相对高度 h = 50 mm 处自由落下,使杆受到冲击。试求在下列两种情况下, 杆内的动荷应力:(1)重物直接落在刚性托盘上;(2)托盘上放 一刚度系数量 k = 1 MN/m的弹簧,环形重物落在弹簧上。

材料力学:第14章 动荷载

材料力学:第14章  动荷载
等加速运动状况—惯性力是个定值
变加速运动状况—惯性力是时间的函数 (是变荷载)
这里讨论等加速运动状态
2.等加速直线运动构件的应力计算
等加速直线运动:
a
FD
FD
a
W
W g
a
1
a g
W
D
W A
W Ag
a
1
a g
st
惯性力
W 静荷载
W a 动荷载
g
D kD st
k D
1
a g
动荷系数
2.等加速直线运动构件的应力计算
max j
M max j Wy
36.7MPa
dk d max j 59.1MPa
第十四章 动荷载/二、等加速运动构件的应力计算
3 圆环等角度转动时构件的应力与变形计算:
(1)圆环横截面上的应力
图示匀质等截面圆环,绕着通过环中心且
an
t
Do
垂直于圆环平面的轴以等角速度旋转, 已知横截面面积为A,材料的容重为γ,壁厚 为t,求圆环横截面上的应力。
b=1m。
q
F 运动方向
o
qL qb 2 qb 2 2
qL qb 2 qb 2
2
b
L
b a vt v0 6 m s2

t
q 22.639.8 222kN m
qd
qst
a g
qL2 qb2 g2
Wy 24.2106 m3
qst 22.63kg m
kd
1
a g
1.61
q
qst qst g
转动惯量为 Ix 0.5KNMS2 。轴的直径 d 100mm
刹车时使轴在10秒内均匀减速停止。求轴内最大动应力。

材料力学第10章 动载荷

材料力学第10章 动载荷

Kd = 1 + 1 + 2H
∆st
P
Pl 3 + P ∆st = 48EI 4C
σ st max = Pl / 4 = Pl
W
4W
MF
Pl/4
σd max = Kdσ st max ≤ [σ ] [H] =
∆st
2 σ st max
[(
[σ ]
−1) −1]
2
等截面刚架,重物P自高度 处自由下落。 、 、 自高度h处自由下落 例:等截面刚架,重物 自高度 处自由下落。 E、I、 W已知 。 试求截面的最大竖直位移和刚架内的最大 已知。 已知 冲击正应力( 刚架的质量可略去不计, 冲击正应力 ( 刚架的质量可略去不计 , 且不计轴力 对刚架变形的影响) 对刚架变形的影响)。
第十章 动载荷
§10.1 概述 §10.2 动静法的应用 §10.3 强迫振动的应力计算 §10.4 杆件受冲击时的应力和变形 §10.5 冲击韧性
§10.1 概述
1)动载荷问题的特点: )动载荷问题的特点: 静载荷问题:载荷平稳地增加, 静载荷问题:载荷平稳地增加,不引起构件 的加速度——准静态。 准静态。 的加速度 准静态 动载荷问题:载荷急剧变化, 动载荷问题:载荷急剧变化,构件速度发生 急剧变化。 急剧变化。
2FNd = qd (2R)
qd FNd FNd
qd
σd =
FNd = ρR2ω2 = ρv2 A
注意: 无关! 注意:与A无关! 无关
4)匀减速转动(飞轮刹车) )匀减速转动(飞轮刹车) 例 4 : 飞 轮 转 速 n=100r/min , 转 动 惯 量 为 Ix=0.5kNms2 , 轴 直 径 d=100mm , 10 秒停转,求最大动应力。 秒停转,求最大动应力。 解:角速度: ω0 = nπ 角速度: 30 角加速度: 角加速度:α = −ω0 / t

《材料力学基础》10动载荷

《材料力学基础》10动载荷

水平方向冲击 。
求:杆在危险点处的 d 。
B
C
v
A
52
解:
B
冲击过程中小球动能减少为
C
v
T 1 mv2 1 P v2
2
2g
位能 没有改变
A
V=0
d
B
C
G
Pd
A
53
杆的应变能可用冲击力
B
Pd 所作的功表示。
C
v
Ud
1 2
Pd
d
d 是被击点处的冲击挠度
A
d
Pd a3 3EI
d
B
C
G
Pd
A
Pd
3EI a3
mn 截面上的轴力 FN(x) 等于 P
F N ( x) 0l
g
2
(
R0
)
A(
)d
d
l n
x
m
R1 R0
x dP
n FN(x)
转轴
27
最大的惯性力发生在叶根截
面上
F
N
max
2 A0[l2
g3
3 4
R0 l]
在叶根截面上的拉应力为
顶部
m 叶根
F N max 2 (1 R0)(1 5 R0)
A0 3g R1 4 R1
o
D
D 2 2
因为环是等截面的,所以相同长度的任一段质量相等。
19
加在环上的惯性力必然是沿轴线 均匀分布的线分布力。
其上的惯性力集度为
qd
(1
A )( D 2) g2
A 2 2g
D
qd
o
20
qd
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1 概 述
Up Down
一、静载荷、动载荷:
载荷不随时间变化(或变化极其平稳缓慢)且 使构件各部分加速度保持为零(或可忽略不计), 此类载荷为静载荷 。
载荷随时间急剧变化且使构件的速度有显著
变化,即有明显的加速度(------ 具有惯性力:“m ·a ”),此类载荷为动载荷 。
如:高速旋转的砂轮、快速起吊的重物(电 梯)、受冲击载荷的构件、振动的问题等。
FN 2 qstl
FN
FN
b)
A
B
故得吊索的动应力为
吊索的静应力为
FN qstl
d
A Kd
(12Aa )
g
qst l 2A
由型钢表查得 qst=20.5kg/m=(20.5N/m)g及已
知数据代入上式,即得
d
(1
10m/s2 9.81m/s2
)
(20.5 9.81N/m)(12m) 2 108 106
而最大工作应力应该是最大的动应力σd 。
例题 长度 l=12m 的16号工字钢,用横截面面 积为 A=108mm2 的钢索起吊,如图所示,并以 等加速度 a=10m/s2 上升。若只考虑工字钢的重 量而不计吊索自重,试求吊索的动应力,以及
工字钢在危险点的动应力d,max
2m 4m 4m 2m dx段重量 (Adx)g
22.6MPa
求工字钢危险截面上危险点的动应力 qst Ag
b)
M
FN
A 6qst
+
FN
d,max
Kd max
(1
a) g
M max Wz
由工字钢的弯矩图可知,
B Mmax=6qstN·m,并由型钢表 查得Wz=21.210-6 m3以及已 知数据代入上式,得
2 qst
d,max
2.02
(6 20.5 9.81)N 21.2 106 m3
10.1 概 述 二、动应力:
Up Down
构件内部由于动载荷作用而产生的应力,称
为动应力。用“σd、τd”表示。 实验表明:
胡克定律无论是在静载荷下,还是在动载荷
下, 只要应力不超过比例极限(σmax< σp ),都成 立。
10.2 用动静法求应力和变形
Up Down
达朗伯原理------动静法:惯性力的方向与加速 度方向相反,惯性力的大小等于加速度与质量 的乘积(m ·a)。
F = m ·a ---- “牛顿第二定律”;
F - m ·a = 0 。
一、 构件作匀加速直线运动
以匀加速上升的杆为例:P
由图列平衡方程:
x
Σx=0得:
I
Nd = Ax·γ+Ax(γ/g)a
=A·γ(1+a/g)x
x
Up Down
a
Nd
I
得该杆各截面的动应力: σd= Nd /A = γ·(1+a/g)x
飞轮相比,轴的质量可以不计。轴的另一端A装
有刹车离合器。飞轮的转速为n=100r/min,转动
惯量为Iz=0.5kN.m.s2。轴的直径d=100mm。刹车 时使轴在10s内均匀减速停止转动。求轴内最大
动应力。
解:
0
n
30
10
3
rad
/
s
α
Md
轴的角加速度为:
1
0
0
10
3
L
ω0
t
10
rad / s2
3
n=100r/min,Iz=0.5kN.m.s2,d=100mm。
0
n
30
10
3
rad
/
s
rad / s2
3
负号表示α与ω0的转向相反。
按动静法在飞轮上加上与α转向相反的惯性力
作偶轴用TMM横在dd,截轴0于面上.5I是z上的有的摩1:0扭擦30矩./力5[((矩T3M)()1Mt0d00.M3510d0.k353N)03k•.3]5Nm
使横截面面积A增加
无济于事。
ds (D / 2)d
2FNd
0
(sin )qd
D d
2
qd
qd
D
2
A an
0 sin
A D
2 d qd D
2
最大线速度:
FNd
qd D / 2
A D2 2
4
vmax
[ ]
d
FNd A
D2 2
4
( D
2
)2
v2
[ ]
例10.1在AB轴的B端有一个质量很大的飞轮。与
分别比较动、静状态下的情形:
Up Down
动载荷下(a≠0):
静载荷下(a = 0):
Pd = (1+a/g)·Q Nd = (1+a/g)x·Q /L σd= (1+a/g)(Q /A)·x /L
Pst = Q Nst = x·Q /L σst= (Q/A)·x /L
设 得K到d:= (1+a/g),称Kd 为动荷系数,从以上比较
ACB a
z qst Ag
解:将集度为 qd=Aa 的y惯性力加在工字钢上,使
工字钢上的起吊力与其重量和惯性力假想地组成
平衡力系。若工字钢单位长度的重量记为 qst ,则
惯性力集度为
qd
Aa
( A g)
a g
qst
a g
于是,工字钢上总的均布力集度为
a
q
qst
qd
qst (1
) g
引入动荷因数 2m 4m 4m 2m
m
115MPa
二、构件作匀角速度转动:
设圆环的平均直径D、厚度δ,且 δ«D,环的 横截面面积为A,密度为ρ,圆环绕过圆心且垂
直于圆环平面的轴以等角速度旋转,如图所示
,试确定圆环的动应力,并建立强度条件。
δ
O
D
qd 解:①惯性力分析:
D 2
an 2
( Ads )an
qd
A an
A D 2
2
可见为了提高强度,
Pd = Kd Pst Nd = Kd Nst σd = Kd σst 即 即得今。后若知Kd ,则动参数可由Kd 乘对应静参数
对于作匀加速直线运动的构件:
Up Down
Kd = 1+ a/g
Pd K d Pst
d Kd st
其动载荷下的强度条件仍然为:
σd =Kd·σst ≤[σ] 注意:许用应力[σ]仍为静载荷下的许用应力;
kN • m •m
2.67 MPa
Nd =A·γ(1+a/g)x
σd=γ·(1+a/g)x
杆重Q = ALγ,A = Q /(Lγ)
P
代入上两式得:
x
Nd = (1+a/g)x·Q /L
I
σd= (1+a/g)(Q /A )·x /L
x
Up Down
a
Nd
I
而缆绳的牵引力Pd为:
Pd = (1+a/g)·Q 下面分别比较动、静状态下的情形:
Kd
1
a g
则 q Kdqst
ACB
z
a
解:将集度为 qd=Aa 的y惯性力加在工字钢上,使
工字钢上的起吊力与其重量和惯性力假想地组成
平衡力系。若工字钢单位长度的重量记为 qst ,则
惯性力集度为
qd
Aa
ห้องสมุดไป่ตู้
( A g)
a g
qst
a g
由对称关系可知两吊索的轴力FN相等. 1qst Ag
Fy 0 2FN qstl 0
相关文档
最新文档