第一章量子力学基础

合集下载

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

第1章 量子力学基础知识

第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态

第一章量子力学基础

第一章量子力学基础

RH 1 1 ~ 1 1 = 2 = RH 2 2 2 hc n1 n2 n n 2 1

实物微粒的波粒二象性
德布罗意假说: ε= hν=hu/λ p = h/λ ρ= K|Ψ|2 or ρ∝|Ψ|2
h/ p
h 2meT 1.226nm T / eV
ν/1014s-1
黑体辐射实验曲线
黑体辐射的解释
瑞利· 金斯公式 (麦克斯韦理论) : 8 2 kT E ( , T )d d 3
c
普朗克· 金斯公式:

8h 3 d E ( , T )d c 3 e h / kT 1
维恩公式
(统计热力学理论) :
第一章 量子力学基础
量子力学产生的背景 经典物理学的困难与旧量子论的诞生;实 物微粒的波粒二象性;不确定关系。 量子力学基本原理 波函数与微观粒子的状态;力学量和算符; 量子力学的基本方程;态叠加原理;电子自旋。 量子力学基本原理的简单应用 势箱中运动的粒子;线性谐振子;量子力 学处理微观体系的一般步骤与量子效应。
黑体辐射
黑体辐射模型
5 4
m-2 E (vT)/10-9J·
λБайду номын сангаас
2000K
3
维恩位移定律
T定,辐射频率:v v+dv 辐射能量:E(v,T)dv。辐射最强的 频率λmax随温度升高而发生位移: λmaxT=2.9×10-3 m· K
2
1500K
1
1000K
0 0 1 2 3
斯忒蕃公式
总辐射能量:E=σT4
爱因斯坦光子学说(1905年)
光是一束光子流。每一种频率的光能量都有一最小单位, 即为光子的能量ε: ε= hν 光的能量是量子化的,不连续的。 一束光的能量是hν的N微粒形式出现的集合体。 即: E = Nhν 光子密度: ρ= LinΔΝ/Δτ=dN/dτ Δτ→0 光子的能量和动量: 相对质能联系定律: εo = mc2,m = hν/c2 =h/cλ, 动量: p = mc = hν/c , p = h/λ 光子与电子相碰时服从能量守恒和动量守恒定律 hν=W + T = hνo + ½ mv2,T = ½ mv2 = hν- hνo 光波强度与光子密度的关系:I = ρhν, ρ= dN/dτ I = Eo2/8π+Ho2/8π=Ψ2/4π (麦克斯韦方程) ρhν= Ψ2/4π ρ= K|Ψ|2

1第一章 量子力学基础

1第一章 量子力学基础


实例1: 运动速度为1.0×106m·s-1的电子的de Broglie波波长为
实物微粒的波粒二象性
6.6 ×10−34 J ⋅ s λ= = 7.0 ×10−10 m (9.1×10−31 kg ) × (1.0 ×106 m ⋅ s −1 )
这个波长相当于分子大小的数量级,说明原子和分子中电子运动的波效应 是重要的。而宏观粒子,如质量为1.0×10-3kg的宏观粒子以1.0×10-2 m·s-1的 速度运动时,经计算λ= 7.0×10-29 m,观察不到波动效应。 实例2:电子的运动λ =h/mυ,它由加速电子运动的电场电势差V(伏特)决定。
W 脱出功,hv0 Ek光电子动能,mυ2/2
ε = h ν, p = h/λ ε, p 粒性, v, λ 波性
实物微粒的波粒二象性
• 波粒二象性是微观粒子的基本特性,这里所指的微 观粒子既包括静止质量为零的光子,也包括静止质 量不为零的微粒,如电子、质子、原子和分子等。 • 1924年de Broglie(德布罗意)受光的二象性启发, 提出实物微粒的波粒二象性假设,三年后被 C.J.Davisson(戴维孙)等人用电子衍射实验证实。 • de Broglie的假设内容有: E = hν , p= h/λ 这样实物微粒在以大小为p = mv 的动量运动时, 其波长 λ =h/p=h/mυ 此即de Broglie关系式, λ 为德布罗意波的波长。
者之间所应满足的关系。
例:试比较电子和质量为10g的子弹位置的不确定量,假设它 解:
们在x方向都以速度200m/s运动,速度的不确定度在0.01%内。
Δx ⋅ Δp x ≥ h
−32
h Δx = Δp x
电子: Δp x = 0.01% mv x = 10 −4 × 9.11× 10 −31 × 200

-第1章-量子力学基础详细讲解

-第1章-量子力学基础详细讲解

1.3.4 表象变换 设有两个表象A和B,其基矢分别为、。 (a)态矢的表象变换 在表象A中,可将任意态矢展开为 ,; 在表象B中,可将同一个态矢展开为 ,。 所谓态矢的表象变换,就是要建立和之间的关系。
(1.28) (1.29)
, (1.30) 其中
(1.31) 矩阵称为表象A和表象B之间的变换矩阵。(1.30)式可简写成
态矢量的归一化条件为 (1.23)
在连续变量表象中,完备性条件为 (1.24)
任意态矢量可展开为 (1.25a)
其中 (1.25b)
是态矢在表象中的表示,也就是通常讲的波函数。可见,态矢量在连续 表象中表现为一个普通函数。
态矢量的归一化条件为
(1.26) 可见,选定了一组基矢,就选定了一个表象;这类似于,选定了一 组单位矢量,就选定了一个坐标系。常用的连续表象有坐标表象和动量 表象;常用的离散表象有能量表象和角动量表象。
由于线性厄密算符的上述性质,在实验上可观测的力学量(如:坐 标、动量、能量、角动量、自旋等)均用线性厄密算符表示。不过,我 们也会遇到一些非常重要的非厄密算符,如光子产生算符、光子湮灭算 符等。
算符在量子态中的期望值(平均值)记为 (1.12a)
平均值为c数。若将态矢量按(1.11a)式用算符的本征态展开,则平均 值的计算如下:
1.4.2 纯态和混合态举例 (a) 纯态: 光子数态(photon-number state) ,其密度算符为 (1.51)
其中为光子数。 相干态(coherent state),其密度算符为 (1.52)
(1.18) 其中 。例如,坐标和动量的对易关系为
其不确定度关系为
(5) 全同粒子假设 作为量子力学的一条基本假设,认为所有的同一类粒子(例如所有 的电子、所有的光子等)的各种固有属性都是相同的,即同一类粒子是 全同的粒子。因而,在由全同粒子组成的系统中,交换其中任意两个粒 子不会改变系统的状态,这导致描述全同粒子系统的波函数对粒子的交 换要么是对称的,要么是反对称的。 研究发现,全同粒子可分为两大类,一类称为玻色子,其自旋为零 或正整数(,…);另一类称为费米子,其自旋为半奇数(,…)。玻 色子和费米子具有完全不同的性质,例如,描述玻色子系统的波函数对 粒子的交换是对称的,而描述费米子系统的波函数对粒子的交换是反对 称的;玻色子服从玻色-爱因斯坦统计,而费米子服从费米-狄拉克统 计。

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

量子力学基础

量子力学基础

i 2 i 2 xpx Et xpx Et A exp h x h
第一章 量子力学基础知识
i 2 i 2 i 2 xpx Et px A exp p x h h h
z
e2
第一章 量子力学基础知识
e1
不考虑核的运动
r1 r12 r2
z
2 p12 p2 2e 2 2e 2 e2 E 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
e2
ˆ 2 2 2e 2e e H 1 2 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
第一章 量子力学基础知识
合格(品优)波函数
由于波函数的概率性质,所以波函数必须满足下 列条件: • 单值的,即在空间每一点 只能有一个值;
• 连续的,即 的值不出现突跃; 对x, y, z的 一级微商也是连续函数;
• 平方可积的,即 在整个空间的积分
* d
为一个有限数,通常要求波函数归一化,即
态函数的形式与光波的方程类似,习惯上称之为 波函数。如: 平面单色光的波动方程: A exp i 2 x t E hv, p h 代人波粒二象性关系: i 2 得单粒子一维运动波函数: A exp xpx Et
h


定态波函数:当微观粒子的运动状态不随时 间而变时,其波函数可以写作:
x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3 , t
or
or
1,2,3, t
q1 , q2 , q3 , t ,
<关于波函数的一些概念和说明> 波函数是体系中所有粒子的坐标和时间的函数。

第一章 量子力学基础.

第一章 量子力学基础.

在量子力学中,最重要的一种本征方程是能量本征方程,
即定态Schrödinger方程(能量算符是Hamilton算符):
Ĥ =E
2
( 2 V ) E
2m
只有参数E取某些特定值时, 该方程才有满足自然条件的非零解
. 参数E的这些取值就是Hamilton算符的本征值,相应的ψ是
Hamilton算符的属于该本征值的本征函数.
力学量
算符
位置x,时间t
xˆ x,tˆ t动量的x Nhomakorabea分量px


x

i
x
角动量的z轴分量
Mˆ z

i
x
y

y
x

力学量 势能 V
动能 T=p2/2m 总能量 E=T+V
算符
Vˆ V



2 2m

2 x 2

2 y 2

2 z 2
dx 2
的本征函数。若是,求出本征值。
d2 (ex ) 1 ex dx 2
ex是算符的本征函数,本征值为1
d 2 (sin x) sin x sinx是算符的本征函数,本征值为-1 dx 2
d2 (2cos x) 2cos x dx 2
2cosx是算符的本征函数,本征值为-1
d2 (x3 ) 6x dx 2
三、能级公式的意义:
En

n2h2 8ml 2
(n
1, 2,3......)
受束缚的粒子的能量必须是量子化的,即边界条件迫使
能量量子化。(一维势箱的量子化是解方程自然得到的,
而非像旧量子论人为附加)

@第一章 量子力学基础

@第一章 量子力学基础

量子力学基本假设
如果一个体系的可观测力学量的平均值不随时
间而改变,这个体系就被说成是处于一个定态。
注意:定态不等于静止。
本课程中主要讨论定态波函数。
C为一个常数因子(可以是实数或复数)时,Ψ 和 C Ψ描述同一状态。(为什么?)
由于波函数描述的是几率波,所以ψ必须满足3个条 件,即品优波函数或合格波函数: •单值,即在空间每一点ψ只能有一个值
一维势箱
一维势箱中最低能量值:n=1,E1=h2/8ml2, 对应1状态
(3)零点能
E1即为零点能(能量最低的状态1所具有的 能量) 由于箱中V(x)=0,故E1全是动能
箱中动能恒大于0,粒子处在最低的能量 状态,也在运动 能量最低的状态叫基态,基态公式可以看出,当l增大,即粒子的活动 范围扩大时,相应的能量会降低。 这种由于粒子的活动范围扩大而使体系能量降 低的效应称为“离域效应” 在有机化学中,共轭化合物的体系,因离域 效应而使得化合物更加稳定;对当代一些光 电材料学科也具有重要的意义。
电子1/2mv2 = eV; = h/mv = h/(2me)1/2(V)1/2 =1.226×10-9/V1/2(m)
实物微粒波的证明及其统计解释
1926年,波恩提出实物微粒波的统计解 释:他认为在空间任何一点上波的强度和粒 子出现的概率成正比,按照这种解释描述的 粒子的波称为概率波。 1927年,德布罗意的假设被戴维逊-革 末的镍单晶电子衍射实验和汤姆逊的多晶金 属箔电子衍射实验所证实。 1928年后,实验进一步证明,分子,原 子、质子、中子等一切微观粒子都无不具有 介绍 波动性。
量子力学基本假设
假设Ⅳ 态叠加原理
若ψ1,ψ2,…,ψn为某一微观状态的可 能状态,由它们线性组合所得的ψ也是该体系的 可能状态:

第一章量子力学基础

第一章量子力学基础

(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V

第一章量子力学基础

第一章量子力学基础

第⼀章量⼦⼒学基础第⼀章量⼦⼒学基础知识⼀、概念题1、⼏率波:空间⼀点上波的强度和粒⼦出现的⼏率成正⽐,即,微粒波的强度反映粒⼦出现⼏率的⼤⼩,故称微观粒⼦波为⼏率波。

2、测不准关系:⼀个粒⼦不能同时具有确定的坐标和动量3、若⼀个⼒学量A 的算符A作⽤于某⼀状态函数ψ后,等于某⼀常数a 乘以ψ,即,ψψa A=?,那么对ψ所描述的这个微观体系的状态,其⼒学量A 具有确定的数值a ,a 称为⼒学量算符A的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A=?称为A ?的本征⽅程。

4、态叠加原理:若n ψψψψ,,,,321为某⼀微观体系的可能状态,由它们线性组合所得的ψ也是该体系可能存在的状态。

其中:∑=++++=ii i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321为任意常数。

5、Pauli 原理:在同⼀原⼦轨道或分⼦轨道上,⾄多只能容纳两个电⼦,这两个电⼦的⾃旋状态必须相反。

或者说两个⾃旋相同的电⼦不能占据相同的轨道。

6、零点能:按经典⼒学模型,箱中粒⼦能量最⼩值为0,但是按照量⼦⼒学箱中粒⼦能量的最⼩值⼤于0,最⼩的能量为228/ml h ,叫做零点能。

⼆、选择题1、下列哪⼀项不是经典物理学的组成部分? ( )a. ⽜顿(Newton)⼒学b. 麦克斯韦(Maxwell)的电磁场理论c. 玻尔兹曼(Boltzmann)的统计物理学d. 海森堡(Heisenberg)的测不准关系2、下⾯哪种判断是错误的?( )a. 只有当照射光的频率超过某个最⼩频率时,⾦属才能发⾝光电⼦b. 随着照射在⾦属上的光强的增加,发射电⼦数增加,但不影响光电⼦的动能c. 随着照射在⾦属上的光强的增加,发射电⼦数增加,光电⼦的动能也随之增加d. 增加光的频率,光电⼦的动能也随之增加3、根据Einstein的光⼦学说,下⾯哪种判断是错误的?( )a. 光是⼀束光⼦流,每⼀种频率的光的能量都有⼀个最⼩单位,称为光⼦b. 光⼦不但有能量,还有质量,但光⼦的静⽌质量不为0c. 光⼦具有⼀定的动量d. 光的强度取决于单位体积内光⼦的数⽬,即,光⼦密度4、根据de Broglie关系式及波粒⼆象性,下⾯哪种描述是正确的?( )a. 光的波动性和粒⼦性的关系式也适⽤于实物微粒b. 实物粒⼦没有波动性c. 电磁波没有粒⼦性d. 波粒⼆象性是不能统⼀于⼀个宏观物体中的5、下⾯哪种判断是错误的?( )a. 机械波是介质质点的振动b. 电磁波是电场和磁场的振动在空间的传播c. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩d. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩,也反映了粒⼦在空间振动的强度6、下⾯对宏观物体和微观粒⼦的⽐较哪⼀个是不正确的?( )a. 宏观物体同时具有确定的坐标和动量,可⽤⽜顿⼒学描述,⽽微观粒⼦没有同时确定的位置和动量,需⽤量⼦⼒学描述b. 宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒⼦具有⼏率分布特性,不可能分辨出各个粒⼦的轨道。

第一章:量子力学基础

第一章:量子力学基础
n
ˆ p n | pn 2 n d 2 n sin x ) * ( i ) sin xdx 0 a a dx a a a 2 n n n (i ) (sin x)( )(cos x)dx 0 a a a a 2 n 1 a 2 n (i )( ) sin xdx a a 2 0 a 0 (
1. 乘法与对易 满足结合律,一般不服从交换律
ˆ ˆ ˆ AB A( B )
ˆ ˆˆ ˆˆ ˆ A( BC ) ( AB)C
ˆ ˆ ˆˆ AB BA
ˆˆ 如: xDf ( x) xf ' ( x)
ˆ xf ( x) d xf ( x) f ( x) xf ' ( x) Dˆ dx ˆˆ ˆ ˆ ˆ ˆ ˆ Dx I xD xD
*
(m n ) m | n 0
因为
13
m n
所以
m | n 0
Chapter 1 量子力学基础
1.4 算符
厄米算符的本征函数与本征值 —— 性质 III
定理(3):厄米算符本征函数构成一完备集合,任何一个
品优函数可用它展开
f Cnn
n
其中展开系数:
1.4 算符 其它力学量表示法 动能
ˆ F (r ,i) ˆ F (r , p) F
p2 2 2 ˆ T T 2m 2m
势能 V(r ) V (r ) ˆ 角动量 L r p L r (i) H Hamilton 算符
1.4 算符
厄米算符 (Hermitian Operator)
对任意品优波函数,算符满足 则 F 是厄米算符
ˆ ˆ 定理:若两个厄米算符 A 和 B 对易,即 ˆ 是厄米的 。 ˆ 则乘积算符 AB

量子力学基础

量子力学基础
若算符 Gˆ与函数Ψ(q,t)之间满足如下关系:
Gˆi (q,t) Gii (q,t)
其中Gi为常数。 将Ψ(q,t)描写的状态称为力学量的本征态,此式称 为力学量的本征方程;
Gi称为的第i个本征值; Ψ(q,t)为相应的本征函数
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设----假设3
[,] 0,[ pˆ, pˆ] 0,[, pˆ] i
对易子的几个基本规则: [Fˆ , Gˆ ] [Gˆ , Fˆ ]
[Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ] [Fˆ , Hˆ ] [FˆGˆ , Hˆ ] [Fˆ , Hˆ ]Gˆ Fˆ[Gˆ , Hˆ ] [Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ]Hˆ Gˆ[Fˆ , Hˆ ]
第一章 量子力学基础
1.1 量子力学基本假设 1.2 算符 1.3 力学量同时有确定值的条件 1.4 测不准关系 1.5 Pauli原理
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设—假设1
•假设1---状态函数和几率
(1)状态函数和几率
• 微观体系的任何状态可由坐标波函数Ψ(q,t)来表示。
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设---假设1
简并本征态的线性组合仍是该体系的本征态,且本
征值不变;非简并本征态的线性组合也仍是该体系的可
能状态,但一般不再是本征态,而是非本征态.
a
1 2
(2s
2 px
2 py
2 pz )
a
1 2
(2s
2 px
2 py
2 pz )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h h
p mv
h
λ为物质波的波长,P为粒子的动量, h为普郎克常数, ε为粒子能量,γ为 物质波频率。
2020/6/27
25
2.物质波的实验证实—电子衍射
1927年,戴维逊(Dawison)—革末(Germer)的镍单晶体电 子衍射实验,汤姆逊(G.P.Thomson)的多晶体电子衍射实验 发现,电子入射到金属晶体上产生与光入射到晶体上同样的 衍射条纹,证实了德布罗意假说。
h = 6.626×10-27erg.sec = 6.626×10-34 J.s
2020/6/27
8
②谐振子的能量变化不连续,能量变化是0的整 数倍。
E=n20-n10=(n2-n1)0 普朗克用瑞利-金斯相同的方法推导出:
E(,T)d8ch33 ehd /kT 1
既能计算能量分布曲线的极大值,导出维恩位移 定律,推出斯芯潘公式;又能在高温低频时还原 成瑞利-金斯的结果,说明高频时能量密度趋于零。
越黑,高温时发光的本领就越强,因而越白。 黑体:一种能100%吸收照射到它上面的各种波长
的光,同时也能发射各种波长光的物体。
2020/6/27
4
2020/6/27
绝对的黑体是不存 在的,带有一个微 孔的空心金属球, 非常接近于黑体。
进入金属球小孔的辐射,经过多次 吸收、反射,使射入的辐射全部被吸 收。当空腔在吸收能量的同时也不断 从小孔辐射能量,物别是受热时会更 明显。通过小孔逸出的电磁波是一个 连续谱,比同温度下任何其它物体表 面的辐射都强,即为黑体辐射。
2020/6/27
26
例2 (1)求以1.0×106m·s-1的速度运动的电子的波长。
m hv 9 .1 6 .1 6 3 0 2 11 1 .6 0 3 0 1 2 460 7 1 1 0 m 0
这个波长相当于分子大小的数量级,说明分子和原子中电 子运动的波动性显著的。
(2)求1.0×10-3kg的宏观粒子以1.0×10-2m·s-1的速度运 动时的波长。
5
m ax
E( v,T)10-9J.m-2
5
4
2000K
3
2
1500k
1
1000K
01
23
v/1014s-1
①随着温度(T)的增加, 总辐射能量E(即曲线下的面积) 急剧增加。
E T4 ( 5 .6 7 1 0 8 W g m 2g K 4)
——斯芯蕃公式
②随着温度(T)的增加,E的 极大值向高频移动;曲线的峰值 对应于辐射最强的频率,相应的 波长 m a随x 温度升高而发生位移。
2020/6/27
电子的波性是和微 粒行为的统计性联
系在一起的。
29
原子和分子中的电子其运动具有波性, 其分布具有几率性。原子和分子的运 动可用波函数描述,而电子出现的几 率密度可用电子云描述。
2020/6/27
30
3.不确定关系(测不准原理)
测不准原理是由微观粒子本质特性决定的。 1927年海森堡( (Heisenberg)提出:一个粒子不能同时具有确定的坐标和动 量(也不能将时间和能量同时确定),它要遵循测不准关系。
E( ,对T ) 作 2图应为一抛物线,在长波处很接近实验 曲线,在短波长处与实验结果(能量趋于零)显 著不符(紫外灾难)。Wein(维恩)用经典热力 学进行解释,假设辐射按波长的分布类似于 Maxwell的分子速率分布,所得公式在短波处与 实验比较接近,但长波处与实验曲线相差很大。
2020/6/27
m h 1 v 6 1 .6 3 0 2 1 .0 1 6 1 3 0 2 4 2 0 6 .62 1 6 2 0 m 2 9
这个波长太小,观察不到波动效应。
2020/6/27
27
例3 计算动能为300eV的电子的德布罗意波长.
解: 已知 h=6.62610-27erg.sec m=9.1110-28g
线系,而且还预测到n1=1的赖曼 线系的存在。1915年赖曼线系在
远紫外区被发现。1922获诺贝尔
物理学奖。
2020/6/27
24
二、实物粒子的波粒二象性
1.德布罗意假说(粒子的波动性)
实物粒子:静止质量不为零的微观粒子。如电子、质子、 中子、原子、分子等。
1924年德布罗意(de Broglie)提出实物粒子也具有波 粒二象性:
机械波是介质质点的振动,电磁波是电场和磁场的振动在 空间的传播,而实物微粒波的强度反映粒子几率出现的大小, 称几率波。较强的电子流可在短时间内得到电子衍射照片, 但用很弱的电子流,让电子先后一个一个地到达底片,只要 时间足够长,也能得到同样的衍射图形。电子衍射不是电子 之间相互作用的结果,而是电子本身运动的所固有的规律性。
只有把光看成是由光子组成的才能理解光电效应, 而只有把光看成波才能解释衍射和干涉现象,光表 现出波粒二象性。
2020/6/27
15
3.氢原子光谱与玻尔的氢原子模型 当原子被电火花、电弧或其它方法激发
时,能够发出一系列具有一定频率(或波 长)的光谱线,这些光谱线构成原子光谱。
2020/6/27
16
% 1
R°H
1
n12
1 n22
R° 为H 里德堡常数, R°=H 1.09677576×107m-1
莱曼系(Lyman) n1=1 n2 =2,3... 远紫外区 巴尔麦线系(Balmer) n1=2 n2 =3,4... Hα,Hβ,Hγ,
Hδ为可见区,其 余为近紫外区 帕邢系(Paschen) n1=3 n2 =4,5... 近红外区
2020/6/27
9
2.光电效应与光子学说(光的粒子性)
光电效应:光照在金属表面上,金属发射 出电子的现象。金属中的电子从光获得足 够的能量而逸出金属,称为光电子,由光 电子组成的电流叫光电流。
①在有两个电极的真空玻璃管两极分别加 上正负电压。当光照在正极上,没有电流 产生;而当光照在负极上则产生电流,光 电流强度与光的强度成正比。
电子束和光一样通过一狭缝可以发生衍射现象。一束以速度v 沿y方向前进的电子束,通过宽度为d的狭缝,在屏幕E(x方向)上产 生衍射条纹。在x1和-x1处出现第一对衍射条纹(暗线),其所对 应的衍射角α满足光的狭缝衍射定律:即狭缝上下边缘到达x1处
m
h
c2
h
c
光子的质量与光的频率或波长有关,但光子没有静止质 量,因为根据相对论原理:
m
m0
1(v/ c)2
2020/6/27
13
④光子有动量P
Pmcmc2 c
h
c
h
⑤光子与电子碰撞时服从能量守恒和动量守恒。
hWEk h01 2m 2
——光电方程或爱因斯坦关系式
光照射到金属上,当金属中的一个电子受到一 个光子撞击时,产生光电效应,光子消失,并把 它的能量转移给电子。电子吸收的能量一部分用 于克服金属对它的束缚力,其余表现出光电子的
1927年,海特勒和伦敦运用量子力学成功解释 了氢分子的成因,标志着量子化学的诞生,使 化学由经验科学向理论科学过渡。
2020/6/27
3
§1-1量子力学产生的背景
一、经典物理学的困难与旧量子论的诞生 1.黑体辐射与普朗克( planck)的量子论
任何物体都能受激吸收能量,又能自发辐射能量。 物体低温时能吸收什么波长的电磁波,高温时会发 射同样波长的电磁波。吸收光的本领越强的物体就
1905年爱因斯坦(A. Einstein)依据普朗克 的能量子的思想,提出了光子说,圆满地解释
了光电效应。
2020/6/27
12
①光的能量是量子化的,最小能量单位是光子, 0 h。 ②光为一束以光速运动的光子流,光的强度I正比于光子
的密度ρ,ρ为单位体元内光子的数目。
I h
③光子具有质量,根据质能联系定律:
1eV=1.60210-12erg

T p2
p 2mT
2m
因此
h h
p 2mT
6.6261027
29.1110283001.6021012
7.08109(cm)
2020/6/27
28
实物微粒波代表什么物理意义呢?
1926年,玻恩(Born)提出实物微粒波的统计解释。空 间任何一点上波的强度(振幅绝对值的平方)和粒子出现的 几率成正比,称为几率波。
m e 为电子质量
0 为真空电容率
rm 0hee22n2 52.9n2(pm) n=1,2,3,...
当n=1,r=52.9pm为氢原子基态的半径,称为玻尔半径(a0)
2020/6/27
22
氢原子的总能量:
ETVmev2 e2
2 40r
E8mhee24n2
RH
1 n2
RH8 m e e h422.1791018J13.6eV
2020/6/27
23
氢原子的半径和能量都是量子化的。若电子在两能级间跃
迁吸收或发射的电磁波满足:
hv
E n2
E n1
RH
(
1 n12
1)
n
2 2
%
RH hc
1 ( n12
1 n22 )
R%H
(
1 n12
1 n22 )
R%H 1.097373 107 m 1
玻尔理论不仅成功地解释了当时
已知的氢原子光谱n1=2,3,4,…的 巴尔麦线系、帕刑线系、布喇开
1 h
E2
E1
——玻尔频率规则
③电子轨道角动量
Mmevrn(2h=n)hn=h1,22,h3 ,……
2020/6/27
19
2020/6/27
20
2020/6/27
21
相关文档
最新文档