优选第一章量子力学基础习题

合集下载

《物质结构导论》习题集第一章量子力学基础

《物质结构导论》习题集第一章量子力学基础

《物质结构导论》习题集第一章 量子力学基础1.K 的电子逸出功是2.2 eV ,Ni 的电子逸出功是5.0 eV ,而1 eV=1.6×10-12 erg ,波长为4000 Å的紫光能否引起金属K 和Ni 的光电效应? 2.考虑相对论效应,则以速度υ运动的粒子的动能为2022201c c c T μυμ--=其中0μ为粒子的静止质量。

试证明当c <<υ时,2021T υμ≈。

3.计算红光λ=6000 Å和X 射线λ=1 Å的一个光子的能量、动量和质量。

4.试求下列各粒子的de Broglie 波长 (a) 100 eV 的自由电子。

(b) 0.1 eV ,质量为1g 的粒子。

5.质量为m 的粒子,在弹性力kx -作用下运动,试写出其Schrödinger 方程。

6.写出一个被束缚在半径为a 的圆周上运动的粒子的Schrödinger 方程,并求其解。

7.已知在一维方势阱中运动的粒子的波函数为⎪⎭⎫⎝⎛=x an a πψsin 2,其中a 为势阱的长度。

试计算: (a)粒子动量的平方。

(b)n 取何值时粒子在区间⎥⎦⎤⎢⎣⎡a 41,0的几率最大。

8.用不确定原理和virial 定理判断下列论断是否正确:中子是由相距小于10-13cm 的质子和电子用Coulomb 力结合起来的粒子。

9.证明kx e x =)(ψ是x P 的本征函数,并说明k 的取值情况。

10.试计算Li 2+离子s 2和p 2轨道上电子的电离能。

11.忽略电子的自旋轨道相互作用,但考虑电子的自旋状态,试确定主量子数是n 的氢原子电子能级的简并度。

12.在求解氢原子电子的Sc hrödinger 方程时,曾忽略了万有引力的作用。

质子和电子在万有引力作用下的势能为r GM V μ='其中万有引力常数G =6.67×10-8 cm 3.g -1.s -1。

第一章 量子力学基础 例题与习题

第一章 量子力学基础 例题与习题

第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。

和是属于同一本征值得本征函数,证明常数。

量子力学第一章习题答案

量子力学第一章习题答案

量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。

解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。

解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。

解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。

chapter1 量子力学基础知识习题解答

chapter1 量子力学基础知识习题解答

在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点越多,
能量越高。以上这些特点是所以量子力学体系都有的特点。
2
乐山师范学院 化学与生命科学学院
本章习题解答
【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm,这是 Li 原子由电子组态 (1s)2(2p)1
→(1s)2(2s)1 跃迁时产生的,试计算该红光的频率、波数以及以 kJ ⋅ mol−1 为单位的能量。
描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ (x, y, z) 称为定态波函数。在本课程中主要讨论定态波函
数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒
子的几率正比于ψ *ψ ,所以通常将用波函数ψ 描述的波称为几率波。在原子、分 子等体系中,将ψ 称为原子轨道或分子轨道;将ψ *ψ 称为几率密度,它就是通常 所说的电子云;ψ *ψ dτ 为空间某点附近体积元 dτ 中电子出现的几率。
花粉: ∆x
=
h m∆v
=
6.626 ×10−34 J ⋅ s 10−13 kg ×1×10%m ⋅ s−1
=
6.63×10−20 m
5
乐山师范学院 化学与生命科学学院
电子: ∆x
=
h m∆v
=
6.626 ×10−34 J ⋅ s 9.1.0910−31kg ×1000 ×10%m ⋅ s−1
=
7.27 ×10−6 m
相反的两个电子。或者说:对于多电子体系,波函数对于交换任意两个电子是反
对称的。
三、箱中粒子的 Schrödinger 方程及其解
1. 一维无限势阱的 Schrödinger 方程:

基本习题和答案解析量子力学

基本习题和答案解析量子力学

WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。

第一章量子力学基础习题

第一章量子力学基础习题

第一章 量子力学基础一.选择题1. 已知某色光照射到一金属表面、产生了光电效应,若此金属的逸出电势是0U (使电子从金属逸出需做功0eU )则此单色光的波长λ必须满足: A(A )0/eU hc ≤λ (B )()o hc eU λ≥(C )()()0/eU hc λ≤ (D )()()0/eU hc λ≥2. 用强度为I ,波长为λ的X 射线(伦琴射线)分别照射锂(Z=3)和铁(Z=26),若在同一散射角下测得康普顿散射的X 射线波长分别Li λ和()11,Fe L F λλλλ>,它们对应的强度分别为1L I 和Fe I ,则(A )11,L Fe L Fe I I λλ>< (B )11,L Fe L Fe I I λλ== (C )11,l Fe L Fe I I λλ=>(D )11,L Fe L Fe I I λλ<> [ C ]3. 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比21:v v 是: (A )1; (B )19; (C )3;(D )9 。

[ C ]4. 若外来单色光将氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱的条数是: C (A )1; (B )2; (C )3; (D ) 65. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.40A ,则U 约为(A )150V (B )330V (C )630V (D )940V(普朗克常量34606310.h j s -=⨯) [ D ] 6. 若α粒子(电量为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A )()2h eRB (B )()h eRB(C )()12eRBh (D ))1eRBh [ A ] 7. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()32x x a πφ=(-a ≤x ≤a )那么粒子在x=5a/6处出现的几率密度为: (A )1/(2a ) (B )1/a(C) (D) [ ]解答:()2222531516cos cos 242ax a a aπρϕπ====, 故选(A )。

第一章 量子力学基础习题1

第一章 量子力学基础习题1

sin β φ = sin (φ + 2π )
若上式成立, 若上式成立,则:
β =n
β 2π = n 2π
n = 0,±1,±2,
n 2 2 E = 2 ma 2
β = n2
inφ
Φ (φ ) = ce
=
1 inφ e 2π
习题
1.26正方体箱中的粒子处于状态和时,其几率密度最大处的 正方体箱中的粒子处于状态和时, 正方体箱中的粒子处于状态和时 坐标是什么?若不考虑边界,各有几个节面? 坐标是什么?若不考虑边界,各有几个节面?表示这些节面 的方程是什么?这些节面将整个正方体箱分成几个部分? 的方程是什么?这些节面将整个正方体箱分成几个部分?你 能不能不用计算而直接得出这些答案? 能不能不用计算而直接得出这些答案?
基本知识
5.态叠加原理
为某一微观体系的可能状态, 若Ψ1, Ψ2, Ψi, Ψn为某一微观体系的可能状态,由 它们线性组合也是该体系的可能状态. 它们线性组合也是该体系的可能状态.
Ψ = c1ψ 1 + c2ψ 2 + … cnψ n = ∑ ciψ i
i =1
n
式中Ci是任意常数,数值的大小反应了Ψi对Ψ的贡献 的大小.
A
x
z
θ
r
o
z
y
y
体系的能量 算符
x
P
2 1 2 1 = H [ 2 (r )+ 2 (sin θ ) 2m r r r r sin θ θ θ 1 2 + 2 2 ] + V (r ) 2 r sin θ φ
习题
因为是自由粒子, 因为是自由粒子,V(r)=0.又因为 .又因为r=a 因此体系的能量算符变为

量子习题第一章

量子习题第一章

第一章 量子力学的实验基础1-1 求证:﹙1﹚当波长较短(频率较高)。

温度较低时,普朗克公式简化为维恩公式;﹙2﹚当波长较长(频率较低),温度较高时,普朗克公式简化为瑞利—金斯公式。

1-2 单位时间内太阳辐射到地球上每单位面积的能量为1324J.m -2.s -1,假设太阳平均辐射波长是5500A,问这相当于多少光子? 1-3 一个质点弹性系统,质量m=1.0kg ,弹性系数k=20N.m -1。

这系统的振幅为0.01m 。

若此系统遵从普朗克量子化条件,问量子数n 为何?若n 变为n +1,则能量改变的百分比有多大?1-4 用波长为2790A和2450A 的光照射某金属的表面,遏止电势差分别为0.66v 与1.26v 。

设电子电荷及光速均已知,试确定普朗克常数的数值和此金属的脱出功。

1-5 从铝中移出一个电子需要4.2ev 能量,今有波长为2000A 的光投射到铝表面,试问:(1)由此发射出来的光电子的最大动能是多少?(2)铝的红限波长是多少?1-6 康普顿实验得到,当x 光被氢元素中的电子散射后,其波长要发生改变,令λ为x 光原来的波长,λ'为散射后的波长。

试用光量子假说推出其波长改变量与散射角的关系为2sin 42θπλλλmc =-'=∆ 其中m 为电子质量,θ为散射光子动量与入射方向的夹角(散射角)1-7 根据相对论,能量守恒定律及动量守恒定律,讨论光子与电子之间的碰撞:(1)证明处于静止的自由电子是不能吸收光子的;(2)证明处于运动状态的自由电子也是不能吸收光子的。

1-8 能量为15ev 的光子被氢原子中处于第一玻尔轨道的电子吸收而形成一光电子。

问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?1-9 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化光子的波长最大是多少?1-10 试证明在椭圆轨道情况下,德布罗意波长在电子轨道上波长的数目等于整数。

第1章 量子力学基础-习题与答案

第1章 量子力学基础-习题与答案

一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。

对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。

试用测不准关系判断该模型是否合理。

解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。

二、选择题1. 一组正交、归一的波函数123,,,ψψψ。

正交性的数学表达式为 a ,归一性的表达式为 b 。

()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。

------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。

第一章 量子力学基础习题课

第一章 量子力学基础习题课

0.867 10 10 m 0.0867nm
3、e 和 cos m 是否为算符 i 的本征函数?若是,求出 d 其本征值。
im
d
解:
d im i e i( imeim ) meim d
ห้องสมุดไป่ตู้
该函数是算符的本征函数,其本征值为-m
d i cos m i( m sin m ) mi sin m d
12、在量子力学中,计算力学量的主要途径是求这力学量的平均值, 当体系处于它的本证态时这个平均值就是 值。 13、电子在一维势阱中运动n=3,节点数为 。 14、普朗克常数是自然界的一个基本常数,它的数值: 。 15、一个在一维势箱中运动的粒子,其能量随着量子数n的增 大: ;其能级差 En+1-En随着势箱长度的增大: 。(填增 大或减小) 12h 2 16、立方势箱中的粒子,具有E= 2 的状态的量子数。 nx ny nz 8ma 是 ;
第一章 量子力学基础
主要概念 一、微观粒子的特性 1、波粒二象性 2、几率波 二、量子力学基本假定 1、态函数 2、力学量与算符 3、薛定谔方程 4、态叠加原理 三、一维无限深势阱 1、能量量子化 2、零点能 3、态函数存在节点且正交归一
主要公式
一(1)
E h
P=h/
2
一(2) dW
解:
(1)、
2 1 1 2 0.51l x 1 2 0.51l (2)、 P1 [ x sin x ]0.49 l [ sin x ]0.49 l 2 l 4 l l 2 l 2 2 2 0.51l 2 ( sin x ) dx ( sin x ) dx 0.49 l 0.49 l l l l l 1 0.02 [sin1.02 sin 0.98 ] 0.0399 2

量子力学习题及解答第一章量子理论...

量子力学习题及解答第一章量子理论...

1量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kThce kThc λλ ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

2解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有p h =λ nmm m E c hc Eh e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学习题集

量子力学习题集

量⼦⼒学习题集量⼦⼒学习题第⼀章绪论1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T=b (常量);并近似计算b 的数值,准确到⼆位有效数字。

1.2 在0K 附近,钠的价电⼦能量约为3eV ,求其德布罗意波长。

1.3 氦原⼦的动能是E=3kT/2(k 为玻⽿兹曼常数),求T=1K 时,氦原⼦的德布罗意波长。

1.4 利⽤玻尔-索末菲的量⼦化条件,求:(1)⼀维谐振⼦的能量;(2)在均匀磁场中作圆周运动的电⼦轨道的可能半径。

已知外磁场H =10特斯拉,玻尔磁⼦M B =9×10-24焦⽿/特斯拉,试计算动能的量⼦化间隔?E ,并与T =4K 及T =100K 的热运动能量相⽐较。

1.5 两个光⼦在⼀定条件下可以转化为正负电⼦对。

如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?第⼆章波函数和薛定谔⽅程2.1 由下列两定态波函数计算⼏率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r .从所得结果说明ψ1表⽰向外传播的球⾯波,ψ2表⽰向内(即向原点)传播的球⾯波。

2.2 ⼀粒⼦在⼀维势场ax a x x x U >≤≤∞∞=00,,0,)(中运动,求粒⼦的能级和对应的波函数。

2.3 求⼀维谐振⼦处在第⼀激发态时⼏率最⼤的位置。

2.4 ⼀粒⼦在⼀维势阱ax a x U x U ≤>??>=,0,0)(0中运动,求束缚态(02.5 对于⼀维⽆限深势阱(0x 和?x ,并与经典⼒学结果⽐较。

2.6 粒⼦在势场xa a x x V x V ≤<<≤??-∞=00,0,,)(0中运动,求存在束缚态(E <0)的条件( ,m ,a ,V 0关系)以及能级⽅程。

2.7 求⼆维各向同性谐振⼦[V =21k (x 2+y 2)]的能级,并讨论各能级的简并度。

2.8粒⼦束以动能E =mk222从左⽅⼊射,遇势垒00,,0)(0≥=x x V x V求反射系数、透射系数。

第一章 量子力学基础课后习题

第一章 量子力学基础课后习题

第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。

黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。

况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。

实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。

这一结果用经典理论无法解释。

(2)光电效应。

光照射到金属上时,有电子从金属中逸出。

实验得出的光电效应的有关规律同样用经典理论无法解释。

(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。

经典物理学不能解释原子的稳定性问题。

原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。

定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。

这种在量子力学建立以前形成的量子理论称为旧量子论。

评价:旧量子论冲破了经典物理学能量连续变化的框框。

对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。

但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。

由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。

第一章 量子力学基础课后习题

第一章 量子力学基础课后习题

第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳070601341林丽云 070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。

黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。

况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。

实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。

这一结果用经典理论无法解释。

(2)光电效应。

光照射到金属上时,有电子从金属中逸出。

实验得出的光电效应的有关规律同样用经典理论无法解释。

(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。

经典物理学不能解释原子的稳定性问题。

原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。

定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。

这种在量子力学建立以前形成的量子理论称为旧量子论。

评价:旧量子论冲破了经典物理学能量连续变化的框框。

对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。

但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。

由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。

第一章量子力学基础

第一章量子力学基础

第⼀章量⼦⼒学基础第⼀章量⼦⼒学基础知识⼀、概念题1、⼏率波:空间⼀点上波的强度和粒⼦出现的⼏率成正⽐,即,微粒波的强度反映粒⼦出现⼏率的⼤⼩,故称微观粒⼦波为⼏率波。

2、测不准关系:⼀个粒⼦不能同时具有确定的坐标和动量3、若⼀个⼒学量A 的算符A作⽤于某⼀状态函数ψ后,等于某⼀常数a 乘以ψ,即,ψψa A=?,那么对ψ所描述的这个微观体系的状态,其⼒学量A 具有确定的数值a ,a 称为⼒学量算符A的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A=?称为A ?的本征⽅程。

4、态叠加原理:若n ψψψψ,,,,321为某⼀微观体系的可能状态,由它们线性组合所得的ψ也是该体系可能存在的状态。

其中:∑=++++=ii i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321为任意常数。

5、Pauli 原理:在同⼀原⼦轨道或分⼦轨道上,⾄多只能容纳两个电⼦,这两个电⼦的⾃旋状态必须相反。

或者说两个⾃旋相同的电⼦不能占据相同的轨道。

6、零点能:按经典⼒学模型,箱中粒⼦能量最⼩值为0,但是按照量⼦⼒学箱中粒⼦能量的最⼩值⼤于0,最⼩的能量为228/ml h ,叫做零点能。

⼆、选择题1、下列哪⼀项不是经典物理学的组成部分? ( )a. ⽜顿(Newton)⼒学b. 麦克斯韦(Maxwell)的电磁场理论c. 玻尔兹曼(Boltzmann)的统计物理学d. 海森堡(Heisenberg)的测不准关系2、下⾯哪种判断是错误的?( )a. 只有当照射光的频率超过某个最⼩频率时,⾦属才能发⾝光电⼦b. 随着照射在⾦属上的光强的增加,发射电⼦数增加,但不影响光电⼦的动能c. 随着照射在⾦属上的光强的增加,发射电⼦数增加,光电⼦的动能也随之增加d. 增加光的频率,光电⼦的动能也随之增加3、根据Einstein的光⼦学说,下⾯哪种判断是错误的?( )a. 光是⼀束光⼦流,每⼀种频率的光的能量都有⼀个最⼩单位,称为光⼦b. 光⼦不但有能量,还有质量,但光⼦的静⽌质量不为0c. 光⼦具有⼀定的动量d. 光的强度取决于单位体积内光⼦的数⽬,即,光⼦密度4、根据de Broglie关系式及波粒⼆象性,下⾯哪种描述是正确的?( )a. 光的波动性和粒⼦性的关系式也适⽤于实物微粒b. 实物粒⼦没有波动性c. 电磁波没有粒⼦性d. 波粒⼆象性是不能统⼀于⼀个宏观物体中的5、下⾯哪种判断是错误的?( )a. 机械波是介质质点的振动b. 电磁波是电场和磁场的振动在空间的传播c. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩d. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩,也反映了粒⼦在空间振动的强度6、下⾯对宏观物体和微观粒⼦的⽐较哪⼀个是不正确的?( )a. 宏观物体同时具有确定的坐标和动量,可⽤⽜顿⼒学描述,⽽微观粒⼦没有同时确定的位置和动量,需⽤量⼦⼒学描述b. 宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒⼦具有⼏率分布特性,不可能分辨出各个粒⼦的轨道。

第一章 量子力学基础知识 (1)

第一章  量子力学基础知识 (1)

第一章量子力学基础知识1.填空题(1) Ψ是描述的波函数(北京大学1993年考研试题)(2) 实物粒子波动性假设由首先提出来的,实物粒子的波是波。

(3) 德布罗意假设首先由戴维逊和革末用实验证实的。

(4) 在一维无限深势阱中,粒子的活动范围宽度增大,能引起体系的能量。

(5)Planck提出,标志着量子理论的诞生。

(中山大学1998年考研试题)(6) 一维无限深势阱中的粒子,已知处于基态,在处概率密度最大。

(7) 边长为l的立方势箱中粒子的零点能为。

(北京大学1993年考研试题)(8) 边长为l的一维势箱中粒子的零点能为。

(9) 有一质量为m的粒子在一维势箱中运动,其Schrödinger方程为。

(中山大学1998年考研试题)(10) 一维势箱的长度增加,其粒子量子效应(填增强、不变或减弱)。

2. 选择题(1)粒子处于定态意味着:( )A、粒子处于静止状态B、粒子处于势能为0的状态C、粒子处于概率最大的状态D、粒子的力学量平均值及概率密度分布都与时间无关的状态(2)波恩对波函数提出统计解释:在某一时刻t在空间某处发现粒子的概率与下面哪种形式的波函数成正比。

( )A、|Ψ|B、|Ψ |2C、|Ψ |1..5D、xy| Ψ|(3)指出下列条件,哪一个不是态函数的标准化条件?( )A、单值B、正交归一C、有限D、连续(4)微观粒子的不确定关系式,如下哪种表述正确?( )A、坐标和能量无确定值B、坐标和能量不可能同时有确定值C、若坐标准确量很小,则动量有确定值D、动量值越不正确,坐标值也越不正确(5)波长为662.6 pm 的光子和自由电子,光子的能量与自由电子的动能比为何值?( )A 、546 : 1B 、273 : 1C 、1 : 35D 、106 : 4515(6)一电子被1000 V 的电场所加速,打在靶上,若电子的动能可转化为光能,则相应的光波应落在什么区域? ( )A 、X 光区(约10-10 m)B 、紫外区(约10-7 m)C 、可见光区(约10-6 m)D 、红外区(约10-5 m)(7)已知一维谐振子的势能表达式V = kx 2/2,则该体系的定态薛定谔方程应当为: ( )A 、ψψE kx dx d m =⎥⎦⎤⎢⎣⎡+-222212 B 、ψψE kx dx d m =⎥⎦⎤⎢⎣⎡--222212 C 、ψψE kx m =⎥⎦⎤⎢⎣⎡+∇-22212 D 、 ψψE kx m =⎥⎦⎤⎢⎣⎡-∇22212 (8)由一维势箱的薛定谔方程求解结果所得的量子数n ,下面论述正确的是: ( )A 、可取任一整数B 、与势箱宽度一起决定节点数C 、能量与n 2成正比D 、对应于可能的简并态(9)立方势箱中在2246m l h E ≤的能量范围内,能级数和状态数为(中山大学1993年考研试题): ( )A 、5,20B 、6,6C 、5, 11D 、6, 17(10)质量为2×10-31g 的粒子运动速度为3×106 m/s ,速度不确定度为10%,则其位置的不确定度至少为: ( )A 、1.11 nmB 、11.1 μmC 、111 pmD 、111 Å(11)金属钾的临阈频率为5.46×1015 s -1,把它当作光电池的阴极,下列哪种频率的光能使它产生光电效应? ( )A 、5.0×1015 s -1B 、4.0×1015 s -1C 、5.64×1014 s -1D 、2.0×1016 s -1(12)运动速度为2.00×105m/s 的电子波长为 ( )A 、3.64 pmB 、36.4 nmC 、3.64 nmD 、34.6 pm(13)一维势箱中粒子的运动波函数φ5的节点数为 ( )A 、4B 、5C 、6D 、7(14)长度为a 的一维势箱中粒子(质量为m )从第3个能级跃迁到第4个能级所产生的吸收光谱频率为: ( )A 、28ml hB 、285ml hC 、287ml hD 、2812ml h (15)下列四种波中既不是机械波也不是电磁波的是: ( )A 、声波B 、光波C 、水波D 、实物粒子波(16)比较下列能量哪个最大? ( )A 、1 cm -1B 、1 eVC 、1 kJ/molD 、1 a.u.(17)已知电子位置的不确定度为5×10-7m ,则电子运动速度的不确定度至少为: ( )A 、1.45×103 m s -1B 、1.45×104 m s -1C 、3.65×104 m s -1D 、3.65×105 m s -1(18)在长L=0.75 nm 的一维势箱中运动的H 原子,其de Broglie 波长的最大值是: ···( )A 、0.75 nmB 、1 nmC 、1.5 nmD 、2.0 nm3. 判断题(1)黑体辐射实验能用于经典物理学来解释。

结构化学习题、详解、答案

结构化学习题、详解、答案

第一章 量子力学基础题 解1.1. 给出黑体辐射频率分布函数),(T R ν的单位。

解: 黑体辐射的频率分布函数),(T R ν表示黑体辐射的频率分布,ννd ),(T R 表示在温度T 单位时间内由单位黑体表面积上所发射的频率在νννd ~+间的辐射能量。

121s m J s )(---⋅⋅=νR2m J )(-⋅=νRs m w s m sJm J 2-22⋅⋅=⋅⋅=⋅--式中w 是功率.1.2. 分别计算红光λ=600 nm 和X 射线λ=100 pm 的1个光子的能量、动量和质量。

解:λνc=,νh E =,λhp =,2ch m ν=(1) 波长1λ=600 nm 的红光,813419119310m s 6.62610J s 3.31310J 60010mE h ν----⨯⋅==⨯⋅⨯=⨯⨯ 12793411s m kg 10104.1m10600s J 10626.6----⋅⋅⨯=⨯⋅⨯==λhp 19361128123.31310J 3.68110kg (310m s )h m c ν---⨯===⨯⨯⋅ (2)X 射线2λ=100 pm8134152212310m s 6.62610J s 1.98810J 10010mE h ν----⨯⋅==⨯⋅⨯=⨯⨯ 124123422s m kg 10626.6m10100s J 10626.6----⋅⋅⨯=⨯⋅⨯==λhp 15322228121.98810J2.20910kg (310m s )h m c ν---⨯===⨯⨯⋅ 1.3. 计算波长λ=400nm 的光照射到金属铯上所产生的光电子的初速度。

已知铯的临阈波长为600nm解:根据W h T -=ν其中,201, 2e Tm W h υν== 2012e m h h υνν=-51 6.03010(m s )υ-====⨯⋅1.4. 氢原子光谱中巴尔麦系中波长最长的一条谱线的波数、波长和频率各是多少?波长最短的一条呢?解:氢原子光谱中巴尔麦系谱线的波数可表达为4, 3, )121(~~22=-=n n R ν 其中5-11.09710cm ,R=⨯ 称为Rydberg 常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aˆ Bˆu(x) BˆAˆ u(x) 0
若两算符对易,则二力学量同时有确定值。
基本知识
3.本征函数
Aˆ a
若某一力学量A的算符 Aˆ作用于某一状态ψ后,
等于一常数a乘以ψ,则力学量A有确定值,a是
算符 的本征Aˆ 值,ψ是算符 的本Aˆ征函数(或 本征态), ψ=aAˆψ称为本征方程。
Aˆ a
基本知识
2.算符:
微观体系的每一个可观测力学量(如能量 、 动量、角动量、坐标、时间等)都与一个线性厄 米算符相对应。
线性算符 Fˆ[c1u1x c2u2 x cnun x] c1Fˆu1x c2Fˆu2 x cnFˆun x
厄米算符
u1*Fˆu2dx u2 (Fˆu1)* dx
算符对易
[ Aˆ, Bˆ] 0
则体系处于这个状态 时没有确定值,可计 算平均值。
a a (r)ˆ (r)d (r) (r)d
a a *(r)ˆ (r)d (是归一化的)
基本知识
4.Schrodinger方程
在量子力学中,决定微观体系运动状态的是定态Schrodinger 方程:
Hˆ (r) E (r) [ 2 2 V (r)] (r) E (r)
p mv h v h
m
mn 1.675 10 27 kg
(1)电子:

h me
6.626 1034 Js 9.111031kg0.1109 m
Ee 1 mv2 6.626 1034 Js 2 / 2 9.111031 kg 0.1109 m 2 2
2.41 1017 J
Pe h / 6.6261034 Js / 0.1109 m 6.631024 Js / m
Aˆ i ai i
a
Ci 2ai Ci 2
n i 1
ci
2
ai
基本知识
三.简单应用
1.一维箱中粒子
x 2 sin nx x
aa
2.三维箱中粒子 三个方向一维箱的叠加。
E
nx2
h2 8ma
2
(xyz) 8 sin nx x sin ny y sin nz z
abc a
b
c
E
(
nx2 a2
优选第一章量子力学基础习题
基本知识
• 3.电子衍射:电子照射到晶体表面上时发生衍射,能够在 屏幕上获得明暗相间的环纹。 说明电子不仅具有粒子性,还具有波性。
Bragg公式: 2 d sin =n
:衍射线与晶面之间的夹角,衍射角;
:2,反射光与入射光方向的夹角;
d:晶体的面间距
n:衍射级数 :电子的De-Broglie波长
基本知识
二.量子力学的五个基本假定
1.波函数: 是体系中所有粒子坐标的函数, 也是时间的函数。
(xyzt)= (x1y1z1,x2y2z2,t)
在化学中所有涉及的波函数均为定态波函数。 定态:几率密度不随时间t改变而变化。 物理意义:∣(r,t)∣2= * 在原子、分子等体系中,代表原子轨道或分子轨道,将* 称为几率密度,即通常所说的电子云。
(2)中子:
En 1.311020 J
Pn 6.631024 Js / m
习题1.9 试求下列粒子的de Broglie波长
(1)能量为100eV的自由电子。
(2)能量为0.1eV的自由电子。 (3)能量为0.1eV,质量为1g的粒子。
(1)Ee 100eV E P2 / 2m
h / P h / 2mE
解:由爱因斯坦的光子学说 (1)
E mc 2 pc h .c 6.626 10 34 J.s 2.998 10 8 m / s 3.31 10 19 J
600 10 9 m
P mc h 6.626 10 34 Js 1.10 10 27 Jsm 1
600 10 9 m
m h
6.626 10 34 J.s
2m
实质是能量算符的本征方程。
解法:一维箱 精确求解 三维箱 分离变量法 平面刚性转子
基本知识
5.态叠加原理
若Ψ1、 Ψ2、••• Ψi、••• Ψn为某一微观体系的可能状态,由 它们线性组合也是该体系的可能状态。
n
c11 c2 2 cn n ci i i 1
式中Ci是任意常数,数值的大小反应了Ψi对Ψ的贡献 的大小。
• Cs:λλ=400nm λCs=600nm求v。
c
E
1 mv2 2
h
h o
hc
h c
o
hc
1
1
o
1

2hv v0 /
m
2 6.626 1034
3.0
108
400
1 109
1 600 109
2
6.03105 ms1
习题பைடு நூலகம்
1.8 求波长为0.1nm的电子和中子的动能和动量。
me 9.11 10 31 kg
1
6.6261034 Js /(2 9.1101031kg100eV 1.6021019 J / eV )2
1.231010 m 123pm
(2)0.1eV的自由电子
n 9.04 10 11 m 90.4 pm
(3) 0.1eV, 1g的粒子
1.17 1022 m
习题
1.10 用速度ν=1×109 cm/s的电子进行衍射试验,若所用晶体粉末MgO的面间 距离为242pm,晶体粉末离底板距离为2.5cm,求第2条和第3条衍射环纹的半径.
3.68 10 36 kg
c 600 10 9 m 2.998 10 8 m / s
(2) 0.1nm 11010 m
E 1.991015 J
P 6.631024 Jsm1 m 2.21 10 32 kg
习题
• 1.3计算波长λ=400nm的光照射到金属铯上,金属铯所放 出来的光电子的初速度。已知铯的临阈波长为600nm。
h p
h mv
基本知识
波性 粒子性 二象性
光与实物粒子的波粒二象性

c
E mc2 p mc
E h
p h
u
实物粒子 u:实物粒子 波的传播速度
E 1 mv2+V( r ) 2
p mv
v:实物粒子 的运动速度
E h
p h
当粒子V(r)=0时
h 1 mv2;h u 1 mv2
2
2
mvu 1 mv2;v=2u 2
n
2 y
b2
nz2 c2
h2 )
8m
立方箱:简并态:能量相同的不同状态; 简并度:能量相同的不同状态数。
3.刚性转子(平面)
“生活远不止意味着拥有许多 财富,而是应当对获取成功 过程中自己的所作所为与成 功的结果同等重视”
——诺特丹大学·商学院
习题
1.2 分别计算红外光λ=600nm, X射线λ=0.1nm的一个光子的能量、动量和质量。
相关文档
最新文档