第一章 量子力学基础

合集下载

第一章量子力学基础

第一章量子力学基础

第一章量子力学基础1.1 量子力学的实验基础从十八世纪起,物理学迅速发展、完善起来,逐步成为严谨的经典物理学体系。

牛顿力学体系光电磁学经典物理力学麦克斯韦方程式热力学吉布斯-玻兹曼统计应用这些经典物理学理论,人们成功地解释了当时发现的实验现象,这种状态一直持续到十九世纪80年代。

但在十九世纪末,相继发现了一些用经典物理学无法解释的实验事实,经典物理学遭到了无法克服的困难。

经典物理学无法解释的代表性实验有黑体辐射、光电效应和氢原子的线状光谱等,这些实验现象的解释导致旧量子论的产生。

1.1.1黑体辐射与普朗克(planck)量子假设黑体辐射是最早发现与经典物理学相矛盾的实验现象之一。

黑体:一种能全部吸收照射到它上面的各种波长的光,同时也能发射各种波长光的物体。

带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。

小孔在吸收能量的同时也不断地辐射能量,特别是在空腔在高温时更加明显。

从小孔辐射出来的电磁波是一个连续谱,它比同样温度下任何其他物体表面的辐射都强,这种空腔辐射便是黑体辐射。

在一定温度下,小孔单位面积每秒辐射频率ν到ν+dν范围内电磁波的能量Eνdν,Eν表示黑体辐射的能量密度,以Eν对ν作图,得到能量分布曲线。

如:图1-1所示。

图1-1 黑体在不同温度下辐射的能量分布曲线随着温度的升高,总辐射能量E (即曲线包罗的面积)急剧增加,E 与热力学温度T 符合下列关系:E=δ4T (δ=5.67×82410W m K ---⋅⋅)称为斯忒蕃公式。

每条曲线都有一个峰值对应于辐射最强的频率,相应的max λ随温度升高而发生位移,满足下式:max λT=2.9×310-m.K称为维恩位移定律。

Rayleigh-Jeans (瑞利-金斯)从能量连续的经典力学出发,推出黑体辐射平衡时在频率范围ν到ν+dν内:238kT E d d cνπννν= 从上式可知,Eν正比于2ν,Eν对ν作图应为一条抛物线,它只在低频区与实验曲线近似相符,在高频区(紫外区)则因实验结果随ν增大,Eν趋于零严重不符(紫外灾难:即波长变短时能量趋于无穷大,而不象实验结果那样趋于零。

(01) 第一章 量子力学基础

(01) 第一章 量子力学基础

玻尔频率规则
Bohr的轨道角动量量子化
E h E E2 E1
h h
运用玻尔模型,结合经典物理学知识,玻尔计算了氢原子定态 的轨道半径及能量,圆满的解释了氢原子光谱。 1922年, Bohr
获诺贝尔物理学奖.
mv 2 e2 r 4 0 r 2
消去v,
2
r
h M mvr n 2
34
Js
这些不同能量的谐振子出现的几率之比为:
1: h / kT :2 hv / kT :…: nhv / kT e e e
的平均能量为
h e h / kT 1
因此频率为ν的振子的振动
,由此可得单位时间,单位表面积上辐
射的能量。公式计算值与实验结果非常吻合。
E 2h c
)
E总
me 4 1 R 2 2 2 2 8 0 r 8 0 h n n
e2
1 13.6 2 eV ( n 1,2,3 ) n
E总 E K 1 EV 2
当n=1,E=-R=-13.6eV,即为氢原子基态。
当电子从定态n1跃迁到n2时放出或吸收辐射。其频率满足于:
这样实物微粒若以大小为p=mv的动量运动时,伴随有 的波
h p h mv
例子:以1.0×106m.s-1 的速度运动的电子,求其de.Broglie波
长:
6.6 1034 J . s 7.0 1010 m (9.1 10 31 Kg) (1.0 106 m .s 1 )
在十九世纪末,人们利用传统的经典物理学对几个问题始终不能给予
解释, 这其中包括著名的黑体辐射、 光电效应、氢原子光谱和原子
结构等问题.

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

第一章1 量子力学基础

第一章1 量子力学基础

满足上述条件的波函数称为合格波函数或品优波函数 (well-behaved function)
(a)违反单值条件
(b)不连续
(c)一阶微商不连续
(d)波函数不是有限的
不符合品优函数条件的情况
(2)、Ψ 和CΨ 描述同一状态 C为一个非零的常数因子(可以是实数或复数)
ψ
2
重要的是在空间不同点的比值,而不是各点的绝对值大小。
r1 0.529 1010 m=52.9pm
玻尔 半径
氢原子轨道能量 1 me 4 R En 2 ( 2 2 ) 2 ,n 1, 2,3, n 8 0 h n
R 13.6eV
比较:多电子原子轨道能量
Z2 En R 2 n
玻尔理论的缺陷:旧量子论
● 玻尔理论仍然以经典理论为基础,定态假设
2、 电子衍射实验—德布罗意假设的实验验证
(1)戴维逊—革末电子单晶反射实验(1927年)
1925年,戴维逊和革末第一次得到了电子在单晶体中 衍射的现象(Ni 氧化,单晶),1927年他们又精确地进 行了这个实验,实验发现,从衍射数据中求得的电子 的物质波波长与从德布罗意关系式中计算出的波长一 致。
2 2 l 2
求此波函数的归一化常数A。
nx A sin( ) l
(0 x l)
l A 1 A 2
2
2 l
二、假设Ⅱ:力学量和算符
1、算符的定义:一种运算符号,当将其作用到某一函数上 时,就会根据某种运算规则,使该函数变成另一函数
g Af
2、算符的性质 ①相等
定态(E2)→定态(E1)跃迁辐射
(3)量子化条件
电子轨道角动量 M n

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

第1章 量子力学基础

第1章 量子力学基础
2
A B ( Axi Ay j Azk) (Bxi By j Bzk) Ax Bx Ay By Az Bz
A A | A |2
| A | (Ax2 Ay2 Az2 )1/2
上一内容 下一内容 回主目录
返回
2019/9/15
1.1 数学准备—矢量
返回
2019/9/15
1.1 数学准备—矢量
若矢量的每个分量都是某参数t的函数,即:
Ax Ax (t), Ay Ay (t), Az Az (t)
定义矢量对t的导数为:
dA i dAx j dAy k dAz dt dt dt dt
上一内容 下一内容 回主目录
返回
另外, 和c 表示的是相同的状态。所以,对于
没有归一化的波函数, 乘上一个常数后, 它所描述的粒 子的状态并不改变。

(C为常数),

为归一化波函数,
表示相同的状态。
上一内容 下一内容 回主目录
返回
2019/9/15
1.2 基本假设—假设1
(2) 状态函数的条件 连续性: Ψ在变数变化的全部区域内是连续的,且有连续
归一性: W (q,t) *(q,t) (q,t)d 1
几率密度: (q,t)=dW (q,t) / d *(q, t) (q, t)
上一内容 下一内容 回主目录
返回
2019/9/15
1.2 基本假设—假设1
波函数可用来描述微观粒子的状态。但是波函数 所做出的种种预言, 只对在同一条件下大量的、同种 粒子的集合或者单个粒子的多次重复行为才有直接意 义; 而对个别粒子的一次行为, 一般来说只有间接的即 是几率性的意义。

第1章 量子力学基础知识

第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态

第一章_量子力学的基础知识

第一章_量子力学的基础知识

m
0
c2
h
c2
(4)光子的动量为 pmh c/ch /
(5)光子与电子碰撞时服从能量守恒和动量守恒定律
1

hν < W 0

hν > W 0
W0
1 m2 2
W0
① 当 h < W0 (ho) 时,光子
没有足够的能量使电子克服 电子的束缚能而成为自由电 子,则不发生光电效应;
② 当 h > W0 (ho) 时,
D
狭缝到底片的距离远大于狭
缝宽度, CP≈AP,
e
sin=OC/AO =/D
x A OC
P y
在p点的动量在x轴的分量就 是在该方向的不确定量
△px=psin=p/D=h/D 而坐标x的不确定量Δx即为 单缝宽度D
△x=D, 所以 △x△px=h
Q A
C O
P
psin
电子单缝衍射实验示意图
考虑二级以上衍射, x px ≥h 1
金属中发射的电子具有 一定的动能,发生光电
流,并随 增加而增加。
1
光电子动能mv 2/2
光子能量: E=hν 光子动量: p=h/λ 光电效应方程: mv2/2 =hν-W
(λ为入射光的波长, W为金属的功函数, m和v为光电子的质量和速度)
斜率为h
光频率ν
1
只有把光看成是由光子组成的光束才能理解光电效 应,而只有把光看成波才能解释衍射和干涉现象。光表 现出波粒二象性,即在一些场合光的行为像粒子,在另 一些场合光的行为像波。粒子在空间定域,而波却不能 定域。光子模型得到的光能是量子化的,波动模型却是 连续的,而不是量子化的。
1
按经典物理学理论

01第一章量子力学基础

01第一章量子力学基础

2
sin
n
x
a
(
x)
均所 值以
, 只 能 求 位 置 的 平
x
* ( x )x ( x )dx
0
2
0
x
sin
2
n
xdx
2
0
x
1
cos
2n
2
x dx
1
(
0
x
x
cos
2n
x )dx
1
[
x2 2
0
2n
0
xd
sin
2n
x]
1
[
2 2
2n
1
2n
( x sin 2
x
1 2n
cos 4
x) ]
E h
E E2 E1
h
h
实物粒子的波粒二象性
de Broglie关系式为: ν= E / h λ= h / p λ= h / mv
λ h/ 2mT
不确定原理
量子力学公设
公设1
微观体系的状态可用一个状态函数或波函 数Ψ(q, t)描述,Ψ(q, t)决定了体系的全部 可测物理量.
波函数应具有品优性: 单值性、 连续性、 平方可积性.
n=4
n=3 n=2 n=1
波函数
概率密度
1.3.2 三维无限深势阱中的粒子
1.3.2 三维无限深势阱中的粒子
能量本征方程为:
本 征 函 数 与 本 征 值
三维无限深正方体势阱中粒子的简并态
三维无限深正方体势阱中粒子的波函数
定理:
简并本征函数的任意线性组合仍是原算符的具有同样 本征值的本征函数.

-第1章-量子力学基础详细讲解

-第1章-量子力学基础详细讲解

1.3.4 表象变换 设有两个表象A和B,其基矢分别为、。 (a)态矢的表象变换 在表象A中,可将任意态矢展开为 ,; 在表象B中,可将同一个态矢展开为 ,。 所谓态矢的表象变换,就是要建立和之间的关系。
(1.28) (1.29)
, (1.30) 其中
(1.31) 矩阵称为表象A和表象B之间的变换矩阵。(1.30)式可简写成
态矢量的归一化条件为 (1.23)
在连续变量表象中,完备性条件为 (1.24)
任意态矢量可展开为 (1.25a)
其中 (1.25b)
是态矢在表象中的表示,也就是通常讲的波函数。可见,态矢量在连续 表象中表现为一个普通函数。
态矢量的归一化条件为
(1.26) 可见,选定了一组基矢,就选定了一个表象;这类似于,选定了一 组单位矢量,就选定了一个坐标系。常用的连续表象有坐标表象和动量 表象;常用的离散表象有能量表象和角动量表象。
由于线性厄密算符的上述性质,在实验上可观测的力学量(如:坐 标、动量、能量、角动量、自旋等)均用线性厄密算符表示。不过,我 们也会遇到一些非常重要的非厄密算符,如光子产生算符、光子湮灭算 符等。
算符在量子态中的期望值(平均值)记为 (1.12a)
平均值为c数。若将态矢量按(1.11a)式用算符的本征态展开,则平均 值的计算如下:
1.4.2 纯态和混合态举例 (a) 纯态: 光子数态(photon-number state) ,其密度算符为 (1.51)
其中为光子数。 相干态(coherent state),其密度算符为 (1.52)
(1.18) 其中 。例如,坐标和动量的对易关系为
其不确定度关系为
(5) 全同粒子假设 作为量子力学的一条基本假设,认为所有的同一类粒子(例如所有 的电子、所有的光子等)的各种固有属性都是相同的,即同一类粒子是 全同的粒子。因而,在由全同粒子组成的系统中,交换其中任意两个粒 子不会改变系统的状态,这导致描述全同粒子系统的波函数对粒子的交 换要么是对称的,要么是反对称的。 研究发现,全同粒子可分为两大类,一类称为玻色子,其自旋为零 或正整数(,…);另一类称为费米子,其自旋为半奇数(,…)。玻 色子和费米子具有完全不同的性质,例如,描述玻色子系统的波函数对 粒子的交换是对称的,而描述费米子系统的波函数对粒子的交换是反对 称的;玻色子服从玻色-爱因斯坦统计,而费米子服从费米-狄拉克统 计。

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

第一章 量子力学基础.

第一章 量子力学基础.

在量子力学中,最重要的一种本征方程是能量本征方程,
即定态Schrödinger方程(能量算符是Hamilton算符):
Ĥ =E
2
( 2 V ) E
2m
只有参数E取某些特定值时, 该方程才有满足自然条件的非零解
. 参数E的这些取值就是Hamilton算符的本征值,相应的ψ是
Hamilton算符的属于该本征值的本征函数.
力学量
算符
位置x,时间t
xˆ x,tˆ t动量的x Nhomakorabea分量px


x

i
x
角动量的z轴分量
Mˆ z

i
x
y

y
x

力学量 势能 V
动能 T=p2/2m 总能量 E=T+V
算符
Vˆ V



2 2m

2 x 2

2 y 2

2 z 2
dx 2
的本征函数。若是,求出本征值。
d2 (ex ) 1 ex dx 2
ex是算符的本征函数,本征值为1
d 2 (sin x) sin x sinx是算符的本征函数,本征值为-1 dx 2
d2 (2cos x) 2cos x dx 2
2cosx是算符的本征函数,本征值为-1
d2 (x3 ) 6x dx 2
三、能级公式的意义:
En

n2h2 8ml 2
(n
1, 2,3......)
受束缚的粒子的能量必须是量子化的,即边界条件迫使
能量量子化。(一维势箱的量子化是解方程自然得到的,
而非像旧量子论人为附加)

@第一章 量子力学基础

@第一章 量子力学基础

量子力学基本假设
如果一个体系的可观测力学量的平均值不随时
间而改变,这个体系就被说成是处于一个定态。
注意:定态不等于静止。
本课程中主要讨论定态波函数。
C为一个常数因子(可以是实数或复数)时,Ψ 和 C Ψ描述同一状态。(为什么?)
由于波函数描述的是几率波,所以ψ必须满足3个条 件,即品优波函数或合格波函数: •单值,即在空间每一点ψ只能有一个值
一维势箱
一维势箱中最低能量值:n=1,E1=h2/8ml2, 对应1状态
(3)零点能
E1即为零点能(能量最低的状态1所具有的 能量) 由于箱中V(x)=0,故E1全是动能
箱中动能恒大于0,粒子处在最低的能量 状态,也在运动 能量最低的状态叫基态,基态公式可以看出,当l增大,即粒子的活动 范围扩大时,相应的能量会降低。 这种由于粒子的活动范围扩大而使体系能量降 低的效应称为“离域效应” 在有机化学中,共轭化合物的体系,因离域 效应而使得化合物更加稳定;对当代一些光 电材料学科也具有重要的意义。
电子1/2mv2 = eV; = h/mv = h/(2me)1/2(V)1/2 =1.226×10-9/V1/2(m)
实物微粒波的证明及其统计解释
1926年,波恩提出实物微粒波的统计解 释:他认为在空间任何一点上波的强度和粒 子出现的概率成正比,按照这种解释描述的 粒子的波称为概率波。 1927年,德布罗意的假设被戴维逊-革 末的镍单晶电子衍射实验和汤姆逊的多晶金 属箔电子衍射实验所证实。 1928年后,实验进一步证明,分子,原 子、质子、中子等一切微观粒子都无不具有 介绍 波动性。
量子力学基本假设
假设Ⅳ 态叠加原理
若ψ1,ψ2,…,ψn为某一微观状态的可 能状态,由它们线性组合所得的ψ也是该体系的 可能状态:

第一章量子力学基础

第一章量子力学基础

(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V

[结构化学]第一章-量子力学基础详解

[结构化学]第一章-量子力学基础详解
★光是一束光子流,每一种频率的光其能量都有一个最小单 位,称为光子,光子的能量与其频率成正比:h
★光子不但有能量,还有质量(m),但光子的静止质量为零。 根据相对论的质能联系定律=mc2,光子的质量为: m=h/c2,不同频率的光子具有不同的质量。
★光子具有一定的动量:p=mc=h/c=h/ (c=) ★光的强度取决于单位体积内光子的数目(光子密度)。
=h,p=h/
de Broglie(德布罗意)假设:
1924年,de Broglie受光的波粒二象性启发,提出实物微粒
(静止质量不为零的粒子,如电子、质子、原子、分子等)也 有 波 粒 二 象 性 .[ 微 观 粒 子 :10-10m 数 量 级 的 粒 子 ] 。 认 为 =h , p=h/ 也适用于实物微粒,即以p=mv的动量运动的实物微粒, 伴随有波长为 =h/p=h/mv 的波。此即de Broglie关系式。 de Broglie波与光波不同:光波的传播速度和光子的运动速度相 等;de Broglie波的传播速度(u)只有实物粒子运动速度的一 半 : v=2u 。 对 于 实 物 微 粒 : u= , E=hν=hu/λ=h(1/2v)/λ=h(1/2v)/(h/mv)=p2/(2m)=(1/2)mv2 ,对于光: c=,E=pc=mc2
上述理论可解释当时常见物理现象,但也
发现了解释不了的新现象。
1. 黑体辐射与能量量子化
黑体:能全部吸收外来电磁波的物体。黑色物体或开一 小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾: 经典电磁理论假定,黑体辐射是由黑体中带电粒子的振动发出 的,按经典热力学和统计力学理论,计算所得的黑体辐射能量 随波长变化的分布曲线,与实验所得曲线明显不符。

第一章量子力学基础

第一章量子力学基础

第⼀章量⼦⼒学基础第⼀章量⼦⼒学基础知识⼀、概念题1、⼏率波:空间⼀点上波的强度和粒⼦出现的⼏率成正⽐,即,微粒波的强度反映粒⼦出现⼏率的⼤⼩,故称微观粒⼦波为⼏率波。

2、测不准关系:⼀个粒⼦不能同时具有确定的坐标和动量3、若⼀个⼒学量A 的算符A作⽤于某⼀状态函数ψ后,等于某⼀常数a 乘以ψ,即,ψψa A=?,那么对ψ所描述的这个微观体系的状态,其⼒学量A 具有确定的数值a ,a 称为⼒学量算符A的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A=?称为A ?的本征⽅程。

4、态叠加原理:若n ψψψψ,,,,321为某⼀微观体系的可能状态,由它们线性组合所得的ψ也是该体系可能存在的状态。

其中:∑=++++=ii i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321为任意常数。

5、Pauli 原理:在同⼀原⼦轨道或分⼦轨道上,⾄多只能容纳两个电⼦,这两个电⼦的⾃旋状态必须相反。

或者说两个⾃旋相同的电⼦不能占据相同的轨道。

6、零点能:按经典⼒学模型,箱中粒⼦能量最⼩值为0,但是按照量⼦⼒学箱中粒⼦能量的最⼩值⼤于0,最⼩的能量为228/ml h ,叫做零点能。

⼆、选择题1、下列哪⼀项不是经典物理学的组成部分? ( )a. ⽜顿(Newton)⼒学b. 麦克斯韦(Maxwell)的电磁场理论c. 玻尔兹曼(Boltzmann)的统计物理学d. 海森堡(Heisenberg)的测不准关系2、下⾯哪种判断是错误的?( )a. 只有当照射光的频率超过某个最⼩频率时,⾦属才能发⾝光电⼦b. 随着照射在⾦属上的光强的增加,发射电⼦数增加,但不影响光电⼦的动能c. 随着照射在⾦属上的光强的增加,发射电⼦数增加,光电⼦的动能也随之增加d. 增加光的频率,光电⼦的动能也随之增加3、根据Einstein的光⼦学说,下⾯哪种判断是错误的?( )a. 光是⼀束光⼦流,每⼀种频率的光的能量都有⼀个最⼩单位,称为光⼦b. 光⼦不但有能量,还有质量,但光⼦的静⽌质量不为0c. 光⼦具有⼀定的动量d. 光的强度取决于单位体积内光⼦的数⽬,即,光⼦密度4、根据de Broglie关系式及波粒⼆象性,下⾯哪种描述是正确的?( )a. 光的波动性和粒⼦性的关系式也适⽤于实物微粒b. 实物粒⼦没有波动性c. 电磁波没有粒⼦性d. 波粒⼆象性是不能统⼀于⼀个宏观物体中的5、下⾯哪种判断是错误的?( )a. 机械波是介质质点的振动b. 电磁波是电场和磁场的振动在空间的传播c. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩d. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩,也反映了粒⼦在空间振动的强度6、下⾯对宏观物体和微观粒⼦的⽐较哪⼀个是不正确的?( )a. 宏观物体同时具有确定的坐标和动量,可⽤⽜顿⼒学描述,⽽微观粒⼦没有同时确定的位置和动量,需⽤量⼦⼒学描述b. 宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒⼦具有⼏率分布特性,不可能分辨出各个粒⼦的轨道。

第一章 量子力学基础-1

第一章 量子力学基础-1

第一章 量子力学基础
• 对光电效应的解释:
1 2 hν = W + Ek = hν 0 + mv 当hν< W时,光子没有 2 足够的能量使电子逸出
金属,而不能发生光电 效应。 当hν= W时,这时的频 率是产生光电效应的临 阈频率。 当hν> W时,从金属中 发射的电子具有一定的 动能,它随ν的增加而 增加,与光强无关。
电磁波:电场和磁场的振动在空间传播,不依赖 于介质,能在真空传播。
y
实物微粒波产生于所有带电或不带电物体的运 动——不是电磁波
实物微粒波——概率波。认为 空间任何一点波的强 概率波。 度和粒子出现在这一点的概率成正比。 度和粒子出现在这一点的概率成正比
第一章 量子力学基础
<注意>
• 电子的运动表现有波性,不能理解为一个电子象波那 样分布于一定的空间区域,或理解为电子在空间的振 动。只能理解为电子运动时,在空间不同区域出现的 几率是由其波动性所控制的。 • 说到电子等实物微粒具有微粒性时,也要注意到它不 同于经典的“质点”。 • 实物微粒波:本质尚待阐明。但其强度反映粒子出现 概率的大小,称为概率波。
第一章 量子力学基础
实物粒子与光子运动规律的有关计算公式的比较 h h p= p= λ p=mv λ p=mc λ λ
u λ= v
实物粒子
ν
E = hν
E
p2 E= 2m
c λ= v
光子
E = pc
ν
E = hv
E
¾ 主要差别: 光子的λ=c/ν,c既是光的传播速度,又是光子的运动速 度;实物粒子λ=u/ν,u是de Broglie波的传播速度,不等 于粒子的运动速度,可以证明v=2u 。 光子:p=mc,E=pc ≠ p2/2m;实物粒子:p=mv,E= p2/2m ≠ pv 。

第一章:量子力学基础

第一章:量子力学基础
n
ˆ p n | pn 2 n d 2 n sin x ) * ( i ) sin xdx 0 a a dx a a a 2 n n n (i ) (sin x)( )(cos x)dx 0 a a a a 2 n 1 a 2 n (i )( ) sin xdx a a 2 0 a 0 (
1. 乘法与对易 满足结合律,一般不服从交换律
ˆ ˆ ˆ AB A( B )
ˆ ˆˆ ˆˆ ˆ A( BC ) ( AB)C
ˆ ˆ ˆˆ AB BA
ˆˆ 如: xDf ( x) xf ' ( x)
ˆ xf ( x) d xf ( x) f ( x) xf ' ( x) Dˆ dx ˆˆ ˆ ˆ ˆ ˆ ˆ Dx I xD xD
*
(m n ) m | n 0
因为
13
m n
所以
m | n 0
Chapter 1 量子力学基础
1.4 算符
厄米算符的本征函数与本征值 —— 性质 III
定理(3):厄米算符本征函数构成一完备集合,任何一个
品优函数可用它展开
f Cnn
n
其中展开系数:
1.4 算符 其它力学量表示法 动能
ˆ F (r ,i) ˆ F (r , p) F
p2 2 2 ˆ T T 2m 2m
势能 V(r ) V (r ) ˆ 角动量 L r p L r (i) H Hamilton 算符
1.4 算符
厄米算符 (Hermitian Operator)
对任意品优波函数,算符满足 则 F 是厄米算符
ˆ ˆ 定理:若两个厄米算符 A 和 B 对易,即 ˆ 是厄米的 。 ˆ 则乘积算符 AB

量子力学基础

量子力学基础
若算符 Gˆ与函数Ψ(q,t)之间满足如下关系:
Gˆi (q,t) Gii (q,t)
其中Gi为常数。 将Ψ(q,t)描写的状态称为力学量的本征态,此式称 为力学量的本征方程;
Gi称为的第i个本征值; Ψ(q,t)为相应的本征函数
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设----假设3
[,] 0,[ pˆ, pˆ] 0,[, pˆ] i
对易子的几个基本规则: [Fˆ , Gˆ ] [Gˆ , Fˆ ]
[Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ] [Fˆ , Hˆ ] [FˆGˆ , Hˆ ] [Fˆ , Hˆ ]Gˆ Fˆ[Gˆ , Hˆ ] [Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ]Hˆ Gˆ[Fˆ , Hˆ ]
第一章 量子力学基础
1.1 量子力学基本假设 1.2 算符 1.3 力学量同时有确定值的条件 1.4 测不准关系 1.5 Pauli原理
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设—假设1
•假设1---状态函数和几率
(1)状态函数和几率
• 微观体系的任何状态可由坐标波函数Ψ(q,t)来表示。
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设---假设1
简并本征态的线性组合仍是该体系的本征态,且本
征值不变;非简并本征态的线性组合也仍是该体系的可
能状态,但一般不再是本征态,而是非本征态.
a
1 2
(2s
2 px
2 py
2 pz )
a
1 2
(2s
2 px
2 py
2 pz )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁理论加上能量的量子化假设得到的),也就是说,量子化公式不是 普朗克胡乱想出的,而是在假设根据上的理论成果。有兴趣的同学可以 从网上下载其具体的推导过程。
结果,大部分α粒子如他所料,没有发生太大的方向偏转。然而,有少数的 粒子发生了重大偏转,甚至原路返回,仿佛碰到了一个很坚硬的东西。鉴于此实 验, Rutherford 认为梅子-布丁模型应该是错误的,于是他提出了自己的原子模 型,也就是目前我们所普遍接收的原子核-电子模型。他并且提出,原子的大部 分质量应该在核上,电子的质量应该很小的。
1. 阴极射线的发现
众所周知,在一个真空管中,阴极和阳极之间加大电压,两电极之间会产生 “粒子流”。起初,这个“电子流”被认为是电磁波,因而被称为“阴极射线”。
J.J. Thompson (1856-1940)研究了这种现象,发现这种“粒子流”可以被电场 和磁场所偏转。因为“粒子流”带电,所以,他认为,这些射线实际上是“粒子” (被其叫做“电子”);并且他成功的测量出电子的荷质比。
* 一切物体都以电磁波的形式向外辐射能量。 * 在单位时间内从物体表面单位面积上辐射的能量, 即单位面积上的辐射功率,称为该物体的 辐出度 ,用 E 表示。
* 物体的辐出度与其温度有关,故将这种辐射称为热辐射 。
* 这种电磁波形式的辐射能量按波长分布是不均匀的。
* 若在单位时间内从物体表面单 位面积上辐射的、波长 λ → λ+dλ 范围内的能量为 dE ,
该实验实际上证明了“波”向“粒子”的转换! 厉害!
2. 原子散射实验
Thompson‘s 发现电子之后,他便想当然的提出了梅子-布丁(plumpudding)原子模型。此后,科学家们可是验证他的理论。 其中最著名的是 Ernest Rutherford (1871-1937)的原子散射实验. 他将高速α粒子(He核)射向金 箔,去发现这些 α粒子究竟射向哪里?按照Thompson‘s 模型,金的正电荷应该 均匀的分散在电子之中,因而这些高速运动的α粒子应该不能碰到太多的阻力, 仅仅能发生速度变慢以及因电荷的吸引或者排斥发生微小的偏移。
1900年12月14日,柏林科学院
1918年获诺贝尔物理学奖 《正常光谱中能量分布律的理论》
辐射黑体中分子、原子的振动可看作线性谐振子,它和周围电磁场交换能 量。这些谐振子只能处于某种特殊的状态,它的能量取值只能为某一最小能
量的整数倍。
n nhv
h 6.6261034 J s
和以下的经典理论观点相比,有很大的不同
其实,这个实验是我们最早的电子装置的雏形,是老电视和电脑监视器的制作 基础。( Cathode Ray Tube).早期的收音机也有“电子管”和“晶体管”之分。
J.J. Thompson因发现电子是粒子而获得了诺贝尔物理学奖。有趣的是,他的儿 子, G.P. Thompson, 在几十年后因发现电子是“波”也获得了诺贝尔物理学奖!
单色辐出度 辐出度
e(,T ) dE d
E(T ) 0 e(,T )d
锶 Sr 铷 Rb 铜 Cu
* 物体辐射能量的同时,又吸收周围其它物体的辐射 能量。当辐射能量等于吸收能量时,其温度不变 —— 平衡热辐射
* 一个好的吸收体,也一定是一个好的辐射体。
• 绝对黑体
* 能全部吸收所有波长的入 射辐射能,即无反射,吸收 率为 1 .
1)电磁辐射来源于带电粒子的振动,电磁波的频率与振动频率相同。(而 量子论为“线性谐振子”)
2)振子辐射的电磁波含有各种波长,是连续的,辐射能量也是连续的。 (量子论为分立的)
3)温度升高,振子振动加强,辐射能增大。(量子论为:能级高,辐射能 才大)
(选学内容)普朗克能公式的推导(实际上是根据传统的
电、磁和光学 有Maxwell(麦克斯韦)的电磁场理论
热现象 统计学
Gibbs(吉布斯)热力学 Boltzmann的统计物理学
这些理论构成一个相当完善的体系,对常见的物理现象都能进行解释。 一些物理学家们认为,以后的工作仅仅是对一些对有些基本理论的附加 解释。然而,随着一些新的试验现象的发现,对这些基本理论都有了很 大的怀疑,为了解释之,科学家们不得不换一种角度来思考之,于是量 子力学产生了!
Rutherford 在Thompson“梅子-布丁”的原子模型的基础上提出的“原子核 -电子”模型,为原子光谱的量子物理解释提供了实验基础和计算模型!
经典原子模型
1897年汤姆逊发现电子
α 粒子的大角散射
汤姆逊的西瓜
卢瑟福核式模型
3. 黑体辐射-普朗克量子理论假设
根据经典电磁理论,带电粒子的加速运动将向外 辐射电磁波。 相关知识如下:
变分法 微扰理论
• 第十章 和泡利原理
• 第十一章
• 第十二章 性
• 第十三章 的电子结构
• 第十四章 赫尔曼定理
• 第十五章 的电子结构
电子自旋 多电子原子 分子的对称 双原子分子 维里定理和 多原子分子
第一章 量子力学基础
1.1 量子力学的历史背景
力学方面
有完整Newton(牛顿)力学(运动三大定律和万有引力定律) 的学体系
量子化学
• 献给致力于量子化学学习的聊大朋友!
• “道可道,非常道;名可名,非常名”
• “玄而又玄,众妙之门!”。这是我们学 子们对量子化学的真实感受啊
目录
• 第一章 • 第二章 • 第三章 • 第四章 • 第五章 • 第六章 • 第七章

• 第八章 • 第九章
薛定谔方程 箱中粒子 算符 谐振子 角动量 氢原子 量子力学的定
维恩线
普朗克线
普朗克公式可以很好的解释实验现象
e0 (,T )
2hc25
hc
ekT 1
在长波情况下:
在短波情况下:
hc
ekT 1
hc
kT
e0 (,T ) 2c4kT
hc
ekT 1
e0
(,
T
)Leabharlann c e 5c2T
1
那么,普朗克是怎么得到上述公式的呢?靠什么?假说(引 入普朗克恒量)!
普朗克能量子假说
黑体模型
• 黑体辐射实验的 结果如右图
01234 56
• 经典力学的困难
(1)维恩公式
e0
(,T
)
c e 5
c2 T
1
维恩线
(2) 瑞利 — 金斯公式
e0 (,T ) 2c4kT
紫外灾难
瑞利 — 金斯线
维恩线
• 普朗克量子假说 普朗克公式
e0 (,T
)
2hc25
hc
ekT 1
瑞利 — 金斯线
相关文档
最新文档