ACPI电源管理模式详解

ACPI电源管理模式详解
ACPI电源管理模式详解

ACPI电源管理模式详解

1、ACPI的概念

ACPI:AdvancedConfigurationandPowerInterface

ACPI有以下几种模式:S0正常。S1CPU停止工作。S2CPU关闭。S3除了内存外的部件都停止工作。S4内存信息写入硬盘,所有部件停止工作。S5关闭。

怎样才能使用ACPI的电源管理模式呢?简单地说是要求软硬件都可以完全支持ACPI功能。

Windows98是最常用的理想平台,如果还没有安装Win98,在安装时输入Setup/PJ。如果已经安装了Win98,可以到Win98"系统"中的"设备管理器"然后再找到"系统设备"里的"高级电源管理"这一项,双击它选择"升级驱动程序",显示所有设备,选择ACPI,再按提示安装驱动程序,重新启动计算机就可以在Windows98使用ACPI了。

如果在使用中遇到问题,可以试着升级版本最新的Acpi.sys文件。

注意,FAT32格式的硬盘无法实现硬盘的挂起功能(STD),而FAT16格式是可以的。

此外,硬件对ACPI的支持是必需的。机箱电源提供5伏电压给主板的同时,必须使电流稳定在720毫安以上,才能够使电脑在短时间里从"睡眠"状态醒来。同时,像显卡等外设也必须完全支持ACPI和STR。

通过选择电源方案可以实现电源管理,电源方案就是计算机管理电源使用情况的一组设置。Windows98提供了下列三种预置的电源管理方案(见下表),用户也可以自己设置计算机进入等待状态或关闭硬盘和监视器所需的等待时间。电源使用方案插上电源使用电池系统等待关闭监视器关闭硬盘系统等待关闭显示器始终打开从不15分钟后1个小时后10分钟后10分钟后便携型/膝上型从不3个小时后15分钟后15分钟后从不家庭/办公室桌面20分钟后15分钟后30分钟后------2、ACPI与APM比较

APM1.0&1.1:由BIOS执行电源管理;

APM1.2:操作系统定义电源管理时间,由BIOS负责执行;

ACPI:BIOS收集硬件信息,定义电源管理方案;由操作系统负责执行。

APM是一种软件解决方案,因此是与操作系统有关的,而ACPI是工业标准,包括了软件和硬件方面的规范。3、一些常见问题

1)如何判断系统处于S1还是S3模式?

答:在ACPI的S1休眠模式下,只有CPU停止工作,其他设备仍处于加电状态。在ACPI的S3模式(BIOS->电源管理->SuspendtoRAM设为Enable,除内存外

其他设备均处于断电状态。因此,判断系统是处于S1模式还是在S3模式最简单的办法是,仔细观察系统的情况:在S3状态,所有设备均停止工作,即使按光驱上的弹出钮也不能打开光驱门。在S1状态,光驱门是可以打开的。另外,S3模式下,系统完全是安静的,所有风扇也停了。此时系统不能从键盘唤醒。手工唤醒的方法只能是按前面板上的电源按钮。

2)以Setup/PJ命令重装Win98系统后,如何取消ACPI模式?

答:Win98程序的帮助中并没有提供"PJ"参数。这是一个隐藏的参数。之所以将其隐藏,是因为Win98的STR功能并不成熟,甚至可以说还存在许多问题。Win98也没有提供卸载ACPI的功能。可以试着在主板BIOS中关闭STR功能,看能否解决问题。

3)为实现STR功能,为什么关机后不能切断电源?

答:STR功能是在关机时,将系统的运行信息保存在内存中,下一次开机时,直接读取内存中的信息,并恢复到关机前的状态。它的优点是启动速度特别快,而且可以保留工作状态。其缺点就是,即使在关机后,也不能断开电脑电源。因为内存中的数据一旦切断电源就会丢失。

开关电源系统的故障分析与维护

南京中富达电子通信技术有限公司 逾& 多甫窘nan i i n£r zhanp-f uda ft I fttit rnn norraniin i mat ft hv I fttt ft r tftnhno I nfrv I tj,开关电源系统的故障分析与维护 直流开关电源是通信系统的心脏,电源运行质量直接关系到通信网络在线设备的工作质量;保障电源稳定、可靠、安全、优质的情况下运行,确保各项供电指标符合通信设备的供电要求,才能保证通信 设备稳定工作、通信畅通无阻。电源维护人员是保证电源稳定工作的重要技术力量,深入探讨直流开关电源系统故障分析方法与维护措施,有利于电源维护技术人员在维护检查过程中正确的操作和处理故障,及时保障电源设备正常的工作。 一、直流开关电源系统维护要点 1. 重视现场巡检 定期巡视检测通信电源设备,注意机房环境温度和设备运行状况,利用电源监控系统,实时监控电源设备的各种运行参数,发现问题及时处理。巡视检测时必须检查电源工作状态:模块配置是否合理,充电限流值是否正确,有无告警,系统交流电压、电流,直流浮充电压、负载电流、蓄电池充电电流,风扇运行状况,防雷器件状况,开关电源监控模块的各项运行参数是否正确,温度补偿是否正常启用。开关电源模块均流是否小于5%等。蓄电池保险、蓄电池连接条温升,蓄电池是否有爬酸、漏液、鼓肚等现象。机房环境温度是否合符维护要求等。 2. 应用远程监控

逾& 多曲" nan i i ntr yhnnjrf uda fi I ftdtrnn norraniin i mat ft hv I fttt ft r tftnhno I nirv I tj, 利用监控系统对电源设备能够实现远程监控,通过远程监控系统了解故障现象,通过远程能处理的故障可以通过远程监控解决,不能处理的故障,必须马上到现场处理。同时利用电源监控系统检测电源的各种信号是否正常,数据是否存在偏差。 3. 及时处理故障 处理电源设备故障时,应首先初步判断造成电源故障原因和故障部位,然后采取相应的方法和措施对电源故障进行处理。对严重故障 必须请示主管领导。 4. 寻求技术支持 对不能马上处理的电源故障,必须电话咨询相关厂家技术人员, 若电话指导仍然解决不了问题,应立即采用现有备件临时恢复电源设备供电,同时做好故障记录,并通知相关厂家技术人员带配件来维修。 5. 确保安全 在处理故障的过程中应特别注意以下方面的问题以确保安全: (1) 处理故障过程中大部份时间是带电操作的,因此一定要注意不能引起直流输出、交流输入的短路,各种维护工具必做好绝缘处理,确保人身安全和电源设备供电的安全。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

电脑开关电源电路大全及PC开关电源标准详解

PC开关电源标准详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; ATX12V_1.1:2000年8月颁布, 在前一版本的基础上,加强了+3.3V电流输出能力,以适应AGP显卡功率增长的需求 ATX12V_1.2:2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定; ATX12V_1.3:2003年4月颁布,在前版的基础上,提高了电源效率,增加了对SATA的支持,增加了+12V的输出能力。

开关电源拓扑结构详解

开关电源拓扑结构详解 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开 入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck 拓扑型开关电源就是属于串联式的开关电源。 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负

载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感

L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。 串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源电路分析

开关电源电路分析 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,电路复杂不易维修等。 开关电源一般包括四要素:整流滤波、起动电路、正反馈电路和稳压电路。 开关式稳压电源具有转换效率高、耗电省、稳压范围宽、体积小和重量轻等特点。为此,在彩色电视机电路中得到广泛应用。电视机的开关电源有多种形式,但串联式脉冲宽度调制型开关稳压电源应用较为广泛。 下面以此种电路为例来分析。 一、工作原理及主要参数 1.电路组成及工作原理 串联型开关稳压电源的基本形式如图1所示。图中,V为开关管,VD为续流二极管,L为储能电感线圈,CL为滤波电容,RL为负载电阻。 图1 串联型开关电源原理图 其稳态工作过程可作如下分析:

设开关管V 在T1期间导通,T2期间截止,周期性地变化,则其工作周期为T=T1+T2,见图4―57(a)。由于负载RL 端电压为Uo,所以负载功率为Po=U2o/RL,负载电流为Io=Uo/RL 。 2. 主要参数及其计算 (1)占空比δ的确定。当开关电源达到稳态工作时,电路处于平衡状态。开关管V 导通期间的电流增量ΔiL1和截止期间的电流减小量ΔiL2应相等,即有: 1()()i o o o i i o U U T U T L L U U TU U T --= = = δδδ (2)平均电流IL 及L 的确定。由于负载与电感L 是串联的,因此电感中的平均电流即为负载电流Io,故有 o I I = 当Ui 和Uo 确定后,由式(4―28)和式(4―30)δ、Io 也随之确定。 L 的最小 值以Lmin 表示,则 (3)滤波电容CL 的确定。L 中的电流iL 是包含有三角波的脉动电流,因此应在负载RL 两端并联CL,以滤除纹波。 一般选取RLCL >> T 即可满足要求。因一般彩电开关电源中选取T=64μs,负载端滤波电容一般选200μF 左右即可。

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用 SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 耐压不同(在此处使用差异无所谓) VF不同(FR105=1.2V,BYT42M=1.4V) R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

开关电源基础学习知识原理及各功能电路详解

开关电源原理及各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下: 开关电源电路方框图 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理:

输入滤波、整流回路原理图 ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的

电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

学习开关电源你必须知道的电路详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源CCM和DCM工作模式

开关电源Buck 电路CCM 及DCM 工作模式 一、Buck 开关型调整器: 图1 二、CCM 及DCM 定义: 1、CCM (Continuous Conduction Mode),连续导通模式:在一个开关周期内,电感电流从不会到0。或者说电感从不“复位”,意味着在开关周期内电感磁通从不回到0,功率管闭合时,线圈中还有电流流过。 2、DCM ,(Discontinuous Conduction Mode)非连续导通模式:在开关周期内,电感电流总会会到0,意味着电感被适当地“复位”,即功率开关闭合时,电感电流为零。 3、BCM (Boundary Conduction Mode ),边界或边界线导通模式:控制器监控电感电流,一旦检测到电流等于0,功率开关立即闭合。控制器总是等电感电流“复位”来激活开关。如果电感值电流高,而截至斜坡相当平,则开关周期延长,因此,BCM 变化器是可变频率系统。BCM 变换器可以称为临界导通模式或CRM (Critical Conduction Mode )。 图1通过花电感电流曲线表示了三种不同的工作模式。 图2 电感工作的三种模式 电流斜坡的中点幅值等于直流输出电流o I 的平均值,峰值电流Ip 与谷值电流V I 之差为纹波电流。 三、CCM 工作模式及特点 根据CCM 定义,测试出降压变换器工作于连续模式下的波形,如下图3所示。 图3 波形1表示PWM 图形,将开关触发成导通和截止。当开关SW 导通时,公共点SW/D 上的电压为Vin 。相反,当开关断开时,公共点SW/D 电压将摆到负,此时电感电流对二极管D 提供偏置电流,出现负降压——续流作用。 波形3描述了电感两端电压的变化。在平衡点,电感L 两端的平均电压为0,及S1+S2=0。S1面积对应于开关导通时电压与时间的乘积,S2面积对应于开关关断时电压与时间的乘积。S1简单地用矩形高度(in V -out V )乘以D sw T ,而S2也是矩形高度-out V t 乘以(1-D )sw T 。如果对S1和S2求和,然后再整个周期sw T 内平均,得到 (D (in V -out V )sw T -out V (1-D )sw T )/ sw T =0 化简上式可以到CCM 的降压DC 传递函数: out V = D in V =M in V 或M= out V /in V

最新中达开关电源系统调试操作书

中达开关电源系统调 试操作书

请各县市代维人员按照<<中达调试操作书>>上的步骤调试好新旧中达开关电源的参数:中达开关电源一次下电应设为44V、二次下电应设为46.8V;新型中达开关电源(带OBO防雷模块、带低压隔离侦测板)必须在侦测板上(用万用表直流电压档表笔接入第二个孔:低压隔离跳脱调节和第四孔:地线孔)把电压调至 4.68V;侦测板上不能有红灯亮,亮红灯表示侦测板处于手动状态,按一下第五个按钮红灯灭,表示处于自动状态。 《中达开关电源系统调试操作书》 中达电通电源系统操作及参数设定: 说明系统运作资料的显示和告警画面的说明, 以及系统如何进行参数设定, 已由用户针对某些特定的参数重新设定, 其余则由出厂时设定完成。 系统显示

1. 首页画面: 监控单元(CSU )的资料显示,是液晶显示器(LCD)和三个发光二极管来执行。红色为主要告警指示,黄色为次要告警指示,黄色为均充充电指示 (见上的CSU 显示屏幕图示)。 液晶显示器首页显示画面的内容为:直流输出电压、直流输出电流、交流输入电压、系统状态。在正常状况下系统异常告警资料并不显示,只有在供电系统发生异常时,才会有系统告警内容显示出来。 开机时首页画面显示: 直流电压--直流供电系统直流输出电压 负载电流--供电系统输出总负载电流 交流电压—系统交流电压(取第二相) 状 态--显示系统的状态(浮充,均充) 在首页下,按下列按键分别显示下列内容: 增 —显示资料内容. (只能查看,不能设置或更改) 减 —显示参数设定内容. (下面详细讲解) 回车 —显示历史纪录内容和时间. 直流电压 54.3 V 负载电流 0 A 交流电压 220 V 状态 浮充 主要告警指示灯 次要告警指示灯 均充指示灯

相关文档
最新文档