(完整版)水分活度对食品的影响

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水分活度对食品中主要化学变化的影响

水分活度:

水分活度数值用Aw表示,水分活度值等于用百分率表示的相对湿度,其数值在0-1之间。溶液中水的蒸气分压P与纯水蒸气压Q的比值,Aw=P/Q 。Aw值对食品保藏具有重要的意义。含有水分的食物等由于其水分活度之不同,其储藏期的稳定性也不同。利用水分活度的测试,反映物质的保质期,已逐渐成为食品,医药,生物制品等行业中检验的重要指标。

水在产品中,比如食物,被限制在不同的成分中,如蛋白质、盐、糖。这些化学绑定的水是不影响微生物繁殖的。绑定的水分越多,能够蒸发的水分就越少,所以产品里含水量多,并不等于它表面的水汽分压就一定高,平衡相对湿度就一定大,微生物就一定更活跃。水分活度指物质中活性水部分或者自由水。它主要影响物质物理、化学、微生物特性,其中包括流淌性、凝聚、内聚力和静态等物理现象。食物保质期、颜色、味道、维生素、成分、香味的稳定性;霉菌的生成和微生物的生长特性都直接受物质的水分活度值所影响。水分活度的控制对产品的保质期是非常重要的。举个例子说明这个问题,一块水分活度值为0.81的蛋糕,其保质期为21℃时24天,如果其水分活度提高到0.85,其保质期将降低为21℃时12天。由此可见,水分活度决定了微生物的生长率。同样,水分活度对制药业也是非常重要的,它提供的数据反映了如下信息:药片的内聚力,药粉的粘结力,包衣的粘着性等等。

具体表现为:

1、淀粉:淀粉的食品学特性主要体现在老化和糊化上。老化是淀粉颗粒结

构、淀粉链空间结构发生变化而导致溶解性能、糊化及成面团作用变差的过程。在含水量到30~60%时,淀粉的老化速度最快;降低含水量老化速度变慢;当含水量降至10~15%时,淀粉中的水主要为结合水,不会发生老化。

2、脂肪:影响脂肪品质的化学反应主要为氧化酸败。在Ⅰ区,氧化反应的速度随着水分增加而降低;在Ⅱ区,氧化反应速度随着水分的增加而加快;在Ⅲ区,氧化反应速度随着水分增加又呈下降趋势。

3、蛋白质:据测定,当食品中的水分含量在2%以下时,可以有效的阻止蛋白质的变性;而当达到4%或其以上时,蛋白质变性变得越来越容易。

4、酶促褐变:是在酶作用下,食品中的酚类化合物发生特殊的氧化反应使食品颜色变劣的过程。食品体系中大多数的酶类物质在水分活度小于0.85 时,活性大幅度降低。如淀粉酶、酚氧化酶和多酚氧化酶等。但也有一些酶例外,如酯酶在水分活度为0.3 甚至0.1 时也能引起甘油三酯或甘油二酯的水解。

5、非酶促褐变指食品通过一些非酶氧化而导致食品变色的反应。

也与水分活度有密切的关系,当食品中的水分活度在0.6~0.7之间时,非酶促褐变最为严重;水分活度下降,褐变速度减慢,在0.2以下时,褐变难以发生。但当水分活度超过褐变高峰要求的值时,其褐变速度又由于体系中溶质的减少而下降。

6、水溶性色素:一般而言,当食品中的水分活度增大时,水溶性色素(常见的是花青素类)分解的速度就会加快。

7、对酶的影响:许多来自天然的食品物料都有酶存在,干燥过程随着物料水分降低,没本身也失水,活性下降。但当环境适宜,酶仍会恢复活性,而可能引起食品品质恶化活变质。在水分活性值低于BET单分子层值吸附水分活性时,

酶反应进行得极慢或者是完全停止,这是由于食品物料中缺乏流动性水分使酶扩散到基质的特定部位。通常只有干制品水分降至1%以下时,酶活性才会完全消失。在干燥食品中酶反应速度受底物扩散到酶周围的速度所限制,故干燥食品中高分子底物不易被酶作用。例如,在含有蛋白酶的淀粉中,即使在65%的相对湿度下,面筋蛋白质仍不能被显著地水解。大分子底物的扩散效应可能造成酶反应性质的变化,例如,在一个水介质中,淀粉酶作用于可溶性淀粉而生成寡糖。一般来说,在低水分活性下,首先生成葡萄糖和麦芽糖,而仅在较高的水分活性下才生成寡糖。一般来说,在低水分活性下没反应倾向于防止反应中间物的积累或有利于某些反应途径,这可能是由于潜在的中间物不能扩散离开酶的活性部位,而只有立刻讲解或反应。

影响食品中酶稳定性的因素有水分、温度、pH、离子强度、食品构成成分、贮藏时间及酶抑制剂或活性剂等。水分活性只是影响其稳定性条件之一。许多干燥食品的最终水分含量难以达到1%以下,因此靠减少水分活性值来抑制酶对干制品品质的影响并不十分有效。湿热处理酶易使其不可逆失活。

8、对维生素的影响

水分活性对食品中维生素的影响研究的最多的是维生素c。在低a w下,维生素c比较稳定,随着模拟系统和食品中水分的增加,维生素c的降解迅速增快。其他维生素的稳定性也有同样的变化规律,且其降解反应属于一级化学反应,温度对反应速率常数影响很大。降低维生素c的贮藏水分活性和降低温度同样重要,将维生素C包埋或先添加到油相中防止其与水接触也是防止维生素C降解的有效方法。

许多强化维生素的食品(如面粉制品),硫胺素B1的稳定性也受到注意。

Hollenbeck和Ober-meyer(1952年)研究了硫胺素盐的种类,温度和水分对其稳定性的影响,发现在38℃硫胺素的损失量大于28℃。在38℃,随着面粉中水分含量由9.2%增至14.5%,两种型式维生素B1损失增加,但硫胺素盐酸盐损失比单硝酸盐损失大。另一些研究者证实这种结果,小麦粉制品在38%,14%水分条件下维生素B1损失可达80%(质量分数);而3.6%和10%水分含量的面粉中维生素B1都没多大变化。低水分含量下维生素较稳定的机制尚未清楚,也可能与褐变反应有关。

脂溶性维生素的稳定性与脂肪氧化有关。有报道:α-生育酚(维生素E)随着水分增加,降解加速。

相关文档
最新文档