1.65m人行道板计算书

1.65m人行道板计算书
1.65m人行道板计算书

胡家中桥人行道板计算

1技术标准和设计参数

1.1 技术标准

1.1.1 桥梁设计安全等级:一级

1.1.2 车辆荷载等级:城—A级

1.1.3桥面纵坡:0.7%

1.1.4 行车道横坡:1.5%(单幅单向坡)

1.1.5 单幅桥面宽度:3.75米(人行道含护栏)+2米(绿化带)+11.75(行车道)+0.5

米(防撞护栏)=18米。

1.1.6 人行道板铺装:60mm透水砖+30mmM15砂浆

1.1.7 人行道人群荷载:取q人群=5 2

kN m或1.5KN的竖向集中力作用在一块构件

/

上,分别计算,取其不利者。

1.1.8 人行道板结构厚度:h=8.0cm

单块人行道板尺寸1630×490×80mm,采用C30混凝土,轴心抗压设计强度f cd=13.8MPa,轴心抗拉设计强度f td=1.39MPa,弹性模量Ec=3.0×104MPa;钢筋采用HPB300 钢筋,抗拉设计强度f sd=250Mpa,弹性模量Es=2.1×105MPa。

图1.1 人行道立面图

1.2 设计规范

1.2.1 《公路工程技术标准》(JTG B01-2014)1.2.2 《公路桥涵设计通用规范》(JTG D60-2015)1.2.3 《城市桥梁设计规范》(CJJ11-2011)

1.2.4 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)1.2.5 《公路桥涵施工技术规范》(JTG/T F50-2011)

2内力计算

2.1永久作用效应计算

(1)人行道板自重G1

G1=0.04×25=1KN/m

(2)人行道板铺装G2

人行道板铺装上层采用6cm透水砖,下层为3cmM15砂浆,则单块人行道板上每延米铺装重为

G2=(0.06×0.5×18+0.03×0.5×20)=0.84KN/m

由上述得人行道板每延米总重力为

G=G1+G2=1.84KN/m

表2-1 人行道板永久作用效应计算表

2.2可变作用效应计算

根据《城市桥梁设计规范CJJ11-2011》10.0.5条,人行道板的人群荷载按5kPa 或1.5KN的竖向集中力作用在一块构件上,分别计算,取其不利者。

5kpa的人群荷载作用在人行道板上,计算跨径取1.55m(净跨径1.45+半个支撑宽度0.05×2),算得简支板跨中弯矩为0.75KN.m,支点剪力为1.94KN,为两种工况

中的最不利者。 2.3作用效应组合

根据作用效应组合,选取三种组合进行计算。 (1)基本组合(用于结构承载能力极限状态设计)

m o ud o Gi Gik Q1Q1k c Lj Qj Qjk i 1j 2S S S S n γγγγγγ==??

=++ψ ?

??∑∑ 《通规》4.1.5-1式

其中各分项系数的取值如下

0γ――结构重要性系数,0γ=1.1;

G γ――结构自重分项系数, G γ=1.2或G γ=1.0;

Q1γ――汽车荷载(含冲击力)的分项系数,取Q1

γ=1.4;

Q2

γ――人群荷载的分项系数,取

Q2

γ=1.4;

L2γLj γ――可变作用的结构设计使用年限荷载调整系数,取L2γ=1;

c ψ――人群荷载的组合值系数,取c ψ=0.75。 (2)作用频遇组合(用于正常使用极限状态设计)

永久作用为标准值与汽车荷载频遇值、其他可变作用准永久值相结合,其效应组合表达式为

f f11q 11

G Q Q m n

d ik k j jk i j S S ψψ===∑∑(,,) 《通规》4.1.6-1式 式中 f1ψ-汽车荷载(不计汽车冲击力)频遇值系数,取0.7;

q j

ψ-第j 个可变作用的准永久值系数,人群荷载取1.0。

(3) 作用准永久组合(用于正常使用极限状态设计)

永久作用标准值与可变作用准永久值相组合,其效应组合表达式为:

2n

q d ik qj jk i 1j 1

S S G S Q ψ===+∑∑()

《通规》4.1.6-2式

式中

qj

ψ—汽车荷载(不计汽车冲击力)的准永久值系数,取0.4,;

qd

S —作用准永久组合的效应设计值,结构抗裂验算时,其中可变作用仅考虑

汽车等直接作用于构件的荷载效应。

表2-2 作用效应组合表

3持久状况承载能力极限状态下的截面配筋及验算

3.1配筋计算

根据《公预规D62-2004》第5.2.2条,矩形截面抗弯承载力计算公式如下:

0()2

o d cd x

M f bx h γ=-

s d s c d f A f b x = 受压区高度应符合下列要求: 0b x h ξ≤

式中:

o γ——桥梁结构的重要系数。按“公预规”第5.1.5条取用

d M ——弯矩组合设计值,这里取基本组合设计值ud M

cd f ——混凝土轴心抗压强度设计值。按“公预规”表3.1.4采用

sd f ——纵向普通钢筋抗拉强度设计值。按“公预规”表3.2.3-1采用

0h ——截面有效高度。 x ——截面受压区高度。

由以上公式解二次方程得到x 值。并且取0b x h ξ≤的x 值。

跨中截面有效高度:0h =0.08-0.03=0.05m ,混凝土保护层c=a s -5=25mm 满足规范要求且大于钢筋公称直径d=10mm 。

)2

05.0(49.01380071.11.1x

x -?=?

解得:x1=0.00592m , x2=0.0941m m h b 0265.0050.053.00=?=≥ξ(舍去) 受拉区钢筋的配筋面积s A : 212.160250

92

.54908.13mm f bx f A sd cd s =??==

实配6Φ10,As =471.242mm >2

12.160mm 且ρ=1.92%>ρmin =0.2%,满足要求。

3.2正截面抗弯承载力计算

按截面实际配筋计算截面受压区高度x 为: 0

250471.24

17.42==m

m 13.8490

s d s b cd f A x mm h f b ξ?=

==

0()

2d cd x M f bx h =- )

m .881.171.11.1(m .KN 86.4201742.0-05.001742.049.0108.1303KN M d =?>=??? ??

????=γ

正截面抗弯承载力满足要求。

3.3斜截面抗剪承载力计算

根据“公预规”第5.2.9条和第5.2.10条,截面有效高度ho =0.05m (1)矩形截面设受弯构件,其抗剪应符合下列要求;

000.5110d V γ-≤?

KN KN bh f k cu 862.442.41.144.6849500301051.01051.030,3=?≥=????=?--

斜截面抗剪承载力满足要求。

(2)矩形截面受弯构件,当符合下列条件时;

302td 00.510f d V bh γα-≤?

可不进行斜截面抗剪承载力的验算。 因为:

KN KN bh f a td 862.442.41.103.175049039.11105.0105.03023=?≥=?????=?-- 所以,可不进行斜截面抗剪承载力的验算。 式中:

d V ——验算截面处由作用(或荷载)产生的剪力组合设计值 b ——相应于剪力组合设计值处的矩形截面宽度(mm )

4持久状况正常使用极限状态下的裂缝宽度验算

按《公预规》第6.4.3条和第6.4.4条,矩形截面混凝土受弯构件,其最大裂缝宽度tk W 可按下列公式计算:

123

30(

)

0.2810ss

tk s

d

W C C C

E σρ+=+ (mm )

0s A bh ρ=

00.87s ss s M A h σ=

式中:

1C ——钢筋表面形状系数,对光圆钢筋,1C =1.4; 2C ——作用(或荷载)长期效应影响系数,

210.5

l

s N C N =+,其中l N 和s N 分

别为按作用(或荷载)长期效应组合和短期效应组合计算的内力值(弯矩或轴向力);

3C ——与构件性质有关的系数,当为钢筋混凝土板式受弯构件时,3C =1.15,其他受弯构件 3C =1.0,轴心受拉构件 3C =1.2,偏心受拉构件 3C =1.1,偏心受压构件 3C =0.9:

ss σ——钢筋应力;

d —— 纵向受拉钢筋直径(mm ),当有不同直径的钢筋,采用等代直径。 ρ—— 纵向受拉钢筋的配筋率,对钢筋混凝土构件,当ρ>0.02时,取ρ=0.02;当ρ<0.006时,取ρ=0.006;对于轴心受拉构件时,ρ按全部受拉钢筋截面面积s A 的一半计算;

s M ——按作用(或荷载)短期效应组合计算的弯矩值。 受拉钢筋在作用频遇组合下的应力为:

MPa h A M s s ss 42.6350

2.47187.01030.187.06

0=???==σ

0192.002.00192.05049024.4710,取小于=?==

bh A s ρ 33.130

.185.05.015

.012=?+=+=s l N N C 把以上数据带入W tk 公式: 123

30(

)0.2810ss

tk s

d W C C C

E σρ

+=+

mm mm 2.0039.0)0192

.01028.010

30(101.242.6315.133.10.15≤=?++??

??=

按《公预规》第6.4.2条 ,人行道板的裂缝宽度允许值为0.2mm ,则裂缝宽度满足要求。

5持久状况正常使用极限状态下的挠度验算

5.1计算开裂截面的抗弯刚度

a ES =C S E E =4

5

103.0101.2??=7

A co = a ES ·A s =7×0.0004174 =0.00292m 2

式中,a ES 为钢筋与混凝土的弹性模量比; A CO 为钢筋换算混凝土的面积; A s 为钢筋的面积; 全截面换算截面面积:

0417044.00004174.0)17(08.049.00)1(=?-+?=-+=-+=s Es s s Es A bh A A bh A αα

全截面换算截面受压区高度χ0

002/))1(5.0(A h A bh x s Es -+=α

m 0406.00417044.0/)05.00004174.0)17(08.049.05.0(2=??-+??=

全截面换算截面惯性矩

2

0230)()1()5.0(12/x h A x h bh bh I s Es --+-+=α

2

23)0406.005.0(0004174.0)17()0406.008.05.0(08.049.012/08.049.0-??-+-???+?=45-10114.2m ?=

全截面换算截面重心轴以上部分面积对重心轴面积矩

34--2201004.40406.049.05.02/1m bx S ?=??==

全截面换算截面抗裂边缘的弹性抵抗矩

33-4-001064.6)0406.008.0/(10616.2)/(m x h I w ?=-?=-=

由)(/00s ES 2/0h A a bx 2

1x -=

求得

'χ0=)1)/(21((/0-+?s Es s Es A bh b A αα

m 0192.0)1)0004174.07/(05.049.021(49.0/0004174.07=-???+??=

则Icr= 2

0030)(3'χ'

χ-+h A a b S ES

=0.49?0.01923/3+7×0.0004174×(0.05-0.0192)2=3.93?10-6m 4

因γ=00

2W S ,则

Mcr=γf tk W 0=2S 0f tk

=2×4.04×10-4×2.01×103 =1.624KN ·m

B=cr s cr s

cr C B B M M M M B I E 0

200])1[()()(95.0-+ =6

5225

341093.310×114.295.0])3.1624.11[()3.1624.1(10×114.2101003.95.0———??-+???? =321.01KN ·m

5.2受弯构件跨中截面处的长期挠度值

根据上述计算结果,荷载频遇组合作用下跨中截面弯矩标准值M s =1.30KN.m ,结构自重下跨中截面弯矩标准值MG=0.55KN.m ;对C30混凝土,挠度长期增长系数 ηθ=1.60。

受弯构件在使用阶段的跨中截面的长期挠度值为:

θιηω??=B

4882S L M

mm

62.16.101

.32155.13.14852=???=

在结构自重下跨中截面的长期挠度值为:

θηω??=B

4852

G L M G

mm

69.06.101

.32155.155.04852=???= 则按可变荷载频遇值计算的长期挠度值为:

)58.2600

1055.1(600mm 93.069.0-62.1-3

G Q mm =?=<===ι

ωωωι

因此,挠度满足《公预规》第6.5.3条要求。 5.3预拱度设置

《公预规》第6.5.5条,钢筋混凝土受弯构件,当有荷载短期效应并考虑荷载产生的长期效应影响后产生的长期挠度不超过计算跨径的1/1600时,可不设预拱度。

在荷载短期效应组合并考虑荷载长期效应影响下此结构跨中处产生的长期挠度

为mm 969.01600

1055.11600L mm 62.13

c =?=>

=ω,故跨中截面需要设预拱度。 根据《公预规》第6.5.5条对预拱度设置的规定,得跨中截面处的预拱度为:

mm 16.193.02

1

69.021△Q G =?+=+=ωω

综上所述,人行道板符合规范要求。

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1. 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD ,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h ,为两池并联设计。 2. 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质和处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上 规定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-2 3/2.18.0,中 心管流速不大于s mm /30,中心管下部应设喇叭口和反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450 。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0.025m/s ,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h ,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36 .040=?= ,取d 0=900mm ; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m ) 喇叭口的管径取中心管直径的1.35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口和反射板之间的缝隙 水流速度 v 1=0.02mm/s ,则有

20米预应力混凝土空心板桥计算书 装配式预应力混凝土空心板桥计算 毕业设计论文

装配式预应力混凝土空心板桥计算 第Ⅰ部分上部构造计算 一、设计资料及构造布置 (一)设计资料 1.跨径:标准跨径20.0m,计算跨径l=19.6 m,预制板全长19.96 m。 2.荷载:汽车—20级,挂车—100,人群荷载 3.5KN/m2。 3.桥面净宽:行车道7.00 m,人行道每测0.75 m。 4.主要材料: 混凝土:预制行车道板40号混凝土,桥面铺装及接缝亦用40号混凝土,其 余均为25号混凝土。预应力筋采用φ15.24(7φ5)钢绞线,R b y =1860Mpa, 普通筋直径d≥12mm者采用Ⅱ级钢筋,直径d<12mm者采用Ⅰ级钢筋(但吊 环必须用Ⅰ级钢筋)。 5.施工要点:预制块件在台座上用先张法施加预应力,张拉台座长度假定为 70m。设计时要求预制板混凝土强度达到80%时才允许放松预应力筋。计算 预应力损失时计入加热养护温差20℃所引起的损失。预应力钢绞线应进行持 荷时间不少于5min的超张拉。 安装时,应待接缝及现浇层混凝土与预制板结合成整体后再敷设铺装层及安 装人行道板等。 6.技术标准及设计规范: (1).《公路工程技术标准》(JTT01—88); (2).《公路桥涵设计通用规范》(JTJ021—89); (3).《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023—85),以下简称《预桥规》。 (4).《桥梁工程》2001,范立础主编,人民交通出版社出版。 (5).《公路桥涵设计手册》〈梁桥·上册〉(1996),徐光辉、胡明义主编,人民交通出版社出版。 (二)、构造及设计要点 1.主梁片数:每孔8片。 2.预制板厚85cm,每块宽100cm。

桩基础设计实例计算书说课材料

桩基础设计实例 某城市中心区旧城改造工程中,拟建一幢18层框剪结构住宅楼。场地地层稳定,典型地质剖面图及桩基计算指标见表8-5。柱的矩形截面边长为400mm ×500mm ,相应于荷载效应标准组合时作用于柱底的荷载为:5840=k F kN ,180=xk M kN ·m , 550=yk M kN ·m ,120=xk H kN 。承台混凝土强度等级取C30,配置HRB400级钢筋, 试设计柱下独立承台桩基础。 表8-5 地质剖面与桩基计算指标 解:(1)桩型的选择与桩长的确定 人工挖孔桩:卵石以上无合适的持力层。以卵石为持力层时,开挖深度达26m 以上,当地缺少施工经验,且地下水丰富,故不予采用。 沉管灌注桩:卵石层埋深超过26m ,现有施工机械难以沉管。以粉质粘土作为持力层,单桩承载力仅240~340 kN ,对16层建筑物而言,必然布桩密度过大,无法采用。 对钻(冲)孔灌注桩,按当地经验,单位承载力的造价必然很高,且质量控制困难,场地污染严重,故不予采用。 经论证,决定采用PHC400-95-A (直径400mm 、壁厚95mm 、A 型预应力高强混凝土管桩),十字型桩尖。由于该工程位于城市中心区,故采用静力法压桩。 初选承台埋深d =2m 。桩顶嵌入承台0.05m ,桩底进入卵石层≥1.0m ,则总桩长

L=0.05+1.0+10.4+3.5+9.3+1.0≈25.3m 。 (2)确定单桩竖向承载力 ①按地质报告参数预估 ∑+=i sia P p pa a L q u A q R ()4596910.1803.9105.3304.1061254.044.055002+=?+?+?+?+???+??? ? ????=ππ =1150kN ②按当地相同条件静载试验成果 u Q 的范围值为2600 ~3000kN 之间,则 1500~13002/==u a Q R kN , 经分析比较,确定采用13502/==u a Q R kN 。 (2)估算桩数与平面布桩 ①初选桩的根数 3.41350 5840==a k R F n > 根,暂取5根。 ②初选承台尺寸 桩距2.14.00.30.3=?==d s m ,并考虑到xk yk >M M ,故布桩如图8-29所示: (a) 平面 (b) 立面 图8-29 承台尺寸及荷载图

竖流沉淀池设计计算书

竖流沉淀池设计计算书 设 计:****** 1、 设计概述 为了使出水水质达到景观用水标准,减轻后续工艺的负担,在一般生物法处理工艺前面会设置一个初沉池,它可以去除部分的悬浮物,对SS 的去除率能达到50%,另外初沉池对COD,BOD 的去除率也能达到10%,较大的减轻了后续工艺的负担。 本设计采用竖流式沉淀池作为初沉池,为了降低施工的难度,该竖流沉淀池采用多个污泥斗,这可以降低沉淀池的高度。设计规模为100m3/h,为两池并联设计。 2、 竖流沉淀池构筑物工艺计算 根据《建筑中水设计规范》中的规定,初次沉淀池的设置应根据原水水质与处理工艺等因素确定。当原水为优质杂排水或杂排水时,设置调节池后可不再设置初次沉淀池。若设计水质生活污水,则需要在前期处理中采取设置初次沉淀池,减小后续工艺的负担。 在此设计中由于水量较小,且竖流沉淀池的广泛应用,在生产实践当中有较多的实际经验,故采取竖流沉淀池作为初次沉淀池。《建筑中水设计规范》上规 定:竖流式竖流式沉淀池的设计表面水力负荷宜采用h m m ?-23/2.18.0,中心管 流速不大于s mm /30,中心管下部应设喇叭口与反射板,板底面距泥面不小于m 3.0,排泥斗坡度应大于450。

图1 竖流沉淀池俯视图 设计计算: (1)中心管面积f(m 2) 取中心管流速为v=0、025m/s,沉淀池分两池并联、共壁合建,单池处理流量为:100/2=50m 3/h,以下设计以单池处理流量50m 3/h 来考虑, 则有单池中心管面积: 26.060 60025.050m V Q f =??== (2)中心管直径 0d (m 2) 由中心管面积可以得到: m m d 874.014 .36.040=?=,取d 0=900mm; (3)中心管下端(喇叭口)到反射板之间的缝隙高度h 3(m) 喇叭口的管径取中心管直径的1、35倍,则有 mm mm d d 121590035.135.101=?=?=,设喇叭口与反射板之间的缝隙 水流速度 v 1=0、02mm/s,则有 m m d v Q h 2.0215 .102.014.336005086400113=???=?=π;

钢结构平台设计计算书

钢结构平台设计计算书 Prepared on 22 November 2020

哈尔滨工业大学(威海)土木工程钢结构课程设计计算书 姓名:田英鹏 学1 指导教师:钱宏亮 二零一五年七月 土木工程系

钢结构平台设计计算书 一、设计资料 某厂房内工作平台,平面尺寸为18×9m 2(平台板无开洞),台顶面标 高为 +,平台上均布荷载标准值为12kN/m 2,设计全钢工作平台。 二、结构形式 平面布置,主梁跨度9000mm ,次梁跨度6000mm ,次梁间距1500mm ,铺 板宽600mm ,长度1500mm ,铺板下设加劲肋,间距600mm 。共设8根柱。 图1 全钢平台结构布置图 三、铺板及其加劲肋设计与计算 1、铺板设计与计算 (1)铺板的设计 铺板采用mm 6厚带肋花纹钢板,钢材牌号为Q235,手工焊,选用E43 型焊条,钢材弹性模量25N/mm 102.06E ?=,钢材密度 33kg/mm 1085.7?=ρ。 (2)荷载计算 平台均布活荷载标准值: 212q m kN LK =

6mm 厚花纹钢板自重: 2D 0.46q m kN K = 恒荷载分项系数为,活荷载分项系数为。 均布荷载标准值: 2121246.0q m kN k =+= 均布荷载设计值: 235.174.1122.146.0q m kN k =?+?= (3)强度计算 花纹钢板0.25.26001500a b >==,取0.100α=,平台板单位宽度最大弯矩设计值为: (4)挠度计算 取520.110, 2.0610/E N mm β==? 设计满足强度和刚度要求。 2、加劲肋设计与计算 图2 加劲肋计算简图 (1)型号及尺寸选择 选用钢板尺寸680?—,钢材为Q235。加劲肋与铺板采用单面角焊缝,焊角尺寸6mm ,每焊150mm 长 度后跳开50mm 。此连接构造满足铺板与加 劲肋作为整体计算的条件。加劲肋的计算截面为图所示的T 形截面,铺板计算宽度为15t=180mm ,跨度为。 (2)荷载计算 加劲肋自重: m kN 003768.05.7866.008.0=?? 均布荷载标准值: m kN k 51.7003768.06.05.12q =+?= 均布荷载设计值: m kN d 455.1003768.02.16.035.17q =?+?= (3)内力计算 简支梁跨中最大弯矩设计值 支座处最大剪力设计值

防撞栏杆及桥面板计算书

预应力混凝土公路桥梁通用图设计成套技术 通用图设计计算书 空心板悬臂及防撞栏杆配筋计算 设计计算人:日期: 复核核对人:日期: 单位审核人:日期: 项目负责人:日期: 编制单位:湖南省交通规划勘察设计院 编制时间:二○○六年七月

防撞栏杆及桥面板配筋计算 1.设计依据及相关资料 1.1计算项目采用的标准和规范 1.《公路桥涵设计通用规范》(JTG D60-2004) 2.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 3.《公路交通安全设施设计规范》(JTG D81-2006) 1.2参与计算的材料及其强度指标 材料名称及强度取值表表1.1 1.3 荷载等级 荷载等级:公路Ⅰ级; 1.4 作用荷载、荷载组合、荷载作用简图 1.永久作用:结构重力 2.偶然作用:汽车碰撞作用

3.作用效应组合 (1)承载能力极限状态 对空心板悬臂计算: 组合设计值Sud=1.11.2×永久作用 对防撞栏杆计算: 组合设计值Sud=永久作用+汽车碰撞作用 (2)正常使用极限状态 对空心板悬臂计算: 作用短期效应组合:永久作用 作用长期效应组合:永久作用 1.5 计算模式、重要性系数 结构重要性系数为1.1。 1.5 总体项目组、专家组指导意见 1.6 计算单位的审核指导意见 2.计算 2.1 计算模式图、所采用软件 采用桥梁博士V3.0.3计算,计算共分两部分,一是空心板悬臂计算,计算简图见图2.1,二是防撞栏杆计算,计算简图简图2.2 图 2.1 空心板悬臂计算简图

图 2.2 防撞栏杆计算简图计算简图 空心板悬臂计算考虑防撞栏杆、混凝土现浇层及悬臂自重,对承载能力和使用阶段的裂缝进行计算。防撞栏杆考虑汽车的撞击作用,对承载能力进行计算。防撞等级采用SB 级,从《公路交通安全设施设计规范》(JTG D81-2006)5.1款可知碰撞力P 为365kN 。 2.2 计算结果及结果分析 2.2.1空心板悬臂计算结果及结果分析 1.持久状况正截面承载能力极限状态验算 空心板悬臂根部截面的的弯距,考虑防撞栏杆自重、钢筋混凝土和沥青混凝土现浇层及悬臂自重,取纵桥向1m 计算,不考虑混凝土现浇层参与受力。 1910.343 2.94810.280.130.11240.13/2 3.933kN m ) M =??+??+????=?( 0ud 1.1 1.2 4.449 5.192kN m )S γ=??=?( 取宽1000mm ,高240mm 的截面进行验算,受力钢筋采用HRB335,直径为12mm ,钢筋中心距离截面边缘的距离为37mm 。 极限承载力计算:0ud 44.7kN m 5.192kN m R S γ=?≥=?,满足规范要求。 受弯构件最小配筋率验算:根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004),受弯构件一侧受拉钢筋的配筋百分率不应小于td sd 45/f f ,同时不应小于0.2。 td sd 45/45 1.23/2800.29f f =?=,因此最小配筋率为0.29%。最小配筋面积 4 2 min 6.3510m Ag -=? < 实际配筋面积427.9210m Ag -=?,满足《公路钢筋混凝土及预应 力混凝土桥涵设计规范》(JTG D62-2004)9.1.12条要求。 2.持久状况正常使用极限状态验算

桩基础工程计算实例详解

桩基础工程 1.某工程用打桩机,打如图4-1所示钢筋混凝土预制方桩,共50根,求其工程量,确定定额项目。 钢筋混凝土预制方桩 【解】工程量=0.5×0.5×(24+0.6)×50=307.50m3 钢筋混凝土预制方桩套2-6 定额基价=114.59元/m3 2.打桩机打孔钢筋混凝土灌注桩,桩长14m,钢管外径0.5m,桩根数为50根,求现场灌注桩工程量,确定定额项目。 【解】工程量=3.14÷4×0.52×(14+0.5)×50=142.28m3 打孔钢筋混凝土灌注桩(15m以内)套2-41 定额基价=508.3元/m3 3.如图所示,已知共有20根预制桩,二级土质。求用打桩机打桩工程量。 【解】工程量=0.45×0.45×(15+0.8)×20m3=63.99m3 4.如图所示,求履带式柴油打桩机打桩工程量。已知土质为二级土,混凝土预制桩28根。 【解】工程量=[×(0.32-0.22)×21.2+×0.32×O.8]×28m3=99.57m3 5.如图所示,求送桩工程量,并求综合基价。 【解】工程量=0.4×0.4×(0.8+0.5)×4=0.832m3 查定额,套(2-5)子目, 综合基价=0.832×(96.18+21×0.63×0.25+1033.82×0.060×0.25)=115.625元

6.打预制钢筋混凝土离心管桩,桩全长为12.50m,外径30cm,其截面面积如图所示, 求单桩体积。 【解】离心管桩V1=×3.1416×12m3 =0.0125×3.1416×12m3 =0.471m3 预制桩尖V2=0.32××3.1416×0.5m3=0.0255×3.1416×0.5m3=0.035m3 总体积∑V=(0.471+0.035)m3=0.506m3 7.求图示钢筋混凝土预制桩的打桩工程量,共有120根桩。 【解】V=[(L一h)×(A×B)+×(A×B)×h]×n =[(7-0.23)×(0.25×0.25)+ ×(0.25×0.25×0.23)]×120m3=51.35m3 8.图为预制钢筋混凝土桩,现浇承台基础示意图,计算桩基的制作、运输、打桩、打送桩以及承台的工程量。(30个) 【解】(1)预制桩图示工程量: V图=(8.0+0.3)×0.3×0.3m3×4根×30个=89.64m3 (2)制桩工程量:V制= V图×1.02=89.64m3×1.02=91.43m3 (3)运输工程量:V运= V图×1.019=89.64m3×1.019=91.34m3 (4)打桩工程量:V打= V图=89.64m3 (5)送桩工程量:V送=(1.8-0.3-0.15+0.5)×0.3×0.3×4×30m3=19.98m3

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

钢结构平台计算书

钢结构平台 设计说明书 设计: 校核: 太原市久鼎机械制造有限公司 二零一四年十月 目录 1.设计资料.................................................................... . (3) 2.结构形式.................................................................... . (3) 3.材料选择.................................................................... (3) 4.铺板设计.................................................................... . (3) 5.加劲肋设

计.................................................................... (5) 6.平台梁.................................................................... .. (6) 次梁设计.................................................................... (6) 主梁设 计 ................................................................... .......................... .. (7) 7.柱设计.................................................................... .. (9) 8. 柱间支撑设置.................................................................... (11) 9. 主梁与柱侧的连接设 计 ................................................................... . (11) 钢结构平台设计 1.设计资料 厂房内装料平台,平面尺寸为×(平台板开洞7个,开洞尺寸460×460mm), 台顶面标高为。平台上平均布荷载为52 kN/m,不考虑水平向荷载,设计全钢工作平台。

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

钢结构课程设计 车间工作平台

目录 一.设计说明 (2) 二.计算书正文 (2) 第一节平台铺板设计 (3) 第二节平台次梁计算 (3) 2.1跨中截面选择 (3) 2.2次梁的抗弯强度验算 (4) 2.3抗剪强度验算 (4) 2.4次梁整体稳定性验算 (4) 第三节平台主梁设计 (5) 3.1内力计算 (6) 3.2局部稳定验算 (7) 3.3抗弯强度验算 (7) 3.4抗剪强度验算 (8) 3.5整体稳定性验算 (8) 3.6刚度验算 (8) 3.7翼缘与腹板的连接焊验算 (9) 第四节平台柱计算 (9) 4.1平台柱设为实腹柱轴心受压构件设计 (9) 4.2平台柱强度,刚度,整体稳定验算 (10) 4.3局部稳定性验算 (11) 三.连接点设计 (11)

一.设计说明 1.本设计为某车间工作平台 2.结构平面布置图如下,间距4m,5跨,共20m,跨度3m,4跨,共12m 3.梁上铺100mm厚的钢筋混凝土预制板和30mm素混凝土面层。 永久荷载为:5KN/mm2,可变荷载为:10KN/m2 荷载分项系数:永久荷载1.2,可变荷载1.3 二.计算书正文

第一节 平台铺板设计 依题意并综合分析比较,平台钢结构平面布置如上图,主梁计算跨度为 6m ,次梁计算跨度为3m ,次梁与主梁采用平接方式连接。 铺板自重为:0.1*20+0.03*24=2.72KN/m 2 铺板承受的荷载标准值为:q k =2.72+10=12.72KN/m 2 铺板承受荷载设计值:q=1.2*2.72+10*1.3=16.264KN/m 2 第二节 平台次梁计算 2.1跨中截面选择 查《荷载规范》钢筋混凝土自重按25KN/mm 3,素混凝土按24KN/mm 3,则 因此取:r q =1.3,r G =1.2; 次梁承受恒荷载包括铺板自重标准值为(暂不考虑次梁自重): 1p =2.72*1.2=3.264KN/m 活荷载标准值:p 2=10*1.2=12KN/m 次梁跨中最大弯矩设计值:M ax M =ql 2/8=16.264*5*5/8=50.825KN ·m 需要的净截面模量为:W= f r x max M =50.825/(1.05*215)=225cm 3 初步拟定次梁采用工字型I20a ,A=35.5cm 2,X W =237cm 2, 2370x =I cm 4 , cm 2.17x x =S I ,自重27.9Kg/m

人行道板计算书

桥梁横向计算之四 人行道板(横向)计算书 计算: 复核:

。2011年8月

丁家洼河桥横向计算说明书 目录 一、工程概况 (1) 1. 技术标准和设计参数 (1) 1.1 技术标准 (1) 1.2 设计规范 (1) 二、恒载效应 (2) 三、荷载组合: (2) 四、配筋计算 (3) 五、截面复核 (4) 六、剪力验算 (5) 七、裂缝宽度验算 (5) 八、结论 (7)

一、工程概况 1. 技术标准和设计参数 1.1 技术标准 1.1.1 车辆荷载等级:公路I级 1.1.2 桥面纵坡:小于3% 1.1.3 桥面横坡:2%(单幅单向坡) 1.1.4 0.5栏杆+2m人行道+9.75车行道+0.5双黄线+9.75车行道+2m人行道+0.5 栏杆=25m。主梁间距1.65+3.1*3+1.65m+0.02m+1.65+3.1*3+1.65m =25.22m 湿接缝70cm。 1.1.5 人行道板铺装:6cm厚砖 1.1.6 人行道人群荷载:取q人群=5 2 kN m / 1.1.6 人行道板结构厚度:h=7.0cm 1.2 设计规范 1.2.1 《公路工程技术标准》(JTJ001-97)1.2.2 《公路桥涵设计通用规范》(JTG D60-2004)1.2.3 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)1.2.4 《公路桥涵地基与基础设计规范》(JTJ024-85)1.2.5 《公路桥涵施工技术规范》(JTJ041-2000)

二、恒载效应 (1)成桥以后 先计算简支板的跨中和支点剪力。根据《公预规D62-2004》第4.1.2条,简支板的计算跨径应为两只点之间的距离,L=1.0m 。 简支板跨中弯矩:Mo =21231 ()8g g g L ?++? 简支板支点剪力:Qo =1231 ()2 g g g L ?++? g1:铺装自重 g2:结构层自重 g3:人群荷载 Mo =21231 ()8g g g L ?++? =1 (0.06230.0726 5.0) 1.025m 8kN ??+?+=g Qo =1231 ()2g g g L ?++? =1 (0.06230.0726 5.0)=4.12 kN ??+?+ 三、荷载组合: 基本组合: 1.2 1.4ud sg sp M M M =+ 作用短期效应荷载组合:0.71sp sd sg M M M μ=++ 作用长期效应荷载组合:0.41sp sd sg M M M μ =+ + 表1 荷载组合表

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度 设计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表二:

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值和设计值的计算; 2、确定桩数和桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋和必要的施工说明; 6、需要提交的报告:计算说明书和桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定

1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、c f =15MPa 、m f =16.5MPa 4φ16 y f =310MPa 4)、承台材料:混凝土强度C30、c f =15MPa 、m f =16.5MPa t f =1.5MPa (三):单桩承载力确定 1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0按0.25折减,配筋 φ16) 2 ( ) 1.0(150.25300310803.8)586.7p S c y R kN f f A A ?''=+ =???+?= 2)、根据地基基础规公式计算: 1°、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 100800(800)8805 pa kPa q -=?= 2°、桩侧土摩擦力: 粉质粘土层1: 1.0L I = , 17~24sa kPa q = 取18kPa 粉质粘土层2: 0.60L I = , 24~31sa kPa q = 取28kPa 2 8800.340.3(189281)307.2p i p pa sia Ra kPa q q l A μ=+=?+???+?=∑ 3)、根据静载荷试验数据计算: 根据静载荷单桩承载力试验Q s -曲线,按明显拐点法得单桩极限承载力 550u kN Q = 单桩承载力标准值: 550 2752 2 u k kN Q R = = = 根据以上各种条件下的计算结果,取单桩竖向承载力标准值

沉淀池设计与计算

第六节、普通沉淀池 沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。 普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。 一、平流沉淀池 在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片] 链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。 沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。 进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。 1.入流区和出流区的设计 入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

钢结构平台设计计算书

哈尔滨工业大学(威海)土木工程 钢结构课程设计计算书 姓名:田英鹏 学1 指导教师:钱宏亮 二零一五年七月 土木工程系

钢结构平台设计计算书 、设计资料 某厂房内工作平台,平面尺寸为18X 9m2(平台板无开洞),台顶面标高为+4.000m,平台上均布荷载标准值为12kN/mf,设计全钢工作平台。 二、结构形式 平面布置,主梁跨度9000mm次梁跨度6000mm次梁间距1500mm铺 板宽600mm长度1500mm铺板下设加劲肋,间距600mm共设8根柱。 图1 全钢平台结构布置图 三、铺板及其加劲肋设计与计算 1、铺板设计与计算 (1)铺板的设计 铺板采用6mm厚带肋花纹钢板,钢材牌号为Q235,手工焊,选用E43型焊条,钢材弹性模量E 2.06 105N/mm 2,钢材密度 7.85 103kg/mm3。 (2)荷载计算 平台均布活荷载标准值:q LK12 kN m2

6mn厚花纹钢板自重:q D I K 0.46 kN m2 恒荷载分项系数为1.2,活荷载分项系数为 1.3。 均布荷载标准值:q k0.46 1212kN m2 均布何载设计值:q k0.46 1.212 1.4 17.35kN m2 (3)强度计算 花纹钢板ba 1500 600 2.5 2.0,取0.100,平台板单位宽度最大 弯矩设计值为: (4)挠度计算 取0.110,E 2.06 105N /mm2 设计满足强度和刚度要求。 2、加劲肋设计与计算 图2 加劲肋计算简图 (1)型号及尺寸选择 选用钢板尺寸一80 6,钢材为Q235加劲肋与铺板采用单面角焊缝, 焊角尺寸6mm每焊150mn长度后跳开50mm此连接构造满足铺板与加劲肋作为整体计算的条件。加劲肋的计算截面为图所示的T形截面,铺板计算宽度为15t=180mm跨度为1.5m。 (2)荷载计算 加劲肋自重:0.08 0.66 78.5 0.003768kN m 均布荷载标准值:q k12.5 0.6 0.003768 7.51kN m 均布荷载设计值:q d17.35 0.6 1.2 0.03768 10.455kN. m (3)内力计算 简支梁跨中最大弯矩设计值 支座处最大剪力设计值

人行道板技术标准

人行道维修 相关技术标准及要求 1、修补人行道的结构强度不得低于结构,结构、材质、颜色、功 能、道板尺寸等,均应与人行道一致,整体换铺时应与原路面协调衔接。 2、所选维修材料应符合相关标准的规定,并有质量合格证明;防 滑性能需满足相关技术要求,根据原设计要求所用材料铺 设。。 3、铺装工序 技术措施及施工步骤:清理工作面、铺设基层、铺砌道板砖、养护 1.清理表层,人行道板铺装前先清理干净基层上的废旧杂物,使铺 设面整洁、干净,并洒水湿润。 2.基层铺设(预拌砂浆) (参考配合比) M10砂浆配合比(经验配比):水泥∶砂=240∶1221=1∶ 5.09 C15混凝土配合比(经验配比):水泥∶水∶砂∶碎石=1∶ 0.78∶3.27∶4.91 刚性基层一般采用C20~C25普通水凝混凝土,宜采用再生混凝土

柔性基层适用于土基层状况较好,碾压条件良好的路段或要求人行道结构透水的路段。人行道板材符合设计要求, 同时满足相应技术标准。 半刚性基层可采用石灰粉煤灰稳定碎石及水泥稳定碎石等。 3.铺砌道板砖,在面层正式铺砌前,应进行试铺,试铺经验收合格 后方可开始正式铺砌。两相邻人行道面砖之间的接缝宽度应为3 ±1mm。人行道面层铺砌是必须采用“挂线定位法”,横缝线的 布置宜10米一根,纵缝线可根据人行道的宽度挂出变线。横纵 基准线布置完成后,经检查确认平整度、坡度、顺制度均达到要 求后,方可进行铺砌。 铺筑人行道板要求: 预制块、块石铺筑平整不松动,缝隙饱满;纵横缝顺治,排列整齐,横向偏差不得大于10mm;铺筑人行道板完 整,一块板不得超过一条裂缝,有缺角的用混凝土补平。 平整度要求不得大于5mm 检查井及公共事业井盖框和人行道高差不得大于5mm 铺设过程中,新旧接茬要齐平,高差不得大于5mm;人行道应高出侧石顶面5mm。 铺设道路无障碍设施 人行道宽度超过3.5m时应设置盲道;铺设时应避开各类地面障碍物并距人行道边线0.25m~0.6m;盲道中应无障

相关文档
最新文档