常用材料弹性常数测量实验_

常用材料弹性常数测量实验_
常用材料弹性常数测量实验_

常用材料弹性常数测量实验

精51 2005010482

赵诣J202

同组:杨栋付春双

1、 实验目的

(1)测定常用材料的弹性模量和泊松比 (2)学会使用最小二乘法处理实验数据

(3)进一步掌握电测法的原理和电阻应变仪的操作 (4)认识单向拉伸时不同方向应变的关系 (5)认识各向同性材料和各向异性材料的区别

2、 实验设备和试件

电子万能实验机CSS2210、YE2539高速应变仪、贴有应变片的铝合金试件、温度补偿片。

3、 实验原理

(1)单向拉伸时大多数材料在初始弹性阶段应力应变关系服从胡克定律:

E σε=

其中σ是应力,ε是应变,E 是材料的弹性模量,代表材料抵抗弹性变形的能力,是材料力学计算及实际使用中的重要参量。在本实验中,通过实验机测得的σε-曲线斜率来确定材料(铝合金)的弹性模量:由电子万能实验机测得载荷而得出应力σ、由应变仪测得应变ε。 (2)材料轴向拉伸时必然引起横向收缩。在弹性范围内,设横向应变为'ε,轴向应变为ε

|'/|μεε=

通常为一常数。定义这个比值为泊松比,是弹性材料的又一重要参数。

(3)工程上常用的金属材料是各向同性材料,各个方向的弹性模量和泊松比是相同的。由纤维增强的复合材料不同方向上的拉伸性能通常不一样,为正交各向异性材料。这种材料需要两个方向——平行和垂直于纤维方向(分别称为纵向和横向)的弹性模量E 1(‘1’表示纵向)、E 2(‘2’表示横向)和泊松比μ21、μ12来描述。

4、 测定方法

本实验是通过拉伸实验测定材料的弹性模量和泊松比。在被测材料的比例极限内,施加轴向拉伸载荷,定点测量和记录轴向应变和横向应变。利用最小二乘法拟合曲线,求出曲线斜率,进而测定出材料的弹性模量和泊松比。

我们组选用的是铝合金试样。布片方案是在试件中部正反两面分别设置0o 、 45o 、 90o

应变片,可测量0ε、45ε、90ε 三个方向的应变。

铝合金试样的最大许可应力是[σ]=100MPa ,试样的横截面积约为A=150mm 2

,因此所加载荷不应超过F=[σ]?A=15kN 。本组实验采用计算机自动采样方式,最大载荷不超过7.5kN 。 (1) 在安装试件前,将载荷清零; (2) 安装试件,夹持长度不小于夹块长度的2/3; (3) 调整加载速度为1mm/min ; (4) 开始加载,计算机自动记录载荷和应变数据,直到载荷达7kN 左右,停止加载; (5) 打开实验数据,观察实验曲线,打印实验数据 (6) 将载荷以1mm/min 的速度清零。拆卸试件。

5、 实验数据及处理

(1)单臂法测量

材料尺寸29.97㎜×5.14㎜

计算E E=3862-3

1410N

2.03510Pa=20

3.5MPa 29.97 5.1410m 51210

σε-?==????? 计算

μ 14315.50.28651265.5

εμε'-=

==-

取上下表面对应的两片0o

应变片的应变值的

平均值,做出0o

应变片的应力-应变曲线,图中标明: 则有:所测材料的弹性模量E=203.7MPa

取上下表面对应的两片0o和90o应变片的应变值的平均值,对其进行最小二乘法线性拟合,结果见下图,其中y轴为90o应变片的应变值,x轴为0o应变片的应变值,拟合结果和R2值已经在图中标明:

则有所测材料的泊松比 =0.2866。

拟合直线

E=204.5MPa

6、实验结果分析

(1)本实验的误差来自很多方面,其中比较主要的方面有:由于应变片的横向效应引起的误差;由于所加载荷不是只有轴向载荷应起的误差;等。 本实验六个应变片的应变数据记录如附页所示,从图中可以看出,上下表面位置相对的两片应变片在相同载荷下测出的应变相差还是比较大的,究其原因,我认为很可能是因为所加的载荷并不是只有轴向载荷,可能还有横向的载荷,因此造成上下表面位置相对的两片应变片在相同载荷下的拉压程度不同,从而应变片的应变相差较大。对于这种情况,我采取的处理方法就是将上下表面位置相对的两片应变片所测得的载荷取平均值,这样就会比较好的反映这个方向上的应变。

在轴向载荷下,0o 方向上的应变和45o 方向上的应变正负号相同,但45o 方向上的应变小于0o 方向上的应变,90o 方向上的应变和0o 、45o 方向上的应变正负号相反。三个方向上的应变满足的关系是090μεε-=, 45cos 2045?=εε

如果是正交各向异性材料的45o 试件仍满足 45cos 2045?=εε这个关系,从理论上来说,我们在推导平面应力状态的坐标变换公式中只用到了平衡方程,而平衡方程是对所有的材料,无论是各向同性还是各向异性材料都成立的,也就是说,它是与材料的性质无关的。因此,对于各向同性材料和各向异性材料,

45cos 2045?=εε这个关系总是成立的。

(2)计算附件中复合材料的E 和μ

取上下表面对应的两片0o

应变片的应变值的平均值,做出0o 应变片的应力-应变曲线对其进行最小二乘法线性拟合,结果见下图,其中y 轴表示应力,单位是MPa ,x 轴表示应变,

单位是με,拟合结果和R 2

值已经在图中标明:

则有:所测材料的弹性模量E2=11.7GPa。

取上下表面对应的两片0o和90o应变片的应变值的平均值,对其进行最小二乘法线性拟合,结果见下图,其中y轴为90o应变片的应变值,x轴为0o应变片的应变值,拟合结果和R2值已经在图中标明:

=0.0783。

则有:所测材料的泊松比

12

材料弹性常数的测定

(一)、材料弹性常数的测定 对于均匀的各向同性的材料而言,弹性模量E和泊松比μ完全就可以确定 材料的弹性性质。它们均由试验决定。对于这两个参数,可以使用电测法和机 械式量测两种方法。 1、电测法测定相似材料的E和μ 所谓电测就是在试件上贴一定数量的应变片,用静态电阻应变仪得到的数 据来计算试块的横向和纵向变形,再结合压力机上的压力值推导出相似材料的 E和μ。 试件一般为高100mm、直径50mm的圆柱体,也可用50mm X 50mmX 100mm 的棱柱体,我们试验中所用的是圆柱体。 为了防止荷载偏心对量测结果的影响,应变片应对称纵向贴在试件的两 侧,H/2处((H为试件高度),然后取其平均值进行计算。进行单轴压缩实验 时,最大荷载不超过破坏荷载的1/3一1/2,但通常还是要作到破坏。分8一10 级加载,用静态电阻应变仪量测每级荷载下相应的应变值,最后将记录的△σ 和△ε标在坐标纸上,绘出。σ一ε曲线,这样就很容易求出材料的弹性模量E 了。 泊松比μ可以和弹性模量E同时测试,只是贴片的方向与荷载方向垂直。量测刀时应注意两点: (1)尽量将测μ的横向片和测E的纵向片分别贴在试块的不同部位(但必须 贴在试块的H/2处),以避免应变片横向效应的影响。 (2)由于横向变形较小,μ值不易测准,需特别注意。 根据我们用电测法对试块进行多次试验,效果不很理想。主要表现在我们 的试件是圆柱体,在圆柱体的曲面贴应变片,应变片与曲面的粘结效果不很理 想,使实验的结果误差很大,可能用棱柱体试验效果会好一些。 2、用机械式量测法测弹性模量E 对于低弹性模量的材料,由于刚化效应的影响,不宜用电阻应变仪进行量 测。这时可用百分表、千分表或位移传感器量(与应变规相连,应变规夹在试 件上)测试件的轴向压缩量△H,然后利用下式: 来计算材料的E值。由于这种量测法可能将垫块和试件的非密切接触产生 的空隙包括在内,所以测得的变形量可能偏大,而使E值偏小。因此,要特别 注意试件端部的平整性。 在实际科研中,为了节省经费和节约时间,在选择相似材料的初期阶段,

计算材料课程设计--计算BN的弹性常数

课程设计任务书 2011—2012 学年第1 学期 课程名称:计算材料学 一、设计题目:计算BN的弹性常数 二、完成期限:自2011 年12 月 4 日至2011 年12 月12 日共 2 周 内容及任务1.DFT基本理论,CASTEP使用方法 2.晶体模型的建立与几何优化,相关性质的计算。 3.计算BN的弹性常数 4.结果分析 5. 报告写作与修改 进度安排 起止日期工作内容 11-12-4-6 熟悉DTT理论,软件安装,认识界面,熟悉基本操作11-12-7 晶体模型建立,进行结构优化,计算物理性质 11-12-8 物理性质,力学性质的计算 11-12-9 计算BN的弹性常数 11-12-10-12 写出课程设计的总结实验报告.,修改成文 主要参考资料[1] Kohn W, Sham L J, Self-consistent equations including exchange and correlation effects [J]. Physical review, 1965, 140(4):A1133-A1338. [2] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Physical review, 1964,136(3):B864- B871. [3] 谢希德, 陆栋.固体能带理论[M].上海:复旦大学出版,1998. [4] Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical review B, 1992, 46(11): 6671-6687. 指导教师(签字):年月日 系(教研室)主任(签字):年月日 1

拉伸时材料弹性模量E和泊松比的测定

实验三 电测法测定材料的弹性模量和泊松比 弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、电测法、自动检测法,本次实验用的是电测法。 一、 实验目的 在比例极限内,验证胡克定律,用应变电测法测定材料的弹性模量E 和泊松比μ。 二、 实验仪器设备和试样 1. 材料力学多功能实验台 2. 静态电阻应变仪 3. 游标卡尺 4. 矩形长方体扁试件 三、 预习要求 1. 预习本节实验内容和材料力学书上的相关内容。 2. 阅读并熟悉电测法基本原理和电阻应变仪的使用操作。 四、实验原理和方法 材料在比例极限范围内,正应力σ和线应ε变呈线性关系,即:εσE = 比例系数E 称为材料的弹性模量,可由式3-1计算,即:ε σ=E (3-1) 设试件的初始横截面面积为o A ,在轴向拉力F 作用下,横截面上的正应力为: o A F = σ 把上式代入式(3-1)中可得: ε o A F E = (3-2) 只要测得试件所受的荷载F 和与之对应的应变ε,就可由式(3-2)算出弹性模量E 。

受拉试件轴向伸长,必然引起横向收缩。设轴向应变为ε,横向应变为ε'。试验表明,在弹性范围内,两者之比为一常数。该常数称为横向变形系数或泊松比,用μ表示,即: ε εμ'= 轴向应变ε和横向应变ε'的测试方法如下图所示。在板试件中央前后的两面沿着试件轴线方向粘贴应变片1R 和'1R ,沿着试件横向粘贴应变片2R 和'2R 。为了消除试件初曲率和加载可能存在偏心引起的弯曲影响,采用全桥接线法。分别是测量轴向应变ε和横向应变ε'的测量电桥。根据应变电测法原理基础,试件的轴向应变和横向应变是每台应变仪应变值读数的一半,即: r εε21= '='r εε2 1 实验时,为了验证胡克定律,采用等量逐级加载法,分别测量在相同荷载增量F ?作用下的轴向应变增量ε?和横向应变增量ε'?。若各级应变增量相同,就验证胡克定律。 五、 实验步骤 1. 测量试件。在试件的工作段上测量横截面尺寸,并计算试件的初始横截面面积o A 2. 拟定实验方案。 1) 确定试件允许达到的最大应变值(取材料屈服点S σ的70%~80%)及所需的最大载 荷值。 2) 根据初荷载和最大荷载值以及其间至少应有5级加载的原则,确定每级荷载的大小。 3) 准备工作。把试件安装在试验台上的夹头内,调整试验台,按图的接线接到两台应 变仪上。 4) 试运行。扭动手轮,加载至接近最大荷载值,然后卸载至初荷载以下。观察试验台 和应变仪是否处于正常工作状态。 5) 正式实验。加载至初荷载,记下荷载值以及两个应变仪读数r ε、'r ε。以后每增加 一级荷载就记录一次荷载值及相应的应变仪读数r ε、' r ε,直至最终荷载值。以上实验重复3遍。

工程材料实验报告模板

工程材料实验报告 专业: 姓名:,学号: 姓名:,学号: 姓名:,学号: 青海大学机械工程学院 年月日

工程材料综合实验 ●金相显微镜的构造及使用 ●铁碳合金平衡组织分析 ●碳钢的热处理 ●金相试样的制备 ●碳钢热处理后的显微组织分析 ●硬度计的原理及应用 ●碳钢热处理后的硬度测试 ●常用工程材料的显微组织观察 实验一金相显微镜的构造和使用 一、实验目的 熟悉金相显微镜的基本原理、构造;了解金相显微镜的使用注意事项,掌握金相显微镜的使用方法。 二、实验设备及材料 三、实验内容 1)金相显微镜的基本原理2)金相显微镜的构造3)显微镜使用注意事项 四、实验步骤 五、实验报告 实验二铁碳合金平衡组织分析 一、实验目的 (1)熟悉铁碳合金在平衡状态下的显微组织。 (2)了解铁碳合金中的相与组织组成物的本质、形态及分布特征。

(3)分析并掌握平衡状态下铁碳合金的组织和性能之间的关系 二、实验设备及材料 三、实验内容 1)铁碳合金的平衡组织 2)各种组成相或组织组成物的特征 3)铁素体与渗碳体的区别 四、实验步骤 五、实验报告 实验三碳钢的热处理 一、实验目的 1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火 2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能的影响。 二、实验设备及材料 三、实验内容 1)加热温度的选择 2)保温时间的确定 3)冷却方法 四、实验步骤 五、实验报告 实验四金相试样的制备 一、实验目的 1)了解金相试样的制备过程。 2)学会金相试样的制备技术。

二、实验设备及材料 三、实验内容 1)取样 2)镶样 3)磨制 4)抛光 四、实验步骤 五、实验报告 实验五碳钢热处理后的显微组织分析 一、实验目的 观察碳钢热处理后的显微组织 二、实验设备及材料 三、实验内容 1)钢冷却时所得到的各种组织组成物的形态 2)钢淬火回火后的组织 四、实验步骤 五、实验报告 实验六硬度计的原理及应用 一、实验目的 1)熟悉洛氏硬度计、布氏硬度计、显微硬度计的原理、构造。 2)学会三种硬度计的使用 二、实验设备及材料 三、实验内容 1)洛氏硬度实验原理 2)布氏硬度试验原理 3)显微硬度计的原理 四、实验步骤 五、实验报告 实验七碳钢热处理后的硬度测试

材料弹性常数E、μ与材料切变模量G的测定(doc 10页)

实验二 材料弹性常数E 、μ的测定 ——电测法测定弹性模量 E 和泊松比μ 预习要求: 1、预习电测法的基本原理; 2、设计本实验的组桥方案; 3、拟定本实验的加载方案; 4、设计本实验所需数据记录表格。 一、实验目的 1. 测量金属材料的弹性模量E 和泊松比μ; 2. 验证单向受力虎克定律; 3. 学习电测法的基本原理和电阻应变仪的基本操作。 二、实验仪器和设备 1. 微机控制电子万能试验机; 2. 电阻应变仪; 3. 游标卡尺。 三、试件 中碳钢矩形截面试件,名义尺寸为b ?t = (30?7.5)mm 2。 材 料 的 屈 服 极 限 MPa s 360=σ。 四、实验原理和方法 1、实验原理 材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比: εσE = (1) 图二 实验装置图 图一 试件示意图 b

上式中的比例系数E 称为材料的弹性模量。 由以上关系,可以得到: ε εσ0A P E == (2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数: ε εμ' = (3) 上式中的常数μ称为材料的横向变形系数或泊松比。 本实验采用增量法,即逐级加载,分别测量在各相同载荷增量?P 作用下,产生的应变增量?εi 。于是式(2)和式(3)分别变为: i i A P E ε??= 0 (4) i i i εεμ?' ?= (5) 根据每级载荷得到的E i 和μi ,求平均值: n E E n i i ∑= =1 (6) n n i i ∑= =1μμ (7) 以上即为实验所得材料的弹性模量和泊松比。上式中n 为加载级数。 2、增量法 增量法可以验证力与变形之间的线性关系,如图三所示。若各级载荷增量ΔP 相同,相应的应变增量?ε也应大致相等,这就验证了虎克定律。 利用增量法,还可以判断实验过程是否正确。若各次测出的应变不按线性规律变化,则说明实验过程存在问题,应进行检查。 采用增量法拟定加载方案时,通常要考虑以下情况: (1)初载荷可按所用测力计满量程的10%或稍大于此标准来选定;(本次实验试验机采用50KN 的量程) (2)最大载荷的选取应保证试件最大应力值不能大于比例极限,但也不能小于它的一半,一般取屈服载荷的 P P P P

Abaqus中复合材料弹性属性的设定

Abaqus中复合材料弹性属性的设定 (2010-06-18 15:45:53) 转载▼ 分类:CAE 标签: 杂谈 一、定义材料的刚度矩阵 从弹性力学理论可以知道,各向异性材料的刚度矩阵由于有对称性,刚度系数有最初的36个减少到21个,如下图: 在实际应用中,大多数工程材料都有对称的内部结构,因此材料具有弹性对称性,这种对称性可以进一步简化上述的刚度矩阵。 1、有一个弹性对称面的材料(如结晶学中的单斜体) 例如取x-y平面为对称面,则D1112= D1113= D2212= D2213= D3312= D3313= D1223= D1323=0,刚度系数又减少8个,剩下13个。 2、有两个正交(相互垂直)弹性对称面的材料 例如进一步取x-z平面为对称面,则D1123= D2223= D3323= D1213=0,刚度系数又减少4个,剩下9个,如下图:

在Abaqus编辑材料中进行个刚度系数的设定。 3、有三个正交弹性对称面的材料 如果材料有三个相互垂直的弹性对称面,没有新的刚度系数为零,也只有9个。 4、横观各项同性材料 若经过弹性体材料一轴线,在垂直该轴线的平面内,各点的弹性性能在各方向上都相同,我们称此材料横观各向同性材料,如单向复合材料。对于这种材料最终的刚度系数只剩下D1111,D1122,D1133,D3333,D1212五项,其余各项均为零。 在复合材料中,经常遇到正交各项异性和横观各项同性两种材料。 二、定义材料工程弹性常数 通过指定工程弹性常数定义线弹性正交各向异性材料是最便捷的一种方法,根据复合材料力学理论,用工程弹性常数表示的柔度矩阵表示如下:

材料弹性常数E、

材料弹性常数E、μ的测试实验报告 使用设备名称与型号 同组人员 实验时间 一、实验目的 1.在比例极限内验证虎克定律并测定材料的弹性模量E及泊松比μ。 2.初步使用YJ28A-P10R型静态电阻应变仪(见附录四)。 二、实验设备与仪器 1.YJ28A-P10R型静态电阻应变仪。 2.电子测力仪。 3.组合试验台。 4.游标卡尺。 三、实验原理 测定材料的弹性常数时,一般采用在比例极限内的拉伸试验。采用矩形截面试件(GB228—76规定选取),在试件中央部分两侧沿纵向和横向各贴二片电阻应变片(如图5-1),温度补偿片贴在不受力的与试件相同的材料上,一般取两侧读数的平均值作为测量结果。

图5-1 矩形截面试件 为了验证虎克定律和消除测量中的可能产生的误差,本试验采用增量法逐级加载,每增加相同的载荷增量?P ,测量相应的纵向应变31,εε及横向应变42,εε。再由两次载荷的纵向应变之差31,εε??算出其纵向应变增量 23 1εεε?+?= ?纵。同理算出其横向应 变增量 24 2εεε?+?= ?横,其中1ε?、2ε?、3ε?和4ε?分别为应变片R 1、R 2、R 3和 R 4的应变增量。然后取纵向应变增量的平均值纵?代人虎克定律计算出弹性模量 A ??= E 纵εP ,由横向应变增量的平均值横ε?与纵向应变增量的平均值纵ε?的比值计 算出泊松比 纵 横εεμ??= ,其中试件横截面面积A 。=a × b 。

在试验前要拟订加载方案。拟订加载方案时根据上述要求,一般考虑以下几点: 1.由于在比例极限内进行试验,故最大应力值不能超过比例极限,碳钢一般取屈服极限的70—80%。 2.初载荷可按屈服载荷的10%来选定。 3.至少应有4—5级加载。 四、实验操作步骤 1.测量试件尺寸。 2.将工作应变片接在仪器的A 、B 接线柱上,补偿片接在B ,C 接线柱上。然后按仪器使用方法将仪器调整好。 3.先加初载荷P 。.然后每增加相同载荷△P ,记录相应的应变值。 4.重复以上试验三次。 5.请教师检查试验数据。 五、实验结果及分析计算 1 2、 结果计算 1.取几次试验数据最好的一组列表计算,表格形式自拟。 纵向应变平均值 2 3 1εεε?+?= ?纵 横向应变平均值 2 2ε εε?+?= ?横

工程材料试验计划

泉州晋江智能园110kv输变电工程(变电部分) 工程检测试验项目计划 泉州晋江智能园110kv输变电工程(变电部分)施工项目部 年月日

批准:(项目总工)年月日审核:(项目质检员)年月日编写:(项目技术员)年月日

目录 一、工程概况 (4) 二、编制目的 (4) 三、编制依据 (4) 四、检测试验组织及职责 (5) 五、试验项目检测计划表 (6)

一、工程概况 1、工程简述 工程名称:晋江智能园110kV变电站新建工程 建设地点:福建省泉州市晋江市罗山街道罗山变电站旁。 工期要求:本工程拟定于2018年5月开工(具体按开工报告时间为准),拟定于2018年12 2、工程性质 1)地理位置 晋江智能园110kV变电站站址位于福建省泉州市晋江市罗山街道罗山变电站旁。位于福建省集成电路产业园区(科学园)内,福兴路与智造大道交界处西南侧。 2)场地地形地貌 场地地貌类型属残坡积台地,现场地较为空旷且平坦,标高为11.49-12.86m,高差1.37m。场地的设计室外标高为12.5m,设计标高与现场地标高高差为0.361.01m,后期场地稍平整将满足施工需求。场地周边环境:拟建物四周较为空旷,场地周边无建筑物,其中北侧距红线约120m为民房(砼结构,2F),西南侧红线边为一池塘,水深约0.5~0.8m,其余各侧场地空旷无建筑物,另根据现场调査了解,场地内未发现其他埋藏的管线、沟、浜及池塘等分布 3、工程参建单位 建设管理单位:国网福建省晋江供电有限公司 设计单位:福建和盛工程管理有限责任公司 监理单位:泉州亿盛电力工程监理有限公司 施工单位:福建省送变电工程有限公司 二、编制目的 本工程检测试验项目计划适用于泉州晋江智能园110kv输变电工程(变电部分)的见证取样、送检。 三、编制依据 1、泉州晋江智能园110kv输变电工程(变电部分)项目管理实施规划及施

工程材料实验报告

工 程 材 料 实 验 报 告 院系:机械工程学院 班级:10届机电一班 组员:魏仕宏 1000407008 崔继文 1000407010 丁元辉 1000407021 郑鹏涛 10004070

实验项目名称:金相试样的制备及铁碳合金平衡组织观察与分析 一、实验目的和要求 1.通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织,熟悉金相显微镜的使用; 2.了解铁碳合金中的相及组织组成物的本质、形态及分布特征; 3.分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。 二、实验内容和原理 1 概述 碳钢和铸铁是工业上应用最广的金属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使用钢铁材料具有十分重要的实际指导意义。 ⑴碳钢和白口铸铁的平衡组织 平衡组织一般是指合金在极为缓慢冷却的条件下(如退火状态)所得到的组织。铁碳合金在平衡状态下的显微组织可以根据Fe—Fe3C相图来分析。从相图可知,所有碳钢和白口铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不一样,因而呈现各种不同特征的组织组成物。碳钢和白口铸铁在室温下的平衡组织见表1。 a)工业纯铁——室温时的平衡组织为铁素体(F),F为白色块状(如图1所示); b)亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈白色块状,P呈层片 状,放大倍数不高时呈黑色块状(如图2所示)。碳质量分数大于0.6%的亚共析 钢,室温平衡组织中的F呈白色网状包围在P周围(如图3所示); c)共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所示); d)过共析钢——室温时的平衡组织为Fe3CⅡ+P。在显微镜下,Fe3CⅡ呈网状分布在层片 状P周围(如图6所示); e)亚共晶白口铸铁——室温时的平衡组织为P+Fe3CⅡ+ Ld'。Fe3CⅡ网状分布在粗大块 状的P的周围,Ld'则由条状或粒状P和Fe3C基体组成(如图7所示);

衬垫弹性常数测定实验方案

衬垫弹性性能测定实验 1. 实验目的 通过本实验测定自润滑关节轴承织物衬垫的弹性常数,具体是指衬垫纵向弹性模量E1,横向弹性模量E2,1、2平面剪切弹性模量G12;观察衬垫内部纤维束的横截面 2. 实验设备 材料拉力试验机,电阻应变计,电阻应变仪,游标卡尺,扫描电镜(SEM)3. 实验试样: 本试样按相应国家标准GB T1446-2005,GB T3355-2005,GB/T 3354-1999 来制备,试样的形状如图1所示。本试样经线方向(经向)是由PTFE纤维和Nomex 纤维混合编织而成,纬线方向(纬向)仅由Nomex纤维组成,选择经向为纵向,用1表示,纬向为横向用2表示。为了防止因明显的不连续而引起试样的提前失效,试件两端加有加强片,加强片的材料一般为铝合金或纤维增强塑料板。试件的尺寸规定按表1所示: L—试样长度;b—试样宽度;h—试样厚度;D—加强片的长度; l—试样工作段;h0—加强片的厚度;q—加强片的斜削角 图1 试件形状示意图 图2为三种复合材料试件在拉伸载荷下应变测定示意图

图2 三种复合材料试件在拉伸载荷下应变测定示意图 4. 实验方案: 测定最大载荷时的加载速度为5mm/min 测定拉伸弹性模量、泊松比和剪切模量的时候,加载速度为2mm/min。 为了验证应力-应变关系的线性,加载方式采用多次等级加载,由于对偏轴(±45°)拉伸应力-应变关系有较大的非线性,为准确得出曲线,仍应采用等级加载,而且级差应小些。 每种试样为10个:2个用于测定最大载荷,其余8个用于衬垫弹性性能的获得。 5. 实验步骤 5.1 连续加载至试样失效,记录最大载荷值。 5.2 弹性常数测定 (1)用游标卡尺测量复合材料板状试件有效段的尺寸。 (2)粘贴电阻应变片,将应变片接入测量电路,电桥连接采用半桥串联接法。 (3)加载测试。 (4)计算结果,进行实验数据处理 6. 实验结果处理

浙江省交通建设工程质量检测和工程材料试验收费标准2013版(浙价服〔2013〕264号)

附件 浙江省交通建设工程质量检测和 工程材料试验收费标准表 类别序号试验项目单价(元)备注 土1.1 颗粒分析试验(筛分法)100/样 1.2 颗粒分析试验(比重计法)200/样 2 液限塑限联合测定180/样 3 重型击实1500/样 4 轻型击实500/样 5 承载比(CBR)1800/样不含击实试验 6 天然稠度200/样 7 室内回弹模量1000/样 8 粗粒土和巨粒土的最大干密度2000/样 9 自由膨胀率300/样 10 有机质含量200/样 11 含水率50/样 12 比重40/样 13 综合毛体积密度400/样 14 密度30/样环刀法 15 三轴压缩(UU)1000/样 16 三轴压缩(CU)1500/样 17 土的剪切100/样直剪 18 土无侧限抗压强度300/样 19 烧失量200/样 集料20 筛分120/样 21 针片状颗粒含量150/样 22 压碎值250/样 23 磨耗值600/样 24 磨光值2200/样 25 含泥量80/样 26 砂当量200/样 27 粗集料表观密度、饱和面干密 度、毛体积密度、含水率、吸 水率 250/样简易法28 堆积密度、振实密度、空隙率80/样

集料(续) 29 细集料饱和面干密度、毛体积 密度、吸水率 150/样 30 细集料密度100/样 31 坚固性700/样 32 碱活性1000/样 33 软弱颗粒含量250/样 34 棱角性150/样 35 含水率80/样 36 有机物含量150/样 37 亚甲蓝300/样 38 氯离子含量250/样 39 碱集料反应2000/样快速法 40 云母含量100/样 41 轻物质含量120/样 42 三氧化硫含量200/样 43 粗糙度150/样 44 膨胀率100/样 45 方解石含量250/样 46 矿粉筛分试验200/样水洗法 47 矿粉密度试验100/样 48 矿粉亲水系数试验250/样 49 矿粉塑性指数350/样 50 矿粉加热安定性200/样 岩石51 单轴抗压强度800/组 52 抗冻性1600/组 53 含水率200/样 54 密度100/样 55 毛体积密度200/样 56 抗折强度1000/组 57 吸水率100/样 58 饱水率100/样 59 坚固性700/样 水泥60 密度100/样 61 比表面积300/样 62 标准稠度用水量50/样 63 凝结时间120/样 64 安定性150/样

实验1测定材料的弹性常数

实验一 材料E 、μ的测试实验 在解决工程构件的强度问题时,需要用到构件所用材料的弹性常数——弹性模量E 和泊松比μ,因此,测定材料的弹性常数是工程中经常遇到的问题。 一、实验目的 1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。 2.掌握应变片在测量电桥中的各种接线方法。 3.用电测法测量材料的弹性模量E 和泊松比μ。 二、实验仪器 1.CLDT-C 型材料力学多功能实验台 2.DH-3818型静态电阻应变仪 3.板试件实验装置一套 4.游标卡尺 三、实验原理 材料在线弹性范围内服从胡克定律,应力和应变成正比关系。轴向拉伸时,其形式为 E σε=,E 为弹性模量,即E σε = 。 试件轴向拉伸时,纵向伸长,横向缩短。在弹性范围内,横向应变' ε与轴向应变ε二 者之比为一常数,其绝对值称为横向变形系数或称泊松比,用μ表示,即' εμε =。 试件采用矩形截面试件,为了消除偏心弯曲引起的测量误差,布片方式如图1-1所示。在试件中央截面上,沿前后两面的轴线方向分别对称地布有一对轴向应变片1R 、' 1R ,以测量轴向应变ε(' 112 εεε+= ),一对横向应变片2R 、' 2 R ,以测量横向应变'ε(' ' 22 2 εεε+=)。 组桥方式:半桥单臂接法,如图1-2所示。 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减少测量误差,实验宜从初载0P (00P ≠)开始,与0P 对应的应变仪读数ε仪可预调到零,也可设定一个初读数。 采用增量法,分级加载,分别测量在各相同载荷增量P ?作用下,产生的应变增量ε?,并求ε?的平均值。设试件初始横截面面积为0A ,则 P E A ε?=?均 'εμε?=?均 均

固体弹性常数的测量

固体弹性常数的测量 超声波是一种弹性波,它在所有弹性材料中传播。其传播的特性与材料的弹性有关,如果弹性材料发生变化,超声的传播就会受到扰动,根据这个扰动,就可了解材料的弹性或弹性变化的特征。超声波测试就是利用超声波的传播特性与弹性材料物理特性之间的关系,通过测量超声波的传播特性参量,达到测量弹性材料物理参数的目的。在实际应用中,由于测试的对象和目的不同,具体的技术和措施是不同的,因而产生了一系列的超声测试项目,例如超声测厚、超声测硬度、超声测应力、超声测金属材料的晶粒度、超声测量弹性常数等。 本实验通过研究固体中超声波的传播特性,从而进一步确定固体介质中几个常用的弹性常参数。 实验目的 1. 理解超声波声速与固体弹性常数的关系; 2. 掌握超声波声速测量的方法; 3. 了解声速测量在超声波应用中的重要性。 实验原理 在各向同性的固体材料中,根据应力和应变满足的虎克定律, 可以求得超声波传播的特征方程: 222221t c ?Φ ?=Φ? (2.1) 其中Φ为势函数,c 为超声波传播速度。 当介质中质点振动方向与超声波的传播方向一致时,称为纵波;当介质中质点的振动方向与超声波的传播方向相垂直时,称为横波。在气体介质中,声波只是纵波。在固体介质内部, 超声波可以按纵波或横波两种波型传播。无论是材料中的纵波还是横波, 其速度可表示为: t d c = (2.2) 其中, d 为 声波传播距离, t 为声波传播时间。 对于同一种材料, 其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度、杨氏模量和泊松比等弹性参数决定, 即影响这些物理常数的因素都对声速有影响。相反, 利用测量超声波速度的方法可以测量材料有关的弹性常数。 固体在外力作用下,其长度沿力的方向产生变形。变形时的应力与应变之比就定义为杨氏模量,一般用E 表示。(在本书杨氏模量测量的实验中有介绍) 固体在应力作用下。沿纵向有一正应变(伸长),沿横向就将有一个负应变(缩短),横向应变与纵向应变之比被定义为泊松比,记做σ,它也是表示材料弹性性质的一个物理量。 在各向同性固体介质中,各种波型的超声波声速为: 纵波声速: ) 21)(1()1(σσρσ-+-=E C L (2.3) 横波声速: )1(2σρ+= E C S (2.4) 其中E 为杨氏模量,σ为泊松系数,为材料密度。

计算材料计算BN的弹性常数

湖南工业大学 课程设计 资料袋 理学院(系、部)2011 ~ 2012 学年第一学期课程名称计算材料学指导教师雷军辉职称讲师 学生姓名余晓燕专业班级应用物理081班学号08411200135 题目计算BN的弹性常数 成绩起止日期2011年12月4日~2011年12 月12 日 目录清单 序号材料名称资料数量备注 1 课程设计任务书 2 课程设计说明书 3 课程设计图张 4 5 6 湖南工业大学 1

课程设计任务书 2011—2012 学年第1 学期 理学院学院(系、部)应用物理学专业081 班级 课程名称:计算材料学 一、设计题目:计算BN的弹性常数 二、完成期限:自2011 年12 月 4 日至2011 年12 月12 日共 2 周 内容及任务1.DFT基本理论,CASTEP使用方法 2.晶体模型的建立与几何优化,相关性质的计算。 3.计算BN的弹性常数 4.结果分析 5. 报告写作与修改 进度安排 起止日期工作内容 11-12-4-6 熟悉DTT理论,软件安装,认识界面,熟悉基本操作11-12-7 晶体模型建立,进行结构优化,计算物理性质 11-12-8 物理性质,力学性质的计算 11-12-9 计算BN的弹性常数 11-12-10-12 写出课程设计的总结实验报告.,修改成文 主要参考资料[1] Kohn W, Sham L J, Self-consistent equations including exchange and correlation effects [J]. Physical review, 1965, 140(4):A1133-A1338. [2] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Physical review, 1964,136(3):B864- B871. [3] 谢希德, 陆栋.固体能带理论[M].上海:复旦大学出版,1998. [4] Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical review B, 1992, 46(11): 6671-6687. 指导教师(签字):年月日系(教研室)主任(签字):年月日 2

工程材料实验报告

工程材料实验报告(红色字体,在提交报告时全部需要删除) 专业统统用小四号宋体 班级 姓名 学号 组员由于组员较多,字体可以小一点 重庆邮电大学移通学院管理工程系 年月日 1

目录 (目录页码需要标上,包括每一页下面都需要添加页码,封面和目录无页码) 一、水泥技术性能实验······································································ 二、水泥胶砂强度检验······································································ 三、普通混凝土拌合物性能实验·························································· 四、混凝土强度实验········································································· 五、骨料实验·················································································· 六、钢筋实验·················································································· 七、实验心得 ····················································································

复合材料力学行为研究实验(有试件图)

复合材料力学行为研究实验 一般材料力学研究的是均匀分布、各向同性的材料,但是现在又出现了并且在工程上越来越广泛使用的一种材料叫复合材料。它是一种各向异性材料。复合材料是两种或两种以上不同性能的材料用物理或化学方法制成的具有新性能的材料,一般复合材料的性能优于其组分材料的性能。复合材料在力学行为上有什么特点,各向异性表现在哪些方面?各向异性材料如何测量它的弹性常数,不同纤维铺层方向和不同加载方向的力学性能有何差别,什么是沿轴性态和离轴性态?… 为了便于学生研究探讨这些问题,我们专门加工了一种增强材料沿单向铺层的复合材料板(如图1所示)。由于是单向增强,所以回避了许多复合材料研究上的复杂问题。 图1 单层复合材料构造形式 图2 坐标定义 本试验主要研究的具体材料是玻璃纤维单向增强复合材料。玻璃纤维的弹性模量约为80~85GPa, 基体是环氧树脂,其弹性模量约为3~5Gpa 。其纤维与环氧树脂的体积比约为1: 1。同时还提供了双向增强复合材料(正交增强),其两个方向纤维的比例为18:14和部分金属材料。 一.实验原理和试验方法 材料的弹性常数是描述材料力学性能的一项基本参数。作为衡量材料的刚度和弹性变形行为的特征值,它是理论计算和工程设计中一项非常重要的指标。我们熟知的材料,比如金属材料都是各向同性材料,独立的弹性常数是两个,即扬氏弹性模量E 和泊松比υ(或剪切弹性模量G)。而复合材料,由于其突出的各向异性的性质,独立的弹性常数增加了。为了测定复合材料的弹性常数, 将被测材料加工为纤维与加载方向成0°、45°和90°的三种试件。每种试件的三个方向的应变即纵向应变、横向应变和45゜方向的应变均采用粘贴电阻片的方法测量。应变片信号按一定的组桥方式接到测量电桥上,可利用数字静态应变仪直接定点读取应变信号或利用数据采集系统自动纪录载荷、应变数据。对实验数据进行线性回归的处理,按下列公式计算出复合材料的弹性常数: 0°试件: 111εσ= E 1212εε-=μ X σX X Y 2 3

某某工程材料试验方案

×××工程材料试验方案 编制: 审核: 审批: ×××省建筑工程公司 ×××项目部 ××年6月30日

目录 一、编制依据 (2) 二、工程概况 (2) 三、施工主要建材和施工工艺 (4) 四、试验取样方法 (5) (一)、混凝土工程 (5) (二)、钢筋原材 (6) (三)、钢筋的焊接 (8) (四)、回填土工程 (9) (五)、防水工程 (10) (六)、水泥 (11) (七)、砂 (11) (八)、砌筑砂浆 (11) 五、有关事项 (11) 附表1、砼试块取样计划表 (12) 附表2、钢筋工程焊接取样计划表 (13) 附表3、防水材料取样计划表 (13) 附表4、回填土取样计划表 (13)

×××工程材料试验方案 一、编制依据: 1、《钢筋混凝土用热轧带肋钢筋》(GB1499——91) 2、《钢筋混凝土用热轧光园钢筋》(GB13013——91) 3、《钢筋焊接及验收规程》(JGJ18——84) 4、《钢筋焊接接头试验方法》(JGJ27——86) 5、《水泥取样方法》(GB12573——90) 6、《硅酸盐水泥、普通硅酸盐水泥》(GB175——92) 7、《砌墙砖检验规则》(JC466——92) 8、《砌墙砖试验方法》(GB/T2542——92) 9、《混凝土强度检验评定标准》(GBJ107——87) 10、《混凝土结构工程及验收规范》(GB50204——92) 11、《预拌混凝土》(GB14902——94) 二、工程概况: 2 建筑设计概况 该工程为五层×××工程,无地下室,总建筑面积8275.4m2,檐高23.6m,平面尺寸为94.9×16.6m。室内地坪±0.000=35.650m,室内外高差0.3m,楼内设楼梯两部,电梯一部,屋面局部设有电梯机房。300厚加气砼围护墙节

【管理知识】材料弹性常数E、μ与材料切变模量G的测定(doc 10页)

【管理知识】材料弹性常数E、μ与材料切变模量G的测定(doc 10页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

实验二 材料弹性常数E 、μ的测定 ——电测法测定弹性模量 E 和泊松比μ 预习要求: 1、预习电测法的基本原理; 2、设计本实验的组桥方案; 3、拟定本实验的加载方案; 4、设计本实验所需数据记录表格。 一、实验目的 1. 测量金属材料的弹性模量E 和泊松比μ; 2. 验证单向受力虎克定律; 3. 学习电测法的基本原理和电阻应变仪的基本操作。 二、实验仪器和设备 1. 微机控制电子万能试验机; 2. 电阻应变仪; 3. 游标卡尺。 三、试件 中碳钢矩形截面试件,名义尺寸为b ?t = (30?7.5)mm 2。 材 料 的 屈 服 极 限 MPa s 360=σ。 四、实验原理和方法 1、实验原理 材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比: εσE = (1) 图二 实验装置图 图一 试件示意图 b

上式中的比例系数E 称为材料的弹性模量。 由以上关系,可以得到: ε εσ0A P E == (2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数: ε εμ' = (3) 上式中的常数μ称为材料的横向变形系数或泊松比。 本实验采用增量法,即逐级加载,分别测量在各相同载荷增量?P 作用下,产生的应变增量?εi 。于是式(2)和式(3)分别变为: i i A P E ε??= 0 (4) i i i εεμ?' ?= (5) 根据每级载荷得到的E i 和μi ,求平均值: n E E n i i ∑= =1 (6) n n i i ∑= =1μμ (7) 以上即为实验所得材料的弹性模量和泊松比。上式中n 为加载级数。 2、增量法 增量法可以验证力与变形之间的线性关系,如图三所示。若各级载荷增量ΔP 相同,相应的应变增量?ε也应大致相等,这就验证了虎克定律。 利用增量法,还可以判断实验过程是否正确。若各次测出的应变不按线性规律变化,则说明实验过程存在问题,应进行检查。 采用增量法拟定加载方案时,通常要考虑以下情况: (1)初载荷可按所用测力计满量程的10%或稍大于此标准来选定;(本次实验试验机采用50KN 的量程) (2)最大载荷的选取应保证试件最大应力值不能大于比例极限,但也不能小于它的一半,一般取屈服载荷的 P P P P 图三 增量法示意图

材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ

实验时间:2010年11一、实验目的 1. 测量金属材料的弹性模量E 和泊松比μ; 2. 验证单向受力虎克定律; 3. 学习电测法的基本原理和电阻应变仪的基本操作。 二、实验仪器和设备 1. 微机控制电子万能试验机; 2. 电阻应变仪; 3. 游标卡尺。 三、试件 中碳钢矩形截面试件,名义尺寸为b ?t = (30?7.5)mm 2。 材料的屈服极限MPa s 360=σ。 四、实验原理和方法 1、实验原理 材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比: εσE = (1) 上式中的比例系数E 称为材料的弹性模量。 由以上关系,可以得到: P E A σεε == (2) 材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数: ε εμ' = (3) 上式中的常数μ称为材料的横向变形系数或泊松比。 本实验采用增量法,即逐级加载,分别测量在各相同载荷增量?P 作用下,产生的应变增量?εi 。于是式(2)和式(3)分别写为:

i i A P E ε??= 0 (4) i i i εεμ?' ?= (5) 根据每级载荷得到的E i 和μi ,求平均值: n E E n i i ∑= =1 (6) n n i i ∑= =1μμ (7) 以上即为实验所得材料的弹性模量和泊松比。上式中n 为加载级数。 2、实验方法 2.1电测法 电测法基本原理: 电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。 试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。这时,敏感栅的电阻由初始值R 变为R+ΔR 。在一定范围内,敏感栅的电阻变化率ΔR/R 与正应变ε成正比,即: R k R ε?= 上式中,比例常数k 为应变片的灵敏系数。故只要测出敏感栅的电阻变化率,即可确定相应的应变。 构件的应变值一般都很小,相应的应变片的电阻变化率也很小,需要用专门的仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其基本测量电路为一惠斯通电桥。 电桥B 、D 端的输出电压为: 1423 1234()() BD R R R R U U R R R R -?= ++ 当每一电阻分别改变1234,,,R R R R ????时,B 、D 端的输出电压变为: 1144223311223344()()()() ()() R R R R R R R R U U R R R R R R R R +?+?-+?+??= +?++?+?++? 略去高阶小量,上式可写为: 电阻应变仪的基本测量电路

工程材料实验报告.

工程材料综合实验 机械设计制造及其自动化13-4 实验者:韩西浩学号:1304010402

一实验目的 1、区别和研究铁碳合金在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之 间的相互关系; 3、了解碳钢的热处理操作; 4、研究加热温度、冷却速度、回火温度对碳钢性能的影响; 5、观察热处理后钢的组织及其变化; 6、了解常用硬度计的原理,初步掌握硬度计的使用。 二实验设备及材料 1、显微镜、预磨机、抛光机、热处理炉、硬度计、砂轮机等; 2、金相砂纸、水砂纸、抛光布、研磨膏等; 3、三个形状尺寸基本相同的碳钢试样(低碳钢20#、中碳钢45#、高碳钢 T10) 三实验内容 三个形状尺寸基本相同的试样分别是低碳钢、中碳钢和高碳钢,均为退火状态,不慎混在一起,请用硬度法和金相法区分开。 。 四实验步骤: 8、观察平衡组织并测硬度: (1)制备金相试样(包括磨制、抛光和腐蚀); (2)观察并绘制显微组织; (3)测试硬度。 9、进行热处理。 10、观察热处理后的组织并测硬度: (1)制备金相试样(包括磨制、抛光和腐蚀);

(2)观察并绘制显微组织。五实验报告

图片分析 1#试样 2#试样 3#试样 4#试样 5#试样 6#试样 铁素体 铁素体 珠光体 铁素体 铁素体 珠光体 珠光体 珠光体 Fe 3C Ⅱ

7#试样 8#试样 9#试样 Fe 3C Ⅱ 珠光体 低温莱式体 低温莱式体 低温莱式体 Fe 3C I

珠光体 Fe3CⅡ T10碳质量分数为1.00%(千分之十)的优质碳素工具钢,硬度高,韧性适中。热处理后为回火马氏体和残余奥氏体。 热处理工艺: 硬度为 组织性能: 实验者:代银

相关文档
最新文档