圆绕图形无滑动滚动的问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周长的 5 倍,问圆自身转动了几圈?
解答:如图,虚线为滚动过程中圆心的经过的路程,圆心经过的路程等于三条线段长加上三 条弧长。其中三条线段长度之和是△ABC 的周长,三段弧长度之和是圆的周长。 即圆心经过的路程=△ABC 的周长+圆的周长 所以圆转动的圈数=(5+1)÷1=6(圈)
小结:圆在多边形外侧滚动一周,圆心经过的路程等于多边形的周长加上圆的周长, 所以圆转动的圈数=多边形的周长÷圆的周长+1。
三、曲直无别:圆在另一圆的内、外滚动 (1)外滚 例 3、如图,在同一平面内,有两个大小相同的圆,其中圆 1 固定不动,圆 2 在其外围无滑
动滚动一周,则圆 2 自身转动了______周。
解答:设两小圆半径为 r。圆 2 滚动的距离就是圆 2 圆心经过的距离,即图中虚线的圆,这 个圆的半径等于两圆半径的和,因此它的周长 2π(r+r)=4πr 也就是圆 2 圆心经过 的路程。所以圆 2 转动了 4πr 除以圆的周长 2πr,转动了 2 周。
滚动圆问题
基本结论: 1、圆沿线(包括直线、曲线、折线)作无滑动滚动时,圆自身转动一圈,圆心经过的路程为
一个圆周长;反之,圆心经过的路程为一个圆周长,圆自身转动了一圈。 即在圆作无滑动滚动时,圆滚动经过路程长度与其圆心所经过的路线长度相等。 2、圆自身转动的圈数=圆心经过的路程÷圆的周长 一、由简入手:圆在直线上滚动 例 1、如图,把圆放在一条长度等于其周长的线段 AB 上,从一个端点无滑动地滚动到另一个
端点,则圆将滚动________周。
解答:圆心经过的路程为一个圆周长,所以圆滚动一周。 结论:(1)若线段 AB 的长度是圆周长的 n 倍,则圆将滚动 n 周。
(2)圆心 O 所经过的路线的长度等于线段 AB 的长。 二、拓广范围:圆在多边形外滚动 例 2、如图,圆沿着△ABC 的外侧作无滑动的滚动一周回到原来位置。已知△ABC 的周长是圆
1 作无滑动滚动一周回到原来的位置,则圆 2 转动了______周。
解答:圆 2 在圆 1 内部作无滑动地滚动,圆 2 滚动的路线长度与其圆心所经过的路线长度相 2π(R-r) R-r R
等(虚线圆),所以圆 2 转动周数= 2πr = r =r-1(周)。
小结:如下图,设圆 1 半径为 R,圆 2 半径为 r。圆 2 滚动的路线的长度与其圆心所经过的路 2π(R+r) R+r R
线长度相等(虚线圆),所以圆 2 转动周数= 2πr = =r+1(周)。
(2)内滚 例 4、如图,圆 1 的半径为 R,圆 2 的半径为 r。圆 2 从图上所示位置出发,在圆 1 内部绕圆
相关文档
最新文档