膜分离技术综述

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膜分离技术综述

摘要:

阐述了膜分离技术的特点,并介绍了各种膜分离技术的分离原理以及较全面的综述了它们在的研究现状,及相关领域的应用。

关键词:膜分离技术原理研究现状相关应用

正文:

膜分离技术是近三十多年来发展起来的高新技术,是多学科交叉的产物,亦是化学工程学科发展新的增长点。它与传统的分离方法比较,具有如下明显的优点:

1.高效:由于膜具有选择性,它能有选择性地透过某些物质,而阻挡另一些物质的透过。选择合适的膜,可以有效地进行物质的分离,提纯和浓缩;

2.节能:多数膜分离过程在常温下操作,被分离物质不发生相变, 是一种低能耗,低成本的单元操作;

3.过程简单、容易操作和控制;

4.不污染环境。

由于这些优点、使膜分离技术在短短的时间迅速发展起来,已广泛有效地应用于石油化工、生化制药、医疗卫生、冶金、电子、能源、轻工、纺织、食品、环保、航天、海运、人民生活等领域,形成了独立的新兴技术产业。目前,世界膜市场以每年递增14~30%速度发展,它不仅自身形成了每年约百亿美元的产值,而且有力地促进了社会、经济及科技的发展。特别是,它的应用与节能、环境保护以及水资源的再生有密切的关系,因此在当今世界上能源短缺、水荒和环境污染日益严重的情况下,膜分离技术得到世界各国的普遍重视,欧、美、日等发达国家投巨资立专项进行开发研究,已取得在此领域的领先地位。我国在“六五”、“七五”、“八五”、“九五”以及863、973计划中均列为重点项目,给予支持。

关于发展膜分离技术的重要性,美国官方的文件说,“18世纪电器改变了整个工业过程,而20世纪膜技术改变了整个面貌”。1987年日本东京召开的国际膜与膜过程会议上,曾将“21世纪的多数工业中膜过程所扮演的战略角色”列为专题进行深入讨论,与会的专家一致认为,膜技术将是20世纪末到21世纪中期最有发展前途的高技术之一。世界著名的化工与膜专家,美国国家工程院院士、北美膜学会主席黎念之博士(我校化工系兼职教授)在1994年应邀访问我国时说“要想发展化工就必须发展膜技术”。国际学术界一致认为“谁掌握了膜技术,谁就掌握了化工的未来”。可见,发展膜分离技术对于学科建设和经济发展均具有重要而深远的意义。

一.膜分离技术简介

1.分离膜的种类:膜是膜技术的核心,膜材料的性质和化学结构对膜分离性能起着决定性的影响。膜的种类很多,其中按材料分有高分子膜、金属膜、无机膜。高分子膜用途最广,其所使用的材料见后面附件Ⅰ。

按结构分有七类:

(1)均质膜或致密膜,为结构均匀的致密薄膜,见附件Ⅱ图1。

(2)对称微孔膜,平均孔径为0.02~10。按成膜方法不同,有三种类型的微孔膜,

即核孔膜、控制拉伸膜和海绵状结构膜。

(3)非对称膜。膜断面为不对称结构,是工业上应用最多的膜。

(4)复合膜。在多孔膜表面加涂另一种材料的致密复合层。

(5)离子交换膜

(6)荷电膜

(7)液膜、包括支撑液膜和乳状液膜

按形状分有平板膜、管式膜和中空纤维膜

膜分离设备(组件)

板框式,结构类似板框式压滤机。

卷式,结构类似出螺旋板换热器。

管式,结构类似列管式换热器。

中空纤维式,结构类似列管式换热器,由几千根甚至几百万根中空纤维组成。3.膜分离过程

膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离,提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等八种。

反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。

气体分离和渗透汽化是正在发展中的技术。其中气体分离相对较为成熟一些。目前已有工业规模的气体分离体系是, 空气中氧和氮的分离;合成氨厂中氨、氮、甲烷混合气中氢的分离;天然气中二氧化碳与甲烷的分离。渗透汽化是这些膜过程中唯一有相变的过程,在组件和过程设计中均有特殊的地方。它主要用于有机物/水,水/有机物,有机物/有机物分离,是最有希望取代某些高能耗的精馏技术的膜过程。80年代中期进入工业化应用阶段。

除了以上八种已工业应用的膜分离过程外,还有许多正在开发研究中的新膜过程,它们是膜萃取、膜蒸馏、双极性膜电渗析、膜分相、膜吸收、膜反应、膜控制释放、膜生物传感器等。这些膜过程目前尚处在小型试验和中试阶段。二.常用膜分离技术的原理

通透量理论:一种基于粒子悬浊液在毛细管内流动的毛细管理论。

1.浓度极化模型

反渗透、超滤和微滤操作各具特点,影响透过通量的因素很多。但这三种膜分离操作的透过通量基本上均可用浓度极化或凝胶极化模型描述。

浓度(凝胶)极化模型的要点是:在膜分离操作中,所有溶质均被透过液传送到膜表面上,不能完全透过膜的溶质受到膜的截留作用,在膜表面附近浓度升高。这种在膜表面附近浓度高于主体浓度的现象称为浓度极化或浓差极化(concentration polarization)。膜表面附近浓度升高,增大了膜两侧的渗透压差,使有效压差减小,透过通量降低。当膜表面附近的浓度超过溶质的溶解度时,溶质会析出,形成凝胶层。当分离含有菌体、细胞或其他固形成分的料液时,也会在膜表面形成凝胶层。这种现象称为凝胶极化(gel po1arization)。凝胶层的形成对透过产生附加的传质阻力,因此

透过通量一般表示为

)(g m L V R R P J +-=μπ

∆∆

JV :溶质的质量通量

Δp —膜两侧的压差 Pa Δπ — 膜两侧溶液的渗透压差 Pa

μL — 料液的黏度 Pa ·s

Rm — 膜的阻力 m-1 Rg — 凝胶的阻力 m-1

(1) 生物分子透过通量的浓度极化模型方程 ⎪⎪⎭⎫ ⎝⎛--=p b p m V c c c c k J ln

δD k = 式中:

JV ——透过通量

D ——溶质的扩散系数 m2/s

δ——虚拟滞流底层厚度 m

cm ——膜表面浓度 mol/L

cb ——主体料液浓度 mol/L

cp ——透过液浓度 mol/L

k ——传质系数 m/s

(2) 菌体悬浮液在高压条件下生物大分子溶液透过通量的凝胶极化模型方程

b g

V c c k J ln = JV ——透过通量

cg ——凝胶层浓度

cb ——透过液浓度

k ——传质系数

当压力很高时,溶质在膜表面形成凝胶极化层,溶质的透过阻力极大,透过液浓度即很小,可忽略不计。

2.超滤膜的分子截留作用

截留率 (rejection coefficient)表示膜对溶质的截留能力,可用小数或百分数表示。

m p c c R -=10 R0—截留率 cm —膜表面的极化浓度, cp —透过液中溶质浓度

由于膜表面的极化浓度cm 不易测定,通常只能测定料液的体积浓度(bulk concentration),因此常用表观截留率R ,其定义为 b p c c R -=1

R —表观截留率 cb —料液中溶质浓度, cp —透过液中溶质浓度

通过测定超滤前后保留液浓度和体积可计算截留率为

相关文档
最新文档