[工学]轴系扭转振动

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当量转化方法(续)
柴油机、弹性联轴器、气胎离合器、变速齿轮装置、 减振器等制造厂应提供经实验验证的扭转参数。
发电机转子作为一个惯量质点。
垫升风机不能是双进风的还是单进风的,都作为一 个惯量质点。
水力测功器转动惯量应计入附水影响。附水量与水 力测功据所吸收负荷有关,缺乏详细资料则可取为 净惯量的35%。
以有较大质量部件的回转平面中心作为该部件质量 的集中点。
弹性联轴器、气胎离合器和弹性扭振减振器等,其 主动、从动惯性轮作为两个质量集中点,其刚度应 取弹性元件的动态刚度值。
24.11.2020
h
8
二.扭振的计算模型与当量转化
当量转化方法(续)
硅油减振器可简化为一个由其壳体惯量与惯性轮惯 量之半组成的当量惯量;也可转化为由2个质量点 组成。
过双层底引起机舱构件局部振动、上层建筑振动及船体振动; 使机舱噪声加剧。
24.11.2020
hΒιβλιοθήκη Baidu
4
一.关于“推进轴系扭振”
研究轴系扭转振动的目的
通过计算,评估轴系扭振特性 检查轴系固有频率和船上有关的激励频率之间是否
出现共振,并计算其强烈程度,以判断其危害性 为合理的提出并实施避振和减振措施提供依据
24.11.2020
h
11
二.扭振的计算模型与当量转化
惯量计算
规则物体转动惯量,可应用一般公式进行计算。 对于螺旋桨转动惯量,可按下式计算
J p J 0 Z 1 J J p K B (J 0 Z 1 )J
式中: J0 — 轮毂转动惯量,kg.m2; Z — 叶片数; J1 — 桨叶转动惯量,kg. m2; ΔJP — 附加水惯量,kg.m2; KB — 附水系数。一般近似取1.25;有导流管螺旋桨, 取1.35;对可调螺距螺旋桨,零螺距工况时取1.02
运动部件的重力及往复惯性力的周期性变化引起的激励
接受功率的部件不能均匀的地吸收扭振而形成的激励
常见的现象
低速柴油机轴系容易出现节点在传动轴中的单节点振动
中速柴油机轴系,常易出现节点在曲轴的双节点扭振
对于长轴系及有传动齿轮的轴系,在使用转速范围内,可 能有1、2和3节点的振动模态
24.11.2020
24.11.2020
h
7
二.扭振的计算模型与当量转化
当量转化方法
柴油机曲轴以每一曲轴平面的中心作为单位气缸转 动惯量的集中点。对并列连杆V型机也可以每个气 缸中心线与轴线之交点作为集中点,而将每个曲柄 转化为两个集中点。单位气缸转动惯量由旋转部件 的转动惯量及转化到曲柄销半径处的往复部件的转 动惯量组成。
24.11.2020
h
5
二.扭振的计算模型与当量转化
实际动力装置系统
当量系统(计算模型)
24.11.2020
h
6
二.扭振的计算模型与当量转化
当量系统,就是把复杂的柴油机轴系转化成如图所示的
集中质量—弹性系统。
转化原则:当量系统能代表实际轴系的扭振特性,其自
由振动计算固有频率与实际固有频率基本相同,振型与 实际的基本相似。实测固有频率与计算值相差大于5% 时,应对当量系统进行修正。
24.11.2020
h
13
三. 内燃机轴系自由扭振计算
第七章 船舶推进轴系扭转振动
本章主要内容
内燃机轴系扭转振动概述 内燃机轴系扭振的激励
扭振的计算模型与当量转化 内燃机轴系强迫扭振计算
内燃机轴系自由扭振计算
目的 项目
确定自振频率 确定自振振型(振型图)
系统矩阵法(√) 能量法(√) 放大系数法
避振与减振方法综述
确定简谐次数
24.11.2020
h
12
二.扭振的计算模型与当量转化
刚度计算
直轴的刚度
对材料剪切弹性模量为G,截面极惯性矩为J0,长度为L的轴
段,扭转刚度为:
K=GJ0 ,Nmrad
L
弹性联轴器扭转刚度
应采用动态刚度值:K=dKs
式中:Ks—静刚度值, N.m/rad; d—动态系数。
通常,制造厂应提供弹性联轴器的扭转刚度值
皮带传动的泵和发电机等设备:轴系通过皮带传动 的泵和发电机等设备,出于皮带刚度很小而且还可 能产生微量的滑移,所以可以认为这部分设备与原 系统的扭振特性无关。
24.11.2020
h
10
二.扭振的计算模型与当量转化
当量转化方法(续)
液力偶合器:轴系通过液力偶合器传递时,可以认为液体 的刚度很小,因此液力偶合器的主动部分以前和偶合器从 动部分以后,可分别作为两个扭振特性互为独立的系统来 考虑。前一系统受柴油机干扰力矩的作用力;后一系统受 螺旋桨干扰力矩的作用。
当以传动轴法兰接合面作为质量中心时,轴的转动 惯量平分加在相邻法兰的质量上。
传动齿轮的主、从动齿轮可作为两个集中质量,并 假设两者之间的刚度很大(一般可取轴系中最大刚 度的1000倍)。齿轮装置轴系中,从动系统应转化 为与柴油机转速相同的当量系统。
24.11.2020
h
9
二.扭振的计算模型与当量转化
h
3
一.关于“推进轴系扭振”
轴系扭转振动有何危害?
使曲轴、传动轴及凸轮轴产生过大的交变应力,甚至导致疲劳 折损;
使传动齿轮间产生撞击现象,引起齿面点蚀,乃至断齿; 使橡胶联轴器橡胶件撕裂、螺栓折断; 使刚性联轴器出现振动松动,螺栓折断; 发动机零部件磨损加快,地脚螺栓折断; 柴油发电机组输出不允许的电压波动; 引起扭转—纵向耦合振动; 产生继发性激励,激起柴油机机架、齿轮箱的横向振动,并通
确定临界转速
确定相对振幅矢量和
确定扭振附加应力尺标
方法
Holzer表法(√)
系统矩阵法
传递矩阵法(#)
24.11.2020
h
2
一.关于“推进轴系扭振”
什么是“推进轴系扭转振动”?
定义
还有:纵向 振动和回旋
振动
船舶轴系出现的周向交变运动及其相应变形。
产生原因
柴油机气缸内气体压力的周期性变化引起的激励
推进器转动惯量值应计入附连水的值,附水值大小与推进 型式有关。对于固定螺距螺旋桨,附水量—般取其在空气 中惯量的25%—30%,装有导流管的可取35%;对于可 调螺距螺旋桨,附水量—般在满螺距时取其在空气中惯量 的50%—55%;零螺距时取2%左右。但对于某些盘面比 及螺距比均比较大的螺旋桨,附水值可考虑更大些。对于 空气螺旋桨,没有附水。对于喷水推进器,也不考虑附水。
相关文档
最新文档