好氧、厌氧、硝化反硝化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水解酸化池:水解酸化的作用是调节废水的pH值,为后续的生化反应的反应创造条件;因为很多工艺要求水质在一定pH值范围内,而进水水质往往达不到要求,故要设计酸化池。
水解酸化主要用于有机物浓度较高、SS较高的污水处理工艺,是一个比较重要的工艺。如果后级接入UASB工艺,可以大大提高UASB的容积负荷,提高去除效率。水中有机物为复杂结构时,水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,一端加入H+,一端加入-OH,可以将长链水解为短链、支链成直链、环状结构成直链或支链,提高污水的可生化性。水中SS高时,水解菌通过胞外粘膜将其捕捉,用外酶水解成分子断片再进入胞内代谢,不完全的代谢可以使SS成为溶解性有机物,出水就变的清澈了。这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式。但是COD在表象上是不一定有变化的,这要根据你在设计时选择的参数和污水中有机物的性质共同确定的,长期的运行控制可以让菌种产生诱导酶定向处理有机物,这也就是调试阶段工艺控制好以后,处理效果会逐步提高的原因之一。水解工艺并不是简单的,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、污泥回流方式、设计负荷、出水酸化度、污泥消解能力、后级配套工艺(UASB或接触氧化)。
接触氧化池:
生物接触氧化法的反应机理
生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法工艺,其特点是在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。
该法中微生物所需氧由鼓风曝气供给,生物膜生长至一定厚度后,填料壁的微生物会因缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生物膜的生长,此时,脱落的生物膜将随出水流出池外。生物接触氧化法具有以下特点:
1、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷;
2、由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力;
3、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。
厌氧池:
因为厌氧反应分为4个阶段:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行
下一步的分解。(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。水解池一般是指水解酸化池,即将整个池子的反应控制在厌氧的前两个阶段,让大分子的物质分解成小分子的易分解的物质,提高废水的B/C比。缺氧池,是相对厌氧和好氧来讲,一般是指溶解氧控制在0.2-0.5mg/l之间的生化系统。
缺氧池
缺氧反应是兼性菌参与的生化反应,兼性菌是可以在好氧也可以在厌氧的情况下反应,要求系统的溶解氧在0.5mg/L以下,对温度和pH的要求也没有厌氧反应严格以DO区分,一般小于0.2mg/L就称为厌氧段,大于0.2mg/L小于0.5mg/L称为缺氧段。厌氧段释磷,缺氧段反硝化脱氮。
缺氧放磷,好氧吸磷,吸磷总量会远远大于放磷,把磷由液相转移到污泥,从水体移除。水解池和缺氧池的对比:
1、水解池
因为厌氧反应分为4个阶段:
(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。
(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。
(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。
(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。
水解池一般是指水解酸化池,即将整个池子的反应控制在厌氧的前两个阶段,让大分子的物质分解成小分子的易分解的物质,提高废水的B/C比。
缺氧池,是相对厌氧和好氧来讲,一般是指溶解氧控制在0.2-0.5mg/l之间的生化系统。
因此他们的相同点是,都是缺氧的环境,以厌氧和兼氧菌为主(实际运用过程中甚至有时候两者没有很明确的分别)。
不同点是,他们发挥的作用不同(水解池是控制在厌氧的水解酸化阶段,将大分子的物质分解成小分子物质,提高废水的可生化性,便于后续工艺的处理;缺氧池的作用是在去氨氮过程中提供反硝化等作用,并作为好氧池的过渡阶段)
另外一般酸化池不曝气,而缺氧池可以选择用穿孔管曝气,适当增加废水中的溶解氧。
好氧池、厌氧池、缺氧池:
好氧池就是通过曝气等措施维持水中溶解氧含量在4mg/l左右,适宜好氧微生物生长繁殖,从而处理水中污染物质的构筑物;
厌氧池就是不做曝气,污染物浓度高,因为分解消耗溶解氧使得水体内几乎无溶解氧,适宜厌氧微生物活动从而处理水中污染物的构筑物;
缺氧池是曝气不足或者无曝气但污染物含量较低,适宜好氧和兼氧微生物生活的构筑物。
不同的氧环境有不同的微生物群,微生物也会在环境改变的时候改变行为,从而达到去除不同的污染物质的目的。
反硝化
也称脱氮作用。反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。
硝化反硝化与好氧缺氧的关系:
就生活污水而言,氮主要是以有机氮和氨氮的形式存在的,无论是有氧还是在无氧环境下有机氮都可以转化成氨氮,只是产物和速率不同而已,这样,氨氮在有氧的环境下,在亚硝酸菌和硝酸菌的作用下发生硝化反应,转化成硝态氮,这个构筑单元一般叫做好氧池,有的也叫曝气池。硝态氮在反硝化细菌的作用下,在缺氧环境之下发生反硝化反应,生成氮气释放到大气中,完成了脱氮。这个构筑单元一般叫做缺氧池。
硝化作用
硝化细菌将氨氧化为硝酸的过程。
其作用过程如下:
硝化细菌从铵或亚硝酸的氧化过程中获得能量用以固定二氧化碳,但它们利用能量的效率很低,亚硝酸菌只利用自由能的5~14%;硝酸细菌也只利用自由能的5~10%。因此,它们在同化二氧化碳时,需要氧化大量的无机氮化合物。