五种排序算法分析课件

五种排序算法分析课件
五种排序算法分析课件

深圳大学实验报告

课程名称:算法分析与复杂性理论

实验项目名称:实验一排序算法性能分析

学院:计算机与软件学院

专业:软件工程

指导教师:杨烜

报告人:赖辉学号:班级:软工学术型实验时间:2015-10-15

实验报告提交时间:2015-11-24

教务部制

一.实验目的

1.掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理

2.掌握不同排序算法时间效率的经验分析方法,验证理论分析与经验分析的一致性。二.实验步骤与结果

实验总体思路:

根据实验要求,需要用while循环控制用户选择相应算法(选择通过switch实现)或者选择输入0跳出while循环,退出程序。Switch中选择相应的算法后需要通过一个for(int j=0;j<5;j++)循环更改数组大小MAX的值(MAX *= 10),从而控制输入不同问题规模的耗时。再通过一个for(int i=0;i<20;i++)循环控制20组随机数组。为了使得程序输出更加直观,部分数据后面没有输出。相应结果和过程如下所示(代码和结果如下图所示)。

各排序算法的实现及实验结果:

1、随机数产生

代码1:

srand((unsigned)time(NULL));

For i=0 to 19

randNum(MAX,array);

当问题规模较小时,生成随机函数randNum()在for循环下运行时间短,每次产生的随机数组都是一样的,将srand((unsigned)time(NULL))语句放在for循环外面,就产生了20组不同的随机数组。

图1、产生20组随机数组

2、选择排序

代码2:

for i=0 to n-2

min=i

for j= i+1 to n-1

if ele[min]>ele[j] min=j

swap(ele[i],ele[min]) //交换元素

图2、选择排序在不同数据规模下排序所消耗的时间3、冒泡排序

代码3:

for i= 0 to n-1

for j=0 to n-1-i

if a[j]>a[j+1]

swap(a[j],a[j+1]) //交换

图3、冒泡排序在不同数据规模下排序所消耗的时间

3、合并排序

代码4:

MERGE(A, p, q, r)

n1 ←q - p + 1

n2 ←r - q

create arrays L[1 ‥n1 + 1] and R[1 ‥n2 + 1]

for i ←1 to n1

do L[i] ←A[p + i - 1]

for j ←1 to n2

do R[j] ←A[q + j]

L[n1 + 1] ←∞

R[n2 + 1] ←∞

i ←1

j ←1

for k ←p to r

do if L[i] ≤R[j]

then A[k] ←L[i]

i ←i + 1

else A[k] ←R[j]

j ←j + 1

图4、合并排序在不同数据规模下排序所消耗的时间4、快速排序

代码5:

quick(ele[0...n-1],left,right)

if l

l←left r←right x←ele[l];

while l

while l

r--

if l

ele[l]←ele[r] l++

while lele[l] //比x大则前面交换到后面部分

ll++

if l

ele[r]←ele[l] r--

ele[l]←x;

quick(ele,left,l-1) // 递归调用

quick(ele,l+1,right)

图5、快速排序在不同数据规模下排序所消耗的时间5、插入排序

代码6:

for i=1→n-1

if ele[i]

for j= i-1 to 0 && ele[j]>temp

ele[j+1]←ele[j]

ele[j+1]←temp

图6、插入排序在不同数据规模下排序所消耗的时间

三.实验分析

选择排序:

图7、由图2数据整合而成的折线图

表1、选择排序在不同数据规模下排序所消耗的时间

数据规模:10 100 1000 10000 100000

耗时(ms)0 0 2.05 195.25 19868.5

图形上:

形状基本符合n2(二次增长)

数据上:

我们发现当数据规模增大10倍时:

1000→10000: 195.25/2.05=95.24≈100

10000→100000:19868.5/195.25=101.75≈100

其他倍数也可得到类似的结果。

结论:

当数据规模为10和100时因为数据太小,耗时约为0。但当数据规模为1000增大到10000时,并10000到100000时,规模增大10倍耗时都增大约100倍,可以计算出,选择排序的时间复杂度为o(n2)。

冒泡排序:

图8、由图3数据整合而成的折线图

表2、冒泡排序在不同数据规模下排序所消耗的时间

数据规模:10 100 1000 10000 100000

耗时(ms)0 0.1 2 194.15 19708

图形上:

形状基本符合n2(二次增长)

数据上:

我们发现当数据规模增大10倍时:

100→1000:2/0.1=20 (误差太大)

1000→10000:194.15/2=97.075 ≈ 100

10000→100000:19708/194.15=101.5 ≈ 100

其他倍数也可得到类似的结果。

结论:

由于开始问题规模较小,产生误差较大,但随着问题规模的按10的倍数增大,耗时逐渐呈100的倍数增大,分析伪代码也可以算出该算法的时间复杂度为o(n2)。随着问题规模的增大,多种误差会逐渐累积,耗时会超过o(n2)的倍数,但是整体上不会相差太大。与此相比,电脑等其他因素造成轻微的误差可以忽略不计。

合并排序:

图9、由图4数据整合而成的折线图

表3、合并排序在不同数据规模下排序所消耗的时间

数据规模:10 100 1000 10000 100000

耗时(ms)0 0.1 0.7 6.05 59.2

图形上:

形状基本符合n(线性增长)

数据上:

我们发现当数据规模增大10倍时:

100→1000::0.7/0.1=7 ≈10(误差较大)

1000→10000: 6.05/0.7=8.64 ≈10

10000→100000:59.2/6.05=9.78 ≈10

其他倍数也可得到类似的结果。

结论:

根据该算法的伪代码,可以计算出时间复杂度为o(nlog2n),当数据规模扩大10倍时,耗时呈线性增长,逐渐接近于n。当数据规模扩大n倍时,相应的在时间的消耗上会扩大nlog2n倍,同时我们发现,理论上乘以nlog2n后的数据普遍会略小于实际数据,这主要原因快速排序需要递归调用,递归调用需要花费额外的时间。

快速排序:

图10、由图5数据整合而成的折线图

表4、快速排序在不同数据规模下排序所消耗的时间

数据规模:10 100 1000 10000 100000

耗时(ms)0 0 1.5 12.15 137.95

图形上:

形状基本符合n(线性增长)

数据上:

我们发现当数据规模增大10倍时:

1000→10000::12.15/1.5=8.1 ≈ 10

10000→100000: 137.95/12.15=10.1 ≈10

其他倍数也可得到类似的结果。

结论:

根据快速排序算法的伪代码,可以分析出该算法的时间复杂度是o(nlog2n),当数据规模扩大n倍时,相应的在时间的消耗上会扩大nlog2n倍。从实验的数据上,可以看出随着问题规模的增大,耗时上面也呈线性增长,但累积起来的误差也使得程序的结果略微高于实验值。总体上的实验结果和预期还是很接近的。

插入排序:

图11、由图6数据整合而成的折线图

表5、插入排序在不同数据规模下排序所消耗的时间

数据规模:10 100 1000 10000 100000 耗时(ms)0 0 1.2 112.85 11329.5

图形上:

形状基本符合n2(二次增长)

数据上:

我们发现当数据规模增大10倍时:

1000→10000: 112.85/1.2=94 ≈100

10000→100000: 11329.5/112.85=100.4 ≈100

其他倍数也可得到类似的结果。

结论:

根据插入算法的伪代码,可以计算出该算法的时间复杂度是o(n2),当数据规模扩大n倍时,相应的在时间的消耗上会扩大n2倍,理论上,如果数据大具有特殊性,那此算法被影响的程度会比较大,他的的比较次数可以从线性次数,到n2次,赋值次数也可能由常数次变成n2总的来说,受数据影响较大。

将五种排序的实验汇总在一起,如下图12所示

图12、由图7、8、9、10、11整合而来

从图中以及之前的分析中我们可以得到以下结论

1、在平均时间复杂度上面,冒泡排序、插入排序和选择排序都最差为o(n2)。其主要原因是:随着问题规模的增大,冒泡排序在比较次数上达到了o(n2),但这种排序同时也受交换次数的影响,而且最多时间复杂度也是o(n2)。如此,同样是o(n2),但冒泡排序的二次项系数会比另外两个大不少,所以最为耗时。

2、快速排序和合并排序都表现出比较好的复杂度。但这两者中,合并排序表现更好。其原因是:在最坏情况下,即整个序列都已经有序且完全倒序的情况下,快速排序呈o(n2)的增长,而归并排序不管在什么情况下都呈o(nlog2n),随着问题规模的增大,快速排序逐渐体现出这种弊端。

四.实验心得

本次实验虽然花费很大的心思,但确实让我对这几种排序的认识更加深刻,同样的数据,排序的时间可以相差如此之大,这可能会改变我每次都使用冒泡排序的这一习惯,同时,对算法的优良性不同而导致的结果差异之大,感觉到好的算法是多么的重要,当然合理利用算法也是不可忽视的。这次实验虽然花了很大精力,却收获累累。

指导教师批阅意见:

成绩评定:

指导教师签字:

年月日备注:

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

附录:代码

#include

#include

#include

#include

using namespace std;

#include

#include

using namespace std;

#define ARRAY_MAX 100000

/*****************************生成随机函数*************************/ void randNum(int MAX,int *array){

//srand((unsigned)time(NULL));

//cout<<"生成的随机数为:"<

for(int i=0;i

array[i] = rand()%100;

//cout<

}

//cout<<"\t\t耗时:";

}

/*****************************选择排序*************************/ void select_sort(int MAX,int *array){

int i, j, k;

for (i = 0; i < MAX; i++){

k = i;

for (j = i + 1; j < MAX; j++){

if (array[j] < array[k]){

k = j;

}

}

if (k != i){

int temp = array[k];

array[k] = array[i];

array[i] = temp;

}

}

}

/***************************冒泡排序*************************/

void buddle_sort(int MAX,int *array){

int i, j;

for(i=0;i

for(j=i+1;j

if(array[i]>array[j]) swap(array[i],array[j]);

}

}

}

/***************************合并排序*************************/ void Merge(int *array, int p, int q, int r){

int n1 = q - p + 1;

int n2 = r - q;

int *L, *R, i, j, k;

L = new int[n1 + 1];

R = new int[n2 + 1];

for (i = 0; i < n1; i++)

L[i] = array[p + i];

for (i = 0; i < n2; i++)

R[i] = array[q + 1 + i];

L[n1] = INT_MAX;

R[n2] = INT_MAX;

for (i = 0, j = 0, k = p; k <= r; k++){

if (L[i] <= R[j]){

array[k] = L[i++];

}

else{

array[k] = R[j++];

}

}

delete []L;

delete []R;

}

void merge_sort(int *array, int p, int r){

if (p < r){

int q = (p + r) / 2;

merge_sort(array, p, q); //递归调用

merge_sort(array, q + 1, r);

Merge(array, p, q, r);

}

else{

return;

}

}

/***************************快速排序*************************/ void quick_sort(int a[], int low, int high){

if(low >= high){

return;

}

int first = low;

int last = high;

int key = a[first];

while(first < last){

while(first < last && a[last] >= key){

--last;

}

a[first] = a[last]; //将比第一个小的数移到后面

while(first < last && a[first] <= key){

++first;

}

a[last] = a[first]; //将比第一个大的数移到前面

}

a[first] = key; //记录当前位置

quick_sort(a, low, first-1);

quick_sort(a, first+1, high);

}

/***************************插入排序*************************/ void insert_sort(int MAX,int *array){

int i, j, temp;

for (i = 1; i < MAX; i++){

temp = array[i];

for(j=i;j > 0 && array[j-1] > temp;j--){

array[j] = array[j-1];

}

array[j] = temp;

}

}

int main(){

int n,loop = 1;

while(loop != 0){

//产生随机数组

clock_t time_start,time_end;

double time_used = 0,count = 0;

int MAX = 10;

int array[ARRAY_MAX];

cout<<"\n\t\t请输入序号选择相应的操作:"<

cout<<"1.选择排序 2.冒泡排序 3.合并排序 4.快速排序 5.插入排序0.退出程序"<

cout<<"******************************************************************"<

cin>>n;

switch(n){

case 0: loop = 0;break;

case 1:

for(int j=0;j<5;j++){ //控制问题规模MAX从10-100000

cout<<"数组规模MAX="<

srand((unsigned)time(NULL));

for(int i=0;i<20;i++){ //控制20组随机数产生

randNum(MAX,array);

time_start = clock();

select_sort(MAX,array);

time_end = clock();

time_used = time_end - time_start;

cout<

//cout<

count += time_used;

}

cout<<"\n选择排序平均耗时:"<

count = 0;

MAX *= 10;

}

break;

case 2:

for(int j=0;j<5;j++){ //控制问题规模MAX从10-100000

cout<<"数组规模MAX="<

srand((unsigned)time(NULL));

for(int i=0;i<20;i++){ //控制20组随机数产生

randNum(MAX,array);

time_start = clock();

buddle_sort(MAX,array);

time_end = clock();

time_used = time_end - time_start;

cout<

//cout<

count += time_used;

}

cout<<"\n冒泡排序平均耗时:"<

count = 0;

MAX *= 10;

}

break;

case 3:

for(int j=0;j<5;j++){ //控制问题规模MAX从10-100000

cout<<"数组规模MAX="<

srand((unsigned)time(NULL));

for(int i=0;i<20;i++){ //控制20组随机数产生

randNum(MAX,array);

time_start = clock();

merge_sort(array,0,MAX-1);

time_end = clock();

time_used = time_end - time_start;

cout<

//cout<

count += time_used;

}

cout<<"\n合并排序平均耗时:"<

count = 0;

MAX *= 10;

}

break;

case 4:

for(int l=0;l<5;l++){ //控制问题规模MAX从10-100000

cout<<"数组规模MAX="<

srand((unsigned)time(NULL));

for(int i=0;i<20;i++){ //控制20组随机数产生

randNum(MAX,array);

time_start = clock();

quick_sort(array,0,MAX);

time_end = clock();

time_used = time_end - time_start;

cout<

//cout<

count += time_used;

}

cout<<"\n快速排序平均耗时:"<

"<

count = 0;

MAX *= 10;

}

break;

case 5:

for(int j=0;j<5;j++){ //控制问题规模MAX从10-100000

cout<<"数组规模MAX="<

srand((unsigned)time(NULL));

for(int i=0;i<20;i++){ //控制20组随机数产生

randNum(MAX,array);

time_start = clock();

insert_sort(MAX,array);

time_end = clock();

time_used = time_end - time_start;

cout<

//cout<

count += time_used;

}

cout<<"\n插入排序平均耗时:"<

count = 0;

MAX *= 10;

}

break;

default: cout<<"请输入合法的序号!";

}

}

return 0;

}

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

堆 排 序 算 法

堆排序——C#实现 一算法描述 堆排序(Heap Sort)是利用一种被称作二叉堆的数据结构进行排序的排序算法。 二叉堆在内部维护一个数组,可被看成一棵近似的完全二叉树,树上每个节点对应数组中的一个元素。除最底层外,该树是满的。 二叉堆中,有两个与所维护数组相关的属性。Length表示数组的元素个数,而HeapSize则表示二叉堆中所维护的数组中的元素的个数(并不是数组中的所有元素都一定是二叉堆的有效元素)。因此,根据上述定义有: 0 = HeapSize = Length。 二叉堆可分为最大堆和最小堆两种类型。在最大堆中,二叉树上所有的节点都不大于其父节点,即 A[Parent(i)] = A[i]。最小堆正好相反:A[Parent(i)] = A[i]。 为维护一个二叉堆是最大(小)堆,我们调用一个叫做MaxHeapify (MinHeapify)的过程。以MaxHeapify,在调用MaxHeapify时,先假定根节点为Left(i)和Right(i)的二叉树都是最大堆,如果A[i]小于其子节点中元素,则交换A[i]和其子节点中的较大的元素。但这样一来,以被交换的子节点为根元素的二叉堆有可能又不满足最大堆性质,此时则递归调用MaxHeapify方法,直到所有的子级二叉堆都满足最大堆性质。如下图所示: 因为在调用MaxHeapify(MinHeapify)方法使根节点为A[i]的

二叉堆满足最大(小)堆性质时我们有其左右子堆均已满足最大(小)堆性质这个假设,所以如果我们在将一个待排序的数组构造成最大(小)堆时,需要自底向上地调用 MaxHeapify(MinHeapify)方法。 在利用最大堆进行排序时,我们先将待排序数组构造成一个最大堆,此时A[0](根节点)则为数组中的最大元素,将A[0]与A[n - 1]交换,则把A[0]放到了最终正确的排序位置。然后通过将HeapSize 减去1,将(交换后的)最后一个元素从堆中去掉。然后通过MaxHeapify方法将余下的堆改造成最大堆,然后重复以上的交换。重复这一动作,直到堆中元素只有2个。则最终得到的数组为按照升序排列的数组。 二算法实现 1 注意到在C#中数组的起始下标为0,因此,计算一个给定下标的节点的父节点和左右子节点时应该特别小心。 private static int Parrent(int i) return (i - 1) - 2; private static int Left(int i) return 2 * i + 1; private static int Right(int i) return 2 * i + 2; 2 算法的核心部分是MaxHeapify(MinHeapify)方法,根据算法描述中的说明,一下代码分别实现了对整数数组的最大堆化和最小堆化方法,以及一个泛型版本。

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

数据结构排序习题

07排序 【单选题】 1. 从未排序序列中依次取出一个元素与已排序序列中的元素依次进行比较,然后将其放在已排序序列的合适位置,该排序方法称为(A)排序法。 A、直接插入 B、简单选择 C、希尔 D、二路归并 2. 直接插入排序在最好情况下的时间复杂度为(B)。 A、O(logn) B、O(n) C、O(n*logn) D、O(n2) 3. 设有一组关键字值(46,79,56,38,40,84),则用堆排序的方法建立的初始堆为(B)。 A、79,46,56,38,40,80 B、84,79,56,38,40,46 C、84,79,56,46,40,38 D、84,56,79,40,46,38 4. 设有一组关键字值(46,79,56,38,40,84),则用快速排序的方法,以第一个记录为基准得到的一次划分结果为(C)。 A、38,40,46,56,79,84 B、40,38,46,79,56,84 C、40,38,46,56,79,84 D、40,38,46,84,56,79 5. 将两个各有n个元素的有序表归并成一个有序表,最少进行(A)次比较。 A、n B、2n-1 C、2n D、n-1 6. 下列排序方法中,排序趟数与待排序列的初始状态有关的是(C)。 A、直接插入 B、简单选择 C、起泡 D、堆 7. 下列排序方法中,不稳定的是(D)。 A、直接插入 B、起泡 C、二路归并 D、堆 8. 若要在O(nlog2n)的时间复杂度上完成排序,且要求排序是稳定的,则可选择下列排序方法中的(C)。 A、快速 B、堆 C、二路归并 D、直接插入 9. 设有1000个无序的数据元素,希望用最快的速度挑选出关键字最大的前10个元素,最好选用(C)排序法。 A、起泡 B、快速 C、堆 D、基数 10. 若待排元素已按关键字值基本有序,则下列排序方法中效率最高的是(A)。 A、直接插入 B、简单选择 C、快速 D、二路归并 11. 数据序列(8,9,10,4,5,6,20,1,2)只能是下列排序算法中的(C)的两趟排序后的结果。 A、选择排序 B、冒泡排序 C、插入排序 D、堆排序 12. (A)占用的额外空间的空间复杂性为O(1)。 A、堆排序算法 B、归并排序算法 C、快速排序算法 D、以上答案都不对

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

内部堆排序算法的实现课程设计说明书

数据结构课程设计设计说明书 内部堆排序算法的实现 学生姓名金少伟 学号1121024029 班级信管1101 成绩 指导教师曹阳 数学与计算机科学学院 2013年3月15日

课程设计任务书 2012—2013学年第二学期 课程设计名称:数据结构课程设计 课程设计题目:内部堆排序算法的实现 完成期限:自2013年3 月4日至2013年3 月15 日共 2 周 设计内容: 堆排序(heap sort)是直接选择排序法的改进,排序时,需要一个记录大小的辅助空间。n个关键字序列K1,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ n) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。(即如果按照线性存储该树,可得到一个不下降序列或不上升序列)。 本课程设计中主要完成以下内容: 1.设计堆排序算法并实现该算法。 2.对堆排序的时间复杂度及空间复杂度进行计算与探讨。 3.寻找改进堆排序的方法。 基本要求如下: 1.程序设计界面友好; 2.设计思想阐述清晰; 3.算法流程图正确; 4.软件测试方案合理、有效。指导教师:曹阳教研室负责人:申静 课程设计评阅

摘要 堆排序是直接选择排序法的改进。本课设以VC++6.0作为开发环境,C语言作为编程语言,编程实现了堆排序算法。程序运行正确,操作简单,易于为用户接受。 关键词:堆排序;C语言;时间复杂度

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

几种排序算法的平均性能比较(实验报告)

实验课程:算法分析与设计 实验名称:几种排序算法的平均性能比较(验证型实验) 实验目标: (1)几种排序算法在平均情况下哪一个更快。 (2)加深对时间复杂度概念的理解。 实验任务: (1)实现几种排序算法(selectionsort, insertionsort,bottomupsort,quicksort, 堆排序)。对于快速分类,SPLIT中的划分元素采用三者A(low),A(high),A((low+high)/2)中其值居中者。 (2)随机产生20组数据(比如n=5000i,1≤i≤20)。数据均属于围(0,105)的整数。 对于同一组数据,运行以上几种排序算法,并记录各自的运行时间(以毫秒为单位)。(3)根据实验数据及其结果来比较这几种分类算法的平均时间和比较次数,并得出结论。实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1)明确实验目标和具体任务; (2)理解实验所涉及的几个分类算法; (3)编写程序实现上述分类算法; (4)设计实验数据并运行程序、记录运行的结果; (5)根据实验数据及其结果得出结论; (6)实验后的心得体会。 问题分析(包括问题描述、建模、算法的基本思想及程序实现的技巧等): 选择排序:令A[1…n]为待排序数组,利用归纳法,假设我们知道如何对后n-1个元素排序, 即对啊[A…n]排序。对某个j,1<=j<=n,设A[j]是最小值。首先,如果就!=1,我们交换A[1] 和A[j]。然后由假设,已知如何对A[2..n]排序,因此可对在A[2…n]中的元素递归地排序。 可把递归改为迭代。算法程序实现如下: void SelectionSort(int *Array,int n,int &c) { int i,j,k; int aa; c=0; for(i=0;i

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

堆排序算法的基本思想及算法实现示例

堆排序算法的基本思想及算法实现示例 堆排序 1、堆排序定义 n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质): (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ ) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。 【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。 2、大根堆和小根堆 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。 注意: ①堆中任一子树亦是堆。 ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。 3、堆排序特点 堆排序(HeapSort)是一树形选择排序。 堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。 4、堆排序与直接插入排序的区别 直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。 堆排序可通过树形结构保存部分比较结果,可减少比较次数。5、堆排序 堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。 (1)用大根堆排序的基本思想

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

堆排序算法分析(C语言版)

堆排序 堆排序是利用堆的性质进行的一种选择排序,下面先讨论一下堆。 1.堆 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2] 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。 堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足Key[i]<= key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。 2.堆排序的思想 利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。 其基本思想为(大顶堆): 1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区; 2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n]; 3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。 操作过程如下: 1)初始化堆:将R[1..n]构造为堆; 2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。 因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。 下面举例说明: 给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。 首先根据该数组元素构建一个完全二叉树,得到

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

高考语句排序题的五个突破口

高考语句排序题的五个突破口 2013年高考语文试卷对“语言表达连贯”考点的考查非常火爆,18套试卷中有8套对该考点进行了考查,而且在考查形式上有7套都不约而同地把“抓手”锁定在了“排序”题型上,这一受到全国卷和各省市卷高考命题专家共同青睐的题型应引起广大考生的高度重视。现以高考的7道试题为例,对该题型的解答要领作一简说: 一、前后的勾连性(又叫瞻前顾后) “嵌入式”的句子,既要“勾前”,又要“连后”,只有这样,才能使句子的衔接紧密,脉络贯通。在一定的语言环境中,一个意思要表达连续、完整,陈述对象必须保持一致,这是句子表达的基本要求,如果中途改换陈述对象,势必造成句子语气、语意的中断或阻隔,因此,陈述对象一致是语句衔接的重要条件。出题者往往便会据此出题,或抽去其中一句让考生选择,或改变其中一句叙述对象要考生修改。要保持陈述角度一致,必然要求几个句子的主语一致或围绕同一对象展开。因此,我们的解题对策就是:一要看几个句子主语是否一致,二要看主语不一致的句子是否从同一对象角度展开的。 话题也要一致,即要围绕一个中心说话。话题出岔,节外生枝,内容当然就不能一致了。做这类题时,特别要注意的是衔接句的内容一定要与原文的整体含义,特别是局部关键词语的含义要相互照应。 例1.将下列语句依次填入文中的横线处,使上下文语意连贯,只填序号。(海南、宁夏卷第21题) 明式家具,崇尚简约、天然之美,____,____,____ ,牢固结实;不过多地进行装饰,不过多地渲染技艺,不过多地雕琢,____,____ ,____ 。 ①结构全不用钉 ②以木材天然纹理和色泽为美 ③加工工艺精密 ④简洁而典雅 ⑤用榫铆接合得天衣天缝 ⑥符合中国“道法自然”的传统审美情趣 答:________________ 解析:前三条横线处于句群的中间位置,所以既要“勾前”,又要“连后”,应排③①⑤句。因为①句的“结构全不用钉”和⑤句前半句的“用榫铆接合”正是“崇尚天然之美”的表现(③句是对①⑤的总提),这就做到了“勾前”;而⑤句后半句的“接合得天衣天缝”产生的效果是“牢固结实”,这就做到了“连后”。后三条横线处于句群的尾部,所以要“勾前”,应排②④⑥句。因为②④⑥句依次照应了横线前的“不过多地进行装饰”“不过多地渲染技艺”“不过多地雕琢”,这就做到了“勾前”。据此,六句话应排序为③①⑤②④⑥。 例2 把下列带序号的句子组合成语意连贯的一段话并填入横线处。(只填序号)(浙江卷第22题) 奥林匹亚的废墟之美,究竟属于哪种美呢? ①因而残垣断壁失去部分的构图,也就容易让人通过想象获得。 ②也许废墟和残垣断壁本身就是美,这种美与其整体建筑结构左右对称有关。 ③不论是帕台农神庙还是厄瑞克特翁庙,我们推想它失去的部分时,不是依据实感,而是依据这种想象。 ④我们的感动,就是看到残缺美的感动。 ⑤这想象的喜悦,不是所谓空想的诗,而是悟性的陶醉。 解析:该题的第⑤句特别需要关注,因为它的开头“这想象的喜悦”起到了“勾前”的作用——紧承③句末尾的“而是依据这种想象”;它的结尾“悟性的陶醉”起到了“连后”的作用——连接

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

堆排序

算法与数据结构程设计报告 一.设计题目: 堆排序的算法 二.运行环境: 1、硬件:计算机 2、软件:Microsoft Visual C++6.0 三.目的和意义: 目的:创建一个大堆,按从大到小顺序输出堆元素,实现堆排序。 意义:利用堆排序,即使在最坏情况下的时间复杂度也是O(nlog2n),相对于快速排序来说,时间复杂度小,这是堆排序的最大优点,可用于对若干元素进行排序,加快排序速度。 四.算法设计的基本思想: 堆排序算法设计基本思想: 堆排序利用了大根堆堆顶记录的关键字最大这一特征,使得在当前无序区中选取最大关键字的记录变得简单。先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区。再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录r[n]交换,由此得到新的无序区r[1..n-1]和有序区r[n],且满足r[1..n-1].keys≤r[n].key。由于交换后新的根R[1]可能违反堆性质,故应将当前无序区r[1..n-1]调整为堆。然后再次将r[1..n-1]中关键字最大的记录r[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区r[1..n-2]和有序区r[n-1..n],且仍满足关系r[1..n-2].keys≤r[n-1..n].keys,同样要将r[1..n-2]调整为堆。直到无序区只有一个元素为止.

. .

流程图3:打印数组函数print()

六.算法设计分析: 性能分析:堆排序的时间主要由建立初始堆和不断重复建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。其中:建立初始堆时,总共需进行的关键字比较次数≤ 4n =O(n) ;排序过程中进行n-1次重建堆所进行的总比较次数不超过下式:2*(└ log2(n-1) ┘+└ log2(n-2) ┘+…+ └ log22 ┘) < 2n └ log2n ┘=O(n log2n)因此堆排序总的时间复杂度是 O(n+ n log2n)= O(n log2n)。堆排序在最坏情况下的时间复杂度也是O(nlog2n),相对于快速排序来说,这是堆排序的最大优点。另外,堆排序仅需一个记录大小供交换用的辅助空间。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录较少的文件,但对n较大的文件还是很有效的。堆排序是就地排序,辅助空间为O(1),它是不稳定的排序方法。 堆的描述:堆排序(HeapSort)是一树形选择排序。堆是对基于数组的树的重要应用场合之一。它是节点间具有层次次序关系的完全二叉树。其中,父节点值大于或等于其孩子节点值的,叫“最大堆(maximum heap)”;父节点值小于或等于孩子节点值的,叫“最小堆(minimum heap)”.在最大堆中,根中的元素值最大;在最小堆中,根中的元素值最小。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的记录。 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。 堆的存储特点:在这里,讨论作为顺序表存储的堆。它是按某种次序将一系列数据以完全二叉树形式存放的一种表。它要求堆中的节点的值都大于或等于其孩子节点的值。 按照这种存储方式,可知第i个元素的左右儿子分别是第2i和第2i+1个元素,而它的父亲节点是第i/2个元素。由于父亲节点和儿子节点具有这样的顺序关系,所以可以方便地由父亲节点找到儿子节点,反之亦然。 可见,这种存储方式大大节省了存储空间,高效快速。 堆的相关操作:作为抽象表结构,堆允许增加和删除表项。插入过程不用假定新表项占有一个特定的位置而只需维持堆顺序。但是删除操作总是删去表中的最大项(根)。堆可以用于那些客户程序想直接访问最大(小)元素的场合。作为表,堆并不提供Find操作,而对表的直接访问是只读的。所有的堆处理算法都有责任更新树和维持堆顺序。 1.建堆:数组具有对应的树表示形式。一般情况下,树并不满足堆的条件。通过重新排列元素,可以建立一棵“堆化”的树。 2.插入一个元素:新元素被加入到表中,随后树被更新以恢复堆次序。例如,下面的步骤将15加入到表中。 3.删除一个元素:删除总是发生在根节点处。用表中的最后一个元素来填补空缺位置,结果树被更新以恢复堆条件。 在堆实现时我们是采用数组来存储堆的完全二叉树表示,并且用一种有效的算法来保证对堆的所有操作不破坏堆的性质。这种表示的主要问题在于数组的大小需要事先确定,这使得对堆的大小有了一个初始的限定。在堆中数据增长到

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

相关文档
最新文档