工程数学《概率统计简明教程》习题全解

工程数学《概率统计简明教程》习题全解
工程数学《概率统计简明教程》习题全解

习题三解答

1.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求

)(AB P 及)(B A P .

解 4.08.05.0)|()()(=?==A B P A P AB P

)()()(1)(1)()(AB P B P A P B A P B A P B A P +--=-==

3.04.06.05.01=+--=

3.某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19 (1) 已知他已投入基金,再购买股票的概率是多少? (2) 已知他已购买股票,再投入基金的概率是多少?

解 记=A {基金},=B {股票},则19.0)(,28.0)(,58.0)(===AB P B P A P

(1) .327.058.019

.0)()()|(===

A P A

B P A B P

(2) 678.028

.019

.0)()()|(===

B P AB P B A P . 5.有朋自远方来,他坐火车、船、汽车和飞机的概率分别为0.3,0.2,0.1,0.4,若坐火车,迟到的概率是

0.25,若坐船,迟到的概率是0.3,若坐汽车,迟到的概率是0.1,若坐飞机则不会迟到。求他最后可能迟到的概率。

解 =B {迟到},=1A {坐火车},=2A {坐船},=3A {坐汽车},=4A {乘飞机},则 4

1

==i i

BA

B ,且按

题意

25.0)|(1=A B P ,3.0)|(2=A B P ,1.0)|(3=A B P ,0)|(4=A B P .

由全概率公式有:

∑==?+?+?==4

1

145.01.01.03.02.025.03.0)|()()(i i i A B P A P B P

6.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率:

(1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。

解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,

14/8)|(2=A B P ,所以

70

41

1482110621)|()()|()()(2211=

?+?=

+=A B P A P A B P A P B P (2) 12

72414)(==

B P 10.设A 与B 独立,且q B P p A P ==)(,)(,求下列事件的概率:)(B A P ,)(B A P ,)(B A P . 解 pq q p B P A P B P A P B A P -+=-+=)()()()()(

pq q q p q p B P A P B P A P B A P +-=---+=-+=1)1(1)()()()()(

pq B P A P AB P B A P -=-==1)()(1)()(

11.已知B A ,独立,且)()(,9/1)(B A P B A P B A P ==,求)(),(B P A P . 解 因)()(B A P B A P =,由独立性有

)()()()(B P A P B P A P =

从而 )()()()()()(B P A P B P B P A P A P -=- 导致 )()(B P A P =

再由 9/1)(=B A P ,有 2

))(1())(1))((1()()(9/1A P B P A P B P A P -=--==

所以 3/1)(1=-A P 。最后得到 .3/2)()(==A P B P

12.甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为1/3,1/2,2/3,求目标被命中的概率。

解 记 =B {命中目标},=1A {甲命中},=2A {乙命中},=3A {丙命中},则 3

1

==

i i

A

B ,因而

.98

9113121321)()()(11)(32131=-=??-=-=???

? ??-==A P A P A P A P B P i i 13.设六个相同的元件,如下图所示那样安置在线路中,设每个元件不通达的概率为p ,求这个装置通达的

解 记 =A {通达},

=i A {元件i 通达},6,5,4,3,2,1=i 则 654321A A A A A A A =, 所以

)()()()(654321A A P A A P A A P A P ++=

)()(654321652165434321P A A A A P A A A A P ---

642)1()1(3)1(3p p p -+---=

14.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率。

解 0512.0)8.0()2.0(352

3=???

? ??=p .

15.灯泡耐用时间在1000小时以上的概率为0.2,求三个灯泡在使用1000小时以后最多只有一个坏了的概率。

解 104.0096.0008.0)2.0(8.023)2.0(332

3=+=?????

?

??+???? ??=p . 16.设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19/27,求事件A 在每次试验中出现的概率)(A P .

解 记=i A {A 在第i 次试验中出现},.3,2,1=i )(A P p =

依假设 332131)1(1)(12719

p A A A P A P i i --=-=???

? ??== 所以, 27

8)1(3

=-p , 此即 3/1=p .

17.加工一零件共需经过3道工序,设第一、二、三道工序的次品率分别为2%、3%、5%. 假设各道工序是互不影响的,求加工出来的零件的次品率。

解 注意到,加工零件为次品,当且仅当1-3道工序中至少有一道出现次品。记 =i A {第i 道工序为次品},

.3,2,1=i 则次品率

097.090307.0195.097.098.01)()()(132131≈-=??-=-=???

? ??==A P A P A P A P p i i

18.三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4. 求此密码被译出的概率。 解 记 =A {译出密码}, =i A {第i 人译出},.3,2,1=i 则

7075

.02925.016.065.075.01)()()(1)(32131=-=??-=-=???

?

??==A P A P A P A P A P i i 19.将一枚均匀硬币连续独立抛掷10次,恰有5次出现正面的概率是多少?有4次至6次出现正面的概率是多少?

解 (1) 256632151010

=??

? ?????? ?? ; (2) 106

42110??

? ?????? ??∑=k k .

20.某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:

(1) 在此时刻至少有1台电梯在运行的概率; (2) 在此时刻恰好有一半电梯在运行的概率; (3) 在此时刻所有电梯都在运行的概率。

解 (1) 256

255

)25.0(1)75.01(14

4=

-=-- (2) 1282741436)25.0()75.0(242

2

2

2=??? ?????? ???=???? ?? (3) 2568143)75.0(4

4=??

? ??=

习题四解答

1. 下列给出的数列,哪些是随机变量的分布律,并说明理由。

(1)5,4,3,2,1,0,15==

i i

p i ; (2)()3,2,1,0,652=-=i i p i ; (3)5,4,3,2,41

==i p i ;

(4)5,4,3,2,1,25

1

=+=i i p i 。

解 要说明题中给出的数列,是否是随机变量的分布律,只要验证i p 是否满足下列二个条件:其一条件为

,2,1,0=≥i p i ,其二条件为1=∑i

i p 。

依据上面的说明可得(1)中的数列为随机变量的分布律;(2)中的数列不是随机变量的分布律,因为

064

6953<-=-=

p ;

(3)中的数列为随机变量的分布律;(4)中的数列不是随机变量的分布律,这是因为∑=≠=5

1

12520i i p 。 2. 试确定常数c ,使()()4,3,2,1,0,2

===i c

i X P i 成为某个随机变量X 的分布律,并求:()2≤X P ;

??? ??<<252

1

X P 。

解 要使i c 2成为某个随机变量的分布律,必须有124

=∑=i i c ,由此解得3116

=c ;

(2) ()()()()2102=+=+==≤X P X P X P X P

3128

412113116=

??? ??++= (3)()()212521

=+==??? ??<

??? ??+=。 3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字。从这袋中任取一球,设各个

球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数。

解 X 可能取的值为-3,1,2,且()()()6

1

2,

11,13=====

-=X P X P X P ,即X 的分布律为 X 的分布函数

0 3-

()()x X P x F ≤==

3

1

13<≤-x

6

5

21<≤x 1 2≥x

4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5,从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数。

解 依题意X 可能取到的值为3,4,5,事件{}3=X 表示随机取出的3个球的最大号码为3,则另两个球的只能为1号,2号,即()1013513=???

? ??=

=X P ;事件{}4=X 表示随机取出的3个球的最大号码为4,因此另外2个球可在1、2、3号球中任选,此时()103352314=???? ?????? ???==X P ;同理可得()106352415=???

?

???

??? ???=

=X P 。

X 的分布律为

X 的分布函数为

0 3

()=x F 101

43<≤x

10

4

54<≤x

1 5≥x

7. 设随机变量()p B X ,6~,已知()()51===X P X P ,求p 与()2=X P 的值。

解 由于()p B X ,6~,因此()()6,,1,0,1666 =-???

? ??==-k p p k X P k

k 。

由此可算得 ()()()(),165,16155

p p X P p p X P -==-==

即 ()(),161655

p p p p -=- 解得2

1=

p ; 此时,()641521!25621212626

262=??? ????=??? ????? ?????? ??==-X P 。

11. 某试验的成功概率为0.75,失败概率为0.25,若以X 表示试验者获得首次成功所进行的试验次数,写出X 的分布律。

解 设事件i A 表示第i 次试验成功,则()75.0=i A P ,且 ,,,1n A A 相互独立。随机变量X 取k 意味着前1-k 次试验未成功,但第k 次试验成功,因此有

()()()()

()75.025.011111---====k k k k k A P A P A P A A A P k X P

12. ()=x f x 2, A x <<0 0, 其他, 试求:(1)常数A ;(2)X 的分布函数。

解 (1)()x f 成为某个随机变量的密度函数必须满足二个条件,其一为()0≥x f ;其二为()?+∞

∞-=1dx x f ,因

此有?=A

xdx 012,解得1±=A ,其中1-=A 舍去,即取1=A 。

(2)分布函数

()()()?∞-=≤=x

dx x f x X P x F

=

??????+++∞-∞-∞-x

x

x

dx

xdx dx xdx dx dx

10

1

00

0020200 1

100

≥<≤

= 10

2x 1

100

≥<≤

13. 设随机变量X 的密度函数为()+∞<<-∞=-x Ae x f x

,,求:(1)系数A ;(2)()10<

解 (1)系数A 必须满足?+∞

∞--=1dx Ae

x

,由于x

e

-为偶函数,所以

???+∞∞-+∞+∞---===12200dx Ae dx Ae dx Ae x

x x

解得2

1=

A ; (2)()()

1101012

121

21

10----===<

(3)()()?∞

-=x

dx x f x F =

???-∞--∞--+x x x x x

dx

e dx e dx

e 00212121

= ???-∞-∞-+x x

x x

x

dx

e dx e dx

e 00212121 00≥

= ()

x x

e e

--+121

2121 00≥

e e

--2

1121 00≥

()=x f 0

22c

x e c x - 00<≥x x (c 为正的常数)

为某个随机变量X 的密度函数。

证 由于()0≥x f ,且()120

22

0222

22=-=???

?

?

?--==+∞

-∞+-∞

+∞-∞+∞

--

?

??c

x c x c x e c x d e dx

e c

x

dx x f ,

因此()x f 满足密度函数的二个条件,由此可得()x f 为某个随机变量的密度函数。 15. 求出与密度函数

()=x f 025.05.0x e 2

200

>≤<≤x x x 对应的分布函数()x F 的表达式。

解 当0≤x 时,()()??∞-∞-===x

x x x

e dx e dx x

f x F 5.05.0

当20≤

025.05.025.05.0x dx dx e dx x f x F x

x x

当2>x 时,()15.05.0025.05.00

22

0=+=++=???∞-x

x dx dx dx e x F

综合有

()=x F ,

1,25.

05.0,

5.0x e x + .2;20;0≥≤≤≤x x x

16. 设随机变量X 在()6,1上服从均匀分布,求方程012=++Xt t 有实根的概率。

解 X 的密度函数为

()=x f

,5

1

61<

方程012=++Xt t 有实根的充分必要条件为042≥-X ,即42≥X ,因此所求得概率为

()

()()()?=+=≥+-≤=≥-≤=≥6225

451

022224dx X P X P X X P X P 或。

17. 设某药品的有效期X 以天计,其概率密度为

()=x f ()

,10020000

3

+x 0>x ; 0, 其他.

求:(1) X 的分布函数;(2) 至少有200天有效期的概率。

解 (1) ()()?∞-=x

dx x f x F =

(),10020000,

003

dx x x

?+

.0;

0≥

100100001,

02

+-x

.0;0≥

10020010000

11200120012002

=???

? ?

?+--=-=≤-=>F X P X P 。 18. 设随机变量X 的分布函数为

()=x F

(),11,0x e x -+- 0

>≤x x 求X 的密度函数,并计算()1≤X P 和()2>X P 。

解 由分布函数()x F 与密度函数()x f 的关系,可得在()x f 的一切连续点处有()()x F x f '=,因此

()=x f ,

0,

x xe - 其他0>x

所求概率()()()112111111---=+-==≤e e F X P ;

()()()()()

223211121212--=+--=-=≤-=>e e F X P X P 。

19. 设随机变量X 的分布函数为()+∞<<-∞+=x x B A x F ,arctan ,求(1) 常数B A ,;(2)()1

解:(1)要使()x F 成为随机变量X 的分布函数,必须满足()()1lim ,0lim ==+∞

→-∞→x F x F x x ,即

()()1

arctan lim 0arctan lim =+=++∞

→-∞→x B A x B A x x

计算后得

1

2

2

=+

=-

B A B A π

π

解得

π

1

21=

=

B A 另外,可验证当π1,21==

B A 时,()x x F arctan 1

21π

+=也满足分布函数其余的几条性质。 (2) ()()()()11111--=<<-=

()??????-+-+=

1arctan 1211arctan 121ππ 2

4141πππππ=??? ??-?-?= (3)X 的密度函数

()()()

+∞<<-∞+='=x x x F x f ,11

2

π。

20. 设顾客在某银行的窗口等待服务的时间(单位:min )服从5

1

=

λ的指数分布,其密度函数为()=x f 0

,5

15

x

e - 其他0>x ,某顾客在窗口等待服务,若超过10min ,他就离开。 (1)设某顾客某天去银行,求他未等到服务就离开的概率;

(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务的概率。

解 (1)设随机变量X 表示某顾客在银行的窗口等待服务的时间,依题意X 服从5

1

=λ的指数分布,且顾客等待

时间超过10min 就离开,因此,顾客未等到服务就离开的概率为

()?∞

+--==≥1025

5

110e dx e X P x

(2)设Y 表示某顾客五次去银行未等到服务的次数,则Y 服从2,5-==e p n 的二项分布,所求概率为

()()()

()()

()

()()

4

2

24

2

25

20

2141115105101-------+=-???

? ??+-???

? ??==+==≤e e e e e e Y P Y P Y P

21. 设X 服从()1,0N ,借助于标准正态分布的分布函数表计算:(1)()2.2X P

;(3)

()78.0-

(4)()55.1X P 。 解 查正态分布表可得

(1)()()9861.02.22.2=Φ=

(2)()()()0392.09608.0176.1176.1176.1=-=Φ-=≤-=>X P X P ; (3)()()()2177.07823.0178.0178.078.0=-=Φ-=-Φ=-

()()()()8788

.019394.02155.1255.1155.1=-?=-Φ=Φ--Φ= (5)

()()()[]15.2215.215.2-Φ-=≤-=>X P X P

()()0124.09938.0125.222=-=Φ-=。

22. 设X 服从()16,1-N ,借助于标准正态分布的分布函数表计算:(1)()44.2X P ;(3)

()8.2--X P 。

解 当()

2,~σμN X 时,()??

? ??-Φ-??? ??-Φ=≤≤σμσμa b b X a P ,借助于该性质,再查标准正态分布函数表可

求得

(1)()()8051.086.04144.244.2=Φ=???

??+Φ=

(2)()()125.01415.115.1-Φ-=??

?

??+-Φ-=->X P

()()()5498.0125.0125.011=Φ=Φ--=;

(3)()()()3264.06736.0145.0145.0418.28.2=-=Φ-=-Φ=??

?

??+-Φ=-

(4)()()()75.025.14144144-Φ-Φ=??

?

??+-Φ-??? ??+Φ=

()()6678.07734.018944.075.0125.1=+-=Φ+-Φ=; (5)()()()175.041541225-Φ-Φ=??

?

??+-Φ-??? ??+Φ=<<-X P

()()9321.018413.07734.01175.0=+-=+Φ-Φ=;

(6)()()()???

??

???? ??+Φ-??? ??+Φ-=≤≤-=≤--=>-410412*********X P X P X P

()()8253.05987.07724.0125.075.01=+-=Φ+Φ-=。

23. 某厂生产的滚珠直径服从正态分布()01.0,05.2N ,合格品的规格规定为2.02±,求该厂滚珠的合格率。 解 所求得概率为

()()()()()927

.09938.019332.05.215.15.25.11.005.28.11.005.22.22.022.02=+-=Φ+-Φ=-Φ-Φ=?

??

?

?-Φ-??? ??-Φ=+≤≤-X P

24. 某人上班所需的时间()100,30~N X (单位:min )已知上班时间为8:30,他每天7:50出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率。

解 (1)由题意知某人路上所花时间超过40分钟,他就迟到了,因此所求概率为

()()1587.08413.0111103040140=-=Φ-=??

?

??-Φ-=>X P ;

(2)记Y 为5天中某人迟到的次数,则Y 服从1587.0,5==p n 的二项分布,5天中最多迟到一次的概率为

()()()()8192.08413.01587.0158413.01587.01514

50=????

? ??+????? ??=≤Y P 。

习题五解答

1. 二维随机变量()Y X ,只能取下列数组中的值:()()()0,2,31,1,1,1,0,0??? ?

?

--,且取这些组值的概率依次为

12

5

,121,31,61,求这二维随机变量的分布律。 解 由题意可得()Y X ,的联合分布律为

2. 设每次取球时,袋中每个球被取到的可能性相同。以X 、Y 分别记第一、二次取到的球上标有的数字,求()Y X ,的分布律及()Y X P =。

解 X 可能的取值为3,2,1,Y 可能的取值为3,2,1,相应的,其概率为

()()()()()()()()().

03,3,6

1

34212,3,1211,3,61

34123,2,6134122,2,6134121,2,

12

1

34113,1,6134212,1,01,1====??=======??====??====??====??====??======Y X P Y X P Y X P Y X P Y X P Y X P Y X P Y X P Y X P

或写成

()()()()6

3,32,21,1===+==+====Y X P Y X P Y X P Y X P 。

3. 箱子中装有10件产品,其中2件为次品,每次从箱子中任取一件产品,共取2次,定义随机变量X 、Y 如下:

X=

0, 若第一次取出正品; Y= 0, 若第二次取出正品; 1, 若第一次取出次品; 1, 若第二次取出次品。 分别就下面两种情况求出二维随机变量()Y X ,的联合分布律:(1)放回抽样;(2)不放回抽样。

解 (1)在放回抽样时,X 可能取的值为1,0,Y 可能取的值也为1,0,且

()()()(),

25

1

1010221,1,2541010820,1,

254

1010281,0,25161010880,0=??====??====??====??===Y X P Y X P Y X P Y X P 或写成

(2)在无放回情形下,X 、Y

()()()(),

45

1

910121,1,458910820,1,

458

910281,0,4528910780,0=??====??====??====??===Y X P Y X P Y X P Y X P 或写成

4. 对于第1题中的二维随机变量(Y X ,Y 的边缘分布律。 解 把第1按列相加得Y 的边缘分布律为

的边缘分布律。

解 在有放回情况下X 的边缘分布律为

Y 的边缘分布律为

在无放回情况下X 的边缘分布律为

Y 的边缘分布律为

6. 求在D 上服从均匀分布的随机变量(其中D 为x 轴、y 轴及直线12+=x y 围成的三角形区域。

解 区域D 见图5.2。

易算得D 的面积为4

1

21121=??=S ,所以()Y X ,的密度函数

()=y x f , ,0,4 ()其他

D y x ∈,

()Y X ,的分布函数

()()??∞-∞

-=y

x

dxdy y x f y x F ,,

当21

-

1

+<≤<≤-x y x 时, ()202

1244,y y xy dx dy y x F y x y -+==??-; 当

1

2,021

+≥<≤-x y x 时,

()1444,22

11

20++==??-

+x x dy dx y x F x x ;

当10,0<≤≥y x 时,()200

2124,y y dx dy y x F y

y -==??-; 当1,0≥≥y x 时,()??-+==02

11

20

14,x dy dx y x F

综合有

,0 02

1<-

,242y y xy +- 120021

+<≤<≤-

x y x 且 ()=y x F , ,1442++x x 1202

1

+≥<≤-x y x 且

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高中数学椭圆超经典知识点+典型例题讲解

学生姓名性别男年级高二学科数学 授课教师 上课时 间2014年12月13 日 第()次课 共()次课 课时:课时 教学课题椭圆 教学目标 教学重点 与难点 选修2-1椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若,则动点的轨迹无图形.

讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是 2.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3.已知椭圆22 169 x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ; 当焦点在轴上时,椭圆的焦点坐标为 ,。

圆的标准方程; 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换 成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

高中数学集合典型例题教学文案

高中数学集合典型例 题

精品文档 收集于网络,如有侵权请联系管理员删除 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??=Y I 注:数形结合---文氏图(即韦恩图、Venn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A I 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A I ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M I 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围.

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

论高中数学习题课教学

论高中数学习题课教学 发表时间:2014-04-14T11:10:10.810Z 来源:《教育与管理》2014年1月供稿作者:贾丽霞 [导读] 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。 笙河北省沙河市第一中学/贾丽霞 【摘要】上好习题课课堂教学模式可以是“目标教学法”、“范例式教学法”、先学后教的“学案导学式教学法”、“探究式教学法”等,但无论采用什么教学模式,都离不开教学内容的合理安排。在科学合理地安排好教学内容的同时,再选择适当的教学方式,则能达到事半功倍之效。 【关键词】高中数学习题课模式在新课程改革过程中,专家、教师们对于如何上好一节新授课讨论的很多,而对于如何上好一节习题课讨论的相对较少。然而,习题课在数学课教学中起着非常重要的作用,它是数学教学中的重要课型。 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。习题课之所以重要,是因为习题课能使学生加深对基本概念的理解,使理论完整化、具体化。习题课教学还可以增强学生的理性认识,提高学生的辨别能力。另外,通过问题创设了一种适合学生思维的情境,可以多方面、多角度地培养学生的观察、归纳、类比等技能和能力。从此也可看出学生的解题过程是一种独立的创造活动过程,有利于学生思维能力的发展。对于教师来说,还可以检查学生对所学知识的理解和掌握程度,以便适时调整教学方法和策略,实现数学教学的基本目标。结合自己的教学体会,我认为应做好以下几个方面工作: 1 科学安排教学内容1.1 例题和习题的安排要有明确的学习目标。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如何没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系。例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难。所以缺少目标的习题课有盲目性,会降低教学效率,因此要有明确的教学目标。 1.2 例题的安排要有非常强的示范性。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效。例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性。分析例题前可适当回顾知识要点及解题的基本方法,以便例题的学习更自然、更轻松。 2 精心选题 2.1 选题要有针对性,针对教学目标,针对知识点,针对学生的现状。教师在编选题前,对近一段的教学情况做些回顾和小结,很有必要,做到对教学情况心中有数,不能凭感觉和“经验”随意挑选几个题目,这就很难收到好的效果。小结要从教与学两个方面入手。对于教而言,要冷静,客观的分析前面所学知识到位了没有,教学情况如何,教学方法是否暴露了知识的形成过程。对学而言,要了解学生对重点内容了解到什么层次,难点消化到什么程度,思维训练的效果如何,针对这些来编选题。 2.2 选题要有可行性。选题要把握好度,作为平时的习题课,题目的综合性不要过强,这是因为学生对新概念,新知识接触的时间不长,有的学生尚未完全理解和掌握。如果题目背景较深,信息量较大,涉及到的新知识较多,学生的思维可能跟不上,这会影响学生思维的积极性,甚至使学生丧失信心,若要选综合性较强的题目,一般采取分步设问的方式给出,这样做学生易成功,有利于激发学生的思维兴趣,有助于学生把问题搞懂。 2.3 例题选择要有研究性。选题要精,要有典型性。通过对问题分析,启发学生从不同的角度观察、联想、探索解决问题的途径,使学生参与到研究问题中,成为问题的探索者。 3 重视问题分析第一,树立正确的解题观:弄清问题,拟定计划,实现计划,回顾总结。第二,发挥学生主体作用,让学生自己分解目标,进行知识点定位,寻找问题突破点,选择解题方法。第三,引导学生多角度思考问题,强化等价转化与化归思想,一题多解,培养学生的发散性思维。第四,注重思维方法和品质的培养,如逆向思维,正难则反,类比思想等,要求思维严谨,逻辑严密,切忌会而不对,对而不全。 4 例题的处理要得当对例题的学习要注意师生互动。教师重要的是及时地点拨,学生重要的是始终积极地进行思维活动,这样才能真正体现教师为主导、学生为主体的新的学习方式。教师要精讲,但对学习易犯的错误要及时纠正,对学生困难的解题思路要及时点拨,对方法技巧要引导学生总结。先学后教的“学案导学”教学方式是一种很好的教学模式。按照这种方式提前把学案发到学生手里,让学生予习,教师在上课前利用班空时间要及时了解学生学习的重点、难点及其他内容,并发现问题,这样才能在上课时有的放矢地学习,讲解更能击中要害,学生能会的就不要讲,学生能代老师讲的尽量让学生讲,尽量多给学生点空间和时间,以培养学生自主学习的能力。

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

高中数学习题课教学反思

高中数学习题课教学反思 进贤一中叶志勇 波利亚强调指出:“中学数学教学首要的任务就是加强解题训练。” “掌握数学就是意味着善于解题。” 习题课是数学教学活动的一个极为重要的形式.目前我国中学数学教学中,习题课教学占有较大的比例.在习题课教学中,师生通过对一些典型例题的分析讨论,使学生对所学过的基本概念、公式、定理及其运用有进一步的理解,以达到夯实基础的目的.在对例题解题策略的思考和解题方法的探求中,要启迪学生的思维,培养学生的品质,提高学生的能力.对于数学习题课的教学,我认为应该做好以下几方面的工作: 一、精心挑选例题: 1.例题选择要有针对性,即要针对教学目标、针对知识点、针对学生的学习现状。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如果没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系.例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难.所以缺少目标的习题课不仅有盲目性,还会降低教学效率,因此要有明确的教学目

标. 2.例题选择要注意可行性,即应在学生“最近发展区”内进行选择,不宜过易也不宜过难,要把握好“度”。要注意题型的划分,习题类型一般有基础知识型、基本方法型、综合提高型、创新应用型等,在难度上要有低、中、高三级题型,这三级之间还应插入级与级之间的“缓冲”习题,形成“小坡度、密台阶”习题,这样安排有利于学生在“发现区”内解题,利于学生“步步登高”,利于学生树立解题的必胜信心.我们坚决反对把难题放在前面,坚决反对把整套习题安排得太难,要避免打击学生做题的积极性。适当安排综合提高型和创新应用型习题,有利于程度较好的学生的学习和提高.习题的安排,既要体现知识与方法,也要体现能力培养与积极性调动. 3.例题选择要有研究性,典型性,要克服贪多、贪全,既要注意到对知识点的覆盖面,又要能通过训练让学生掌握规律,达到“以一当十”的目的。选择例题要精,要有丰富内涵,既要注重结果,更要注重质量,以期“一题多解,达到熟悉;多解归一,挖掘共性;多题归一,归纳规律” 。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效.例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性,分析例题前可适当回顾知识要点及解题的基本方

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

工程应用数学D模块简介

《工程应用数学D》模块简介 Engineering Applied Mathematics D 模块代码:M071300 学时/学分:48/3 模块名称:工程应用数学D 模块类别:必修 先修模块:工程应用数学A、工程应用数学B 模块目的: 通过教学使学生能够具有运用概率统计的思想和方法,进行分析和解决与专业相关的不确定问题的能力,较强的分析问题的能力和一定的数学建模能力。 主要内容: (1)概率论:随机事件的概念及运算,概率的定义与性质,随机变量(一维与多维)及其分布,数字特征,大数定理和中心极限定理。 (2)数理统计:统计量及其分布,参数估计,假设检验等。 教材和重要参考书: [1] 盛骤,谢式千,潘承毅. 概率论与数理统计. 浙江大学第四版. 高等教育 出版社.2008.6. [2] 孙清华,赵德修. 新编概率论与数理统计题解. 第一版. 华中科技大学出版 社.2001.1. [3]夏宁茂,新编概率论与数理统计,华东理工大学出版社,2005年11月 [4] 茆诗松等,概率论与数理统计教程. 高等教育出版社.2004.07 [5] 茆诗松等,概率论与数理统计习题与解答. 高等教育出版社.2005.07 考核方式: 考核成绩(100%)=课程结束笔试 (40%)+笔记(10%)+过程测试(50%);N=3(2次过程测试+1次模块总结),其中过程测试采用理论测试,测试题目类型为综合题型。 授课手段和教学方法: 讲授法、案例讨论法、实验法、练习法、探究法、基于问题学习法、互动法、自助法等。 课程(模块)负责人:丁芳清 授课教师:胡雁玲、丁芳清、刘寿春、张霞、程玲华、金菊、江立辉、王贵霞、李月、闫桂芳、吴文静、王玉等

中南大学高等数学下册试题全解

中南大学2002级高等数学下册 一、填空题(4*6) 1、已知=-=+),(,),(2 2y x f y x x y y x f 则()。 2、设=???=y x z x y arctg z 2,则()。 3、设D 是圆形闭区域:)0(2222b a b y x a <<≤+≤,则=+??σd y x D 22()。 4、设L 为圆周122=+y x 上从点),(到经01-)1,0()0,1(B E A 的曲线段,则=?dy e L y 2 ()。 5、幂级数∑∞ =-1)5(n n n x 的收敛区间为()。 6、微分方程06'''=-+y y y 的通解为()。 二、解下列各题(7*6) 1、求)()()cos(1lim 2222220 0y x tg y x y x y x +++-→→。 2、设y x e z 23+=,而dt dz t y t x 求,,cos 2==。 3、设),(2 2 y x xy f z =,f 具有二阶连续偏导数,求dt dz 。 4、计算}10,10|),{(,||2≤≤≤≤=-??y x y x D d x y D 其中σ。 5、计算?++-L y x xdy ydx 22,L 为1||||=+y x 所围成的边界,L 的方向为逆时针方向。 6、求微分方程2''')(12y yy +=满足1)0()0('==y y 的特解。 三、(10分) 求内接于半径为a 的球且有最大体积的长方体。 四、(10分) 计算??∑ ++zdxdy dydz z x )2(,其中∑为曲面)10(22≤≤+=z y x z ,其法向量与z 、z 轴正向的夹角为锐角。 五、(10分)

高中数学课堂教学例题辨析

高中数学课堂教学例题辨析 发表时间:2012-04-27T08:44:40.327Z 来源:《少年智力开发报》2012年第27期供稿作者:李贵真[导读] 数学例题是为解释数学概念,原理和命题的本质而创设的,对数学知识的产生、生成、发展其先导性的作用作者:李贵真地址:陕西省咸阳武功县五七零二完全中学数学例题是为解释数学概念,原理和命题的本质而创设的,对数学知识的产生、生成、发展其先导性的作用,有助于学生掌握、理解深化对一些数学事实、数学理论的本质认识。数学例题是课程教学的重要组成部分,是教师上好课的关键。 我认为例题的选择和作用的认识是至关重要的。但是对例题的教学,很多老师认为例题都大致相同,不值得花费时间在其他参考书上找来的例题,或是概括性强的就可以。事实上,这正是教师对课程、教材研究不深入的表现。只要教师认真钻研教材,深刻理解例题的用意,充分挖掘例题的价值,结合学生的实际情况和教学的实际需要,进行适当的引申和拓展,就可以满足不同层次教学的要求。下面是我对例题选择与作用的一点意见。 一注意例题的选择 1.要有针对性:即要针对教学目标、针对知识点、针对学生的学习现状。例题的选择更是力求与生活实际接近,许多情景甚至完全可以通过实际活动来表现。在高中数学教学中,搞好例题教学,特别是搞好课本例题的多种形式教学,不仅能加深基础知识的理解和掌握,更重要的是在开发学生智力、培养和提高学生能力等方面,能发挥其独特的功效。 2.要有可行性:即应在学生“最近发展区”内进行选择,不宜过易也不宜过难,要把握好“度”。选择的例题可分步设问,由浅入深,由易到难,使学生掌握新东西,提高解题能力。 例题的配备要有阶梯性.要注意题型的划分,习题类型一般有基础知识型、基本方法型、综合提高型、创新应用型等,在难度上要有低、中、高三级题型,这三级之间还应插入级与级之间的“缓冲”习题,形成“小坡度、密台阶”习题,这样安排有利于学生在“发现区”内解题,利于学生“步步登高”,利于学生树立解题的必胜信心.我们坚决反对把难题放在前面,坚决反对把整套习题安排得太难,要避免打击学生做题的积极性。适当安排综合提高型和创新应用型习题,有利于程度较好的学生的学习和提高.习题的安排,既要体现知识与方法,也要体现能力培养与积极性调动. 3.要有典型性:例题的安排要有非常强的示范性.首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强示范性,再通过适当的变式引申、变式训练,达到夯实基础的效果。例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性,分析例题前可适当回顾知识要点及解题的基本方法,以便例题的学习更自然、更轻松.选题要克服贪多、贪全,既要注意到对知识点的覆盖面,又要能通过训练让学生掌握规律,达到“以一当十”的目的。 二、正确认识例题的作用 1.例题是解题规范参照的最佳样本: 解题是深化知识、发展智力、提高数学能力的重要手段。规范的解题能够养成良好的学习习惯,提高思维水平。语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。因此,语言叙述必须规范。规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云。在高中数学的学习中,有些题目的解答过程是有严格的规范和要求的,比如函数单调性的证明,立体几何证明等等。 教师可以通过让学生对照课本上该例题的解题过程来“回扣”函数单调性的定义,并强调凡是证明函数的单调性,必须严格按照这个解题规范来解答。通过这个例题,可以让学生明白,用定义解题,回扣课本,才是体现数学基础知识掌握好坏的一个重要方面。 2.例题是将设问引申的最理想起点: 例题的最大特点是针对性强,基础性强,但大多数例题是一题一问,给学生的思维空间较小。所以在部分例题解答后面安排“思考”这个环节,对例题进行了一些挖掘,但大多数例题仍缺乏纵向和横向的引申。为了培养思维的深刻性和广阔性,激发学生的学习积极性,结合教学的实际情况,适当地对课本例题的设问进行引申是非常必要的。 以上例题的解决过程并不困难,大多数学生很快就能得出答案。但若在教学过程中就题讲题,不再引申,就会丧失拓展学生创新思维的大好时机,很难激发学生的学习兴趣。 3.例题是一题多解的最佳展示台: 有些例题是一题一解,目标明确,且解法的基础性强,符合大多数学生的认知要求。但这样做不利于发散性思维的培养,不利于求异思维和创新能力的培养,同样也不利于知识的融会贯通和综合解题能力的提高。一题多解的思想具有对所学知识加以融会贯通的作用,不仅体现了解题能力的强弱,更重要的是其具有开放式思维特点,是一种培养创新能力的重要思维方法。因此,一题多解应当成为教师和学生掌握数学知识和探索数学思维规律的重要手段。 老师可以在教学中介绍除书本解法外的其他解法。这样做,使学生既加深了对各部分知识的理解,又找到了各部分知识之间的联系,积累了研究问题的经验,提高了解决问题的能力。 在教学中,教师应积极地引导学生从各种途径,用多种方法思考问题,培养学生积极探索的能力与意识。这样,即可暴露学生解题的思维过程,增加教学透明度,又能拓宽学生的解题思路,发展学生的思维能力,使学生熟练掌握知识的内在联系。 4例题是变式教学的最丰富源泉变式教学,就是引导学生在解答某些数学题之后,进行观察、联想、判断、猜想,对数学题的内容、形式、条件和结论作进一步的探索,从不同的侧面深入思考数学题的各种变化,并对这些“变式题”进行解答,从而培养学生灵活、深刻、广阔、发散的数学思维能力。在数学教学中,若将课本例题充分挖掘,注重对例题进行变式教学,不但可以抓好基础知识点,还可以激发学生的探求欲望,提高创新能力;不仅能让教师对教材的研究更加深入,对教学目标和要求的把握更加准确,同时也让学生的数学思维能力得到进一步提高,并逐渐体会到数学学习的乐趣。

6.16工程应用数学B过程试题一答案解析

完美 WORD 格式 专业 知识 分享 合肥学院2011至2012学年第 2 学期 工程应用数学B 课程过程考试卷一答案 系 09 级 专业 学号 姓名 1.若点(,)x y 在过000(,)M x y 的任意一条直线L 上变动时,函数(,)z f x y =均在0M 处取得极大值,则 (A ) A 、0M 是该函数的极大值点 B 、0M 是该函数的最大值点 C 、0M 不是该函数的极大值点 D 、0M 不一定是该函数的极大值点 2、曲线2220 3 y z x z ?+-=?=?在xoy 面上的投影曲线的方程是( B )。 A 、2200y x z ?-=?=? B 、2290y x z ?=-?=?; C 、2 29y x =- D 、2293y x z ?=-?=? 3、方程22 1 294y z x ?-=???=? 表示( A )。 A 、双曲柱面与平面4x =的交线 B 、双曲柱面 C 、 双叶双曲面 D 、单叶双曲面 4、“'00(,)x f x y 与 '00(,)y f x y 均存在是函数(,)f x y 在00(,)x y 处连续的( D )条件。 A 、充分非必要 B 、必要非充分 C 、充分且必要 D 、非充分且非必要 5、(,)lim x y →( B )。 A 、不存在 B 、3 C 、6 D 、∞ 6、设函数(,)f x y 在00(,)x y 附近有定义,且''(0,0)3,(0,0)1x y f f ==,则( C )。 A 、(0,0)3dz dx dy =+ B 、曲面(,)z f x y =在点(0,0,(0,0))f 的法向量为{3,1,1} C 、曲线(,)0z f x y y =??=? 在点(0,0,(0,0))f 的切向量为{1,0,3}

高等数学数试题(含解答)

共 5 页 第 1 页 08-09-3 高数A (期中)试卷参考答案 09.4.17 一.填空题(本题共5小题,每小题4分,满分20分) 1.交换积分次序 20242 42 2 d (,)d d (,)d d (,)d y x x y f x y x y f x y x x f x y y +---+=? ? ??? ; 2. 设e 10z -=,则Re ln 2z =,Im 2,0,1,2,3 z k k π π=- +=±± ; 3.设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分 21 d d d 1212f xyf z x y xzf xzf '-= +'' ++; 4.设C 为由x y π+=与x 轴,y 轴围成的三角形的边界,e d x y C s +=? e 2)2π+- 5.设(,)f x y 连续,{ }2 (,)01,0D x y x y x =≤≤≤≤,且(,)(,)d d D f x y x y f x y x y =+?? 则 1 (,)d d 8 D f x y x y = ?? . 二.单项选择题(本题共4小题,每小题4分,满分16分) 6.函数22 ,(,)(0,0)(,)0,(,)(0,0)xy x y x y f x y x y ?≠?+=??=? 在点(0,0)处 [ C ] (A)连续且偏导数存在 (B) 连续但偏导数不存在 (C)不连续但偏导数存在 (D) 不连续且偏导数不存在 7设{ } 22 (,)1D x y x y =+≤,1D 为D 在第一象限部分,则下列各式中不成立的是[ B ] (A ) 1 d 4d D D x y x y = (B )1 d d 4d d D D xy x y xy x y =???? (C ) 32()d d 0D x x y x y +=?? (D )2332 d d d d D D x y x y x y x y =???? 8设()[0,)f t C ∈+∞,2222 222()()d x y z R I R f x y z v ++≤= ++??? ,则当0R +→时,()I R [ D ] (A )是R 的一阶无穷小 (B )是R 的二阶无穷小

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

相关文档
最新文档