系统的能控性、能观测性、稳定性分析

合集下载

计算机控制技术-13离散系统的能控(观测)性及稳定性

计算机控制技术-13离散系统的能控(观测)性及稳定性

2019/3/4
7
[解]: 首先构造能控判别阵:
1 , H 0 1 1 0 0 1 1 0 2 GH 0 2 2 1 1 0 1 1
2019/3/4
5
Gn 0
n 此时,对任意的x(0),均有 G x(0) 0 ,不管Qc是否满秩,均 能找到U=0。所以,当G是奇异时, Qc满秩是判断能控性的充 分条件,而不是必要条件
结论1:连续时间系统可达性和可控性等价,而离散时间系统则 不完全相同。离散时间系统,如果矩阵G非奇异,则系 统的能控性和能达性等价。如果G奇异,则不可达的系 统,也可能可控。所以:可达系统一定可控,可控系统 不一定可达。
一地确定出系统的任意初始状态x0 ,则称x0为能观测状态。如果
系统的所有状态都是能观测的,则称系统是状态能观测的。 2、能观测性判别准则一(能观测性判别阵法) 定理:对于线性离散定常系统,其状态完全能观测的充要条件 是其能观测性判别矩阵:
C CG C T G T C T (G T ) n1 C T Qo n 1 CG
k k 1 i 0
x(k 1) Gx(k ) Hu(k )
k i 1 解为 x(k ) G x(0) G Hu(i )
所以 x(n) G x(0) G n i 1 Hu(i )
n i 0
n 1
证明:对能达性,有 x(0) 0 所以 x( n) G n i 1 Hu( i ) G n1 Hu(0) GHu( n 2) Hu( n 1)
G( z ) C ( zI G)1 H
2019/3/4 10

系统的能控性能观测性稳定性分析报告

系统的能控性能观测性稳定性分析报告

实 验 报 告课程 线性系统理论基础 实验日期 年 月 日专业班级 学号 同组人实验名称 系统的能控性、能观测性、稳定性分析及实现 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念。

掌握如何使用MATLAB 进行以下分析和实现。

1、系统的能观测性、能控性分析;2、系统的稳定性分析;3、系统的最小实现。

二、实验容(1)能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ;(b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。

(2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:)20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性(b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为)22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。

(c )Bode 图法判断系统稳定性已知两个单位负反馈系统的开环传递函数分别为ss s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。

(d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。

线性离散系统的分析

线性离散系统的分析

§10-4 线性离散系统的分析前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。

本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。

一、稳定性稳定性是动力学系统的一个十分重要的性质。

本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。

有两大类的稳定性分析方法。

一类是分析离散系统极点在z 平面内的位置。

一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。

当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。

但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。

另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。

本节只介绍代数判据法。

Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。

如果已知一个系统的特征多项式()n n na za z a z A +++=- 110 (10.87)Jury 把它的系数排列成如下的算表:11110a a a a a a a a a a nn n nn n =--α―――――――――――――――――――10111101211111110-------------=n n n n n n n n n n n n n a a aaaa a a α――――――――――――――――――――――――――――――――――――――10111110a a a a 10111a a =α―――――――――――――――――――0a 其中kk i k kik k k i k i a a a a a a 01=-=--α表中第一行和第二行分别是(10.87)中的系数按正序和倒序排列的。

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版
x Ax Bu
如果线性定常系统: y Cx 是状态不完全能控的, 它的能控性判别矩阵的秩
rankM n1 n
则存在非奇异变换:x Rcxˆ
将状态空间描述变换为:
xˆ y
Aˆ xˆ Cˆ xˆ
Bˆ u
n1 n n1
其中:

xˆ1

2
n1
n n1

R c1AR c
Aˆ 11 0
3.6.1 线性系统的对偶关系
线性系统1、2如下:
1:yx 11
A1x1 C1x1
B1u1
2:
x 2 y 2
A2x2 C2x2
B2u2
如果满足如下关系
A2 A1T , B2 C1T , C2 B1T
则称两系统是互为对偶的.
u1(t) B
x1(t)
x1(t)
++

y1(t) C
A
y2(t) BT
0
A 0 1 0 , b 0, c 1 1 1
1 4 3
1
解: 能控性矩阵
0 1 4
M b Ab A2b 0 0
0
1 3 8
rankM 2 n1 dim A n 3 不能控
构造变换矩阵
0 1 0 Rc 0 0 1
1 3 0
✓与前2个列向量 线性无关; ✓尽可能简单
结构分解
u
co
y
co
依据能控能观 性,将系统分解
co
为四个子系统
co
x Ax Bu
y Cx Du
特殊的线性变换
x xTco xTco xTco xTco
分解步骤:
1、将系统分解成能控与不能控子系统;

实验三系统可控性与可观测性分析(word文档)

实验三系统可控性与可观测性分析(word文档)

实验三系统的可控性与可察看性解析一、实验目的1.牢固控制系统能控、能观等知识;控制系统的最小实现和控制系统的能控、能察看标准型等基础知识;2.掌握使用 MATLAB 判断系统可控性与可察看性的方法;3.掌握使用 MATLAB 控制系统的标准型实现;4.经过 Matlab 编程,上机调试,掌握和考据所学控制系统的基本理论。

二、实验原理与步骤( 一) 、可控性和可察看性的定义1.可控性的定义若对状态空间的任一非零状态 x(t0),都存在一个有限时辰 t1>t0 和一个同意控制 u[t0, t1],能在 t1 时辰使状态 x(t0) 转移到零,则称状态方程X AX BU在 t0 时辰是可控的。

反之称为在t0 时辰不可以控。

2.可察看性的定义定义:若对状态空间中任一非零初态x(t0) ,存在一个有限时辰t1>t0,使得由输入u[t0,t1] 和输出y[t0,t1] 可以唯一确定初始状态x(t0),则称动向方程X AX BUY CX DU在 t0 时辰是可察看的。

反之称为是不可以察看的。

( 二) 、可控性和可察看性判据1、可控性构造一个相似变换矩阵T c( B, AB ,, A n 1B)公式中,n是系统的阶次;矩阵Tc 称为系统的可控性变换矩阵。

矩阵Tc 可以由控制系统工具箱中供应的ctrb ()函数来产生。

其调用格式为T c ctrb ( A, B)公式中,Tc的秩,即rank (Tc)称为系统的可控性指数,它的值表示系统中可控制的状态的数目。

若是 rank (T c )n ,则系统是完好可控制的。

【例题 1】考虑系统的状态方程模型为0 1 0 0 00 0 1 0x 1x0 0 1 u0 00 0 5 0 2解析系统的可控性。

A=[0,1,0,0;0,0,-1,0;0,0,0,1;0,0,5,0] B=[0;1;0;-2]Tc=ctrb(A,B)rank(Tc)结果以下:>> rank(Tc)ans =4可见,系统完好能控。

(整理)控制系统的能控性和能观测性

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。

如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。

对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。

控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。

如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。

能控性的分析可以帮助我们选择合适的控制策略和控制器设计。

当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。

2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。

一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。

对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。

观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。

如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。

能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。

当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。

3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。

对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。

零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。

有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。

无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。

线性系统理论(第四章)线性系统的能控性和能观测性

线性系统理论(第四章)线性系统的能控性和能观测性

An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!

能控性和能观测性分析

能控性和能观测性分析

.1.2 能控性判据 按定义,要求寻找到一个具体的控制律。 由 可得 矩阵指数函数 可以表示成有限项的和 记 则转化成线性方程组的求解问题
例检验由以下状态方程描述的系统的能控性: 解 能控性检验矩阵 不是满秩的,故系统不能控。
例3.1.2 倒立摆系统线性化状态空间模型的系数矩阵是 能控性检验矩阵 故系统是能控的。
3.3 能控能观性的对偶原理
由于 定理3.3.1 能控的充分必要条件是 能观 能观标准型(能控标准型的转置)是能观的
对于互为对偶的系统 系统(I)能控(能观)的充分必要条件是系统(II)能观(能控)。 优点:能观(能控)性问题可以转化为能控(能观)性问题来处理。 例 能观与能控标准型互为对偶系统(特征多项式同)
2。若 非奇异,则可以构造出将非零初始状态转移到零状态的控制律
3。若系统能控,由(1),可在任意短时间内将非零状态转移到零状态 称为能控格拉姆矩阵
定理的说明
.1.3 能控性的性质 能控性基于状态方程系数矩阵A、B定义。 定理3.1.3 等价的状态空间模型具有相同的能控性。 由T是非奇异矩阵可得结论。
在 中的零极相消 考虑 没有零极相消的充分必要条件是 ,能控!
在 中无零极相消 考虑 类似可得 是能观的充分必要条件。 例 判别系统的能控性 显然系统不能控!
例3.1.8 判断以下系统的状态和输出能控性 系统的状态能控性矩阵 由于 ,故系统不是状态完全能控的。 输出能控性矩阵 显然它是行满秩的,故输出能控。 结论:系统输出能控,但不是状态能控的。
3.2 系统的能观性
所考虑的系统 状态变量未必都可以从外部观测到! 1。检测手段的限制; 2。一些状态变量不是物理量。 问题:如何(可否)通过输入输出信息来了解系统内部的状态?

线性系统理论第4章 线性系统的能控性和能观测性

线性系统理论第4章  线性系统的能控性和能观测性
解??33112201112?????????????????kckcrankqhgghhq系统是能控的2u1011u1210u3214122223xhugx??????????????????????????????????????????????????582145令03x?????????????11?????????????????????????????????????????????????852u1u0u41222u1u0u101121321若令02x????????????????????????????????0621u0u101121无解
满秩,即rankQ o=n
结论5
n 维连续时间线性时不变系统完全能观测的充分必要条件为:
SI A rank n S C C

i I A 为系统特征值 rank n , 1 , 2 ,n C
Wc [0, t1 ] e At BBe A t dt
T

t1
0
为非奇异。
结论3:n 维连续时间线性时变系统 x A(t ) x B(t )u x(t 0 ) x0
设A(t),B(t)对t为n-1阶连续可微,定义
t, t0 J
M 0 (t ) B (t ) d M 0 (t ) dt d M 2 (t ) A(t ) M 1 (t ) M 1 (t ) dt d M n 1 (t ) A(t ) M n 2 (t ) M n 2 (t ) dt M 1 (t ) A(t ) M 0 (t )
6/8,9/45
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R1 R2 R3 R4 1 R2 R4 LC R1 R2 R3 R4

现代控制理论发展史

现代控制理论发展史

现代控制理论综述一、前言现代控制理论是以状态变量概念为基础,利用现代数学方法和计算机来分析、综合复杂控制系统的新理论,适用于多输入、多输出,时变的或非线性系统。

较之经典控制理论,现代控制理论的研究对象要广泛得多,原则上讲,它既可以是单变量的、线性的、定常的、连续的,也可以是多变量的、非线性的、时变的、离散的。

现代控制理论本质上是时域法,是建立在状态空间基础上,它不用传递函数,而是以状态向量方程作为基本工具,从而大大简化了数学表达方法。

现代控制理论从理论上解决了系统的能控性、能观测性、稳定性以及许多复杂系统的控制问题。

二、发展历史现代控制论的形成主要标志是贝尔曼的动态规划法、庞特里亚金的极大值原理和卡尔曼的滤波理论。

现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下基于经典控制理论的基础上发展起来的。

由于航空航天技术的推动和计算机技术飞速发展,特别是空间技术的发展,迫切要求解决更复杂的多变量系统、非线性系统的最优控制问题(例如火箭和宇航器的导航、跟踪和着陆过程中的高精度、低消耗控制,到达目标的控制时间最小,把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题等)。

这类控制问题十分复杂,而采用经典控制理论难以解决。

科学技术的发展不仅需要迅速地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。

现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台,促使控制理论由经典控制理论向现代控制理论转变。

因此,控制理论在1960年前后有了重大的突破和创新。

1892年,俄国数学家李雅普诺夫创立的稳定性理论被引入到控制中。

1954年,美国学者贝尔曼创立了动态规划,并在1956年应用于控制过程,广泛用于各类最优控制问题。

1956年,前苏联科学家庞特里亚金提出极大值原理,解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。

线性系统理论4能控性和能观性

线性系统理论4能控性和能观性

如果存在某个时刻 t1 t0,使得rankQ O (t1 ) n
t0 为不能观测的。
定义 4.1.6 对于线性时变系统
x A(t)x
, x(t0 ) x0 , t0 , t J
y C(t)x
如果状态空间中所有状态都是时刻 t0(t0 J )
的能观测状态,则称系统在时刻 t0 是完全能
观测的。如果对于任何 t0 [T1,T2] 系统均是在
t0 时刻为能观测的,则称系统在 [T1,T2 ]
在 t0 , t1 上行线性独立,即对任意 n
维非零向量 z 都有
zT (t1 , )B( ) 0, t0 t1
4.2.3 基于系统参数矩阵的判据
定理 4.2.3 假设系统
x A(t)x B(t)u, t J
中的 A(t) 和 B(t) 的每个元分别是 n 2和
n 1 一次连续可微函数,记 B1(t) B(t)
那么它能控的充分必要条件是:
det b Ab An1b 0
4.3.3 PBH判据
定理4.3.2 定常线性系统
x Ax Bu, x(t0 ) x0 , t t0
能控的充分必要条件是,对每个 (A)
都有 rank A In B n 其中, ( A)
表示 A 的特征值集合。
推论 4.3.3 定常线性系统
2
dt
x0T T
(t1 , t0 )Wc1(t1 , t0 )(t1 , t0
)x0
4.2.2 基于状态转移矩阵的判据
定理 4.2.2 假设 A(t) 和 B(t) 都是 t
的连续函数矩阵,则系统
x A(t)x B(t)u, t J
在t0 时刻能控的充分必要条件是存在某

现代控制工程-第5章能控性和能观性分析

现代控制工程-第5章能控性和能观性分析

传递函数判据
如果系统的传递函数的极点和零 点都位于复平面的左半部分,则 该系统是能控的。
能控性的应用
系统设计和ห้องสมุดไป่ตู้化
在系统设计和优化过程中,能控性分析可以帮助确定系统的可控性 和可观性,从而更好地选择和设计控制器和观测器。
控制性能评估
通过能控性分析,可以对系统的控制性能进行评估和比较,从而选 择更优的控制方案。
现代控制工程-第5章能控性 和能观性分析
目录
• 能控性分析 • 能观性分析 • 能控性和能观性的关系 • 系统设计中的能控性和能观性 • 现代控制工程其他章节概述
01
能控性分析
定义与概念
能控性定义
对于一个给定的线性时不变系统,如果存在一个状态反馈控制器,使得系统的任何初始状态都能通过 该控制器在有限的时间内被控制到任意指定的状态,则称该系统是能控的。
快速性
系统应具有快速的响应能力,以便在短时间 内达到设定值或消除外部扰动。
准确性
系统应具有高精度的输出,以满足各种控制 要求和保证产品质量。
可靠性
系统应具有高的可靠性和稳定性,以确保长 期稳定运行和减少故障率。
系统设计中的能控性和能观性考虑
能控性考虑
在系统设计中,需要考虑系统的能控性,即 能否通过输入信号控制系统的输出状态。对 于不能控制的系统,需要采取措施进行改进 或重新设计。
描述
分解性是控制系统分析中的一个重要性质。在大型复杂系统中,如果系统具有分解性, 那么我们可以将系统分解为若干个子系统,分别对子系统进行能控性和能观性分析,从
而简化系统分析和设计的难度。
04
系统设计中的能控性和能观 性
系统设计的基本原则
稳定性

现代控制理论实验报告三系统的能控性、能观测性分析

现代控制理论实验报告三系统的能控性、能观测性分析
end
nc =
3
system is completely state controllable
system is completely state observe
(3)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uc=ctrb(A,B);
p1=[0,0,1]*inv(Uc);
else
disp('system is not completely state controllable')
end
if nc==n2
disp('system is completely state observe')
else
disp('system is not completelystate observe')
3、构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。
六、数据处理
题3.1已知系数阵A和输入阵B分别如下,判断系统的状态能控性

解:
A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];B=[0;1;1];
Uc=ctrb(A,B)
n=det(Uc);%de计算矩阵对应的行列式的值,abs为求n的绝对值
Co=C*T
T =
-0.5000 0 -1.0000
0.5000 0 2.0000
1.0000 1.0000 0
Ao =
0 0 -10
1 0 12
0 1 1
Co =
0 0 1
七、分析讨论
1、掌握了能控性和能观测性的概念。学会了用MATLAB判断能控性和能观测性。

(第七、八周)第四章线性控制系统的能控性与能观性

(第七、八周)第四章线性控制系统的能控性与能观性

| Qc
|
b1 b2
b11 b2 b21
b22
0
即:b2 0
推广到n阶系统就有定理3:
18
例3-3 考察如下系统的状态能控性:
(1) x1 1 1 0 x1 0
x2
0
1
0
x2
4
u
完全能控
x3 0 0 2 x3 3
(2)
x1 1
x2
0
x3 0
1 1 0
取 Q AT P PA Q为实对称矩阵
线性定常连续系统渐近稳定判定定理:
线性定常系统x Ax 在平衡点xe 0大范
围渐近稳定的充要条件是对任意给定的正定对 称矩阵Q,存在正定对称矩阵P,满足矩阵方程:
AT P PA Q
x 0 例 3 4
x
0 1
1 1
x
e
解:取 Q I, AT P PA I P是实对称矩阵(P12 P21)
20
输出能控性判据:系统输出能控的充要条件是输出能控 性判别矩阵:
S [ CB CAB CA2B CAn1B D ]
的秩为m。其中m为输出维数。
说明:状态能控性和输出能控性是两个完全不同的 概念,没有必然的联系。某系统状态不完全能 控,输出有可能完全能控。
21
[例]:判断下列系统的状态能控性与输出能控性
4
课前回顾
二、状态转移矩阵 状态转移矩阵的计算方法
▪ 直接求解法:根据定义 ▪ 拉氏变换求解: ▪ 标准型法求解:对角线标准型和约当标准型-非奇异变换
状态转移矩阵的性质
5
课前回顾
三、 非齐次状态方程的求解
强迫运动:
u
x
( A, B)

线性系统理论基础

线性系统理论基础

《线性系统理论基础》实验指导书嵇启春西安建筑科技大学信息与控制工程学院第一章课程简介,实验内容及学时安排一、课程简介线性系统理论基础是自动化类专业的主要专业理论课,是现代控制理论的基础。

它将使学生们系统地学习并掌握现代控制理论的基本分析和设计方法,为后续专业课程的学习打下良好的基础。

教学目标:熟练掌握现代控制基本理论,能运用所学知识进行系统建模、性能分析和综合设计。

《线性系统理论基础实验》是《线性系统理论基础》课程的重要教学环节,是自动化类专业学生必须掌握的教学内容。

其目的主要是使学生学习和掌握控制系统基本的分析、设计方法,加深理解线性系统理论的基本知识和原理,增强学生分析问题和解决问题的能力,培养学生的创新意识、创新精神和创新能力,为学生今后从事该领域的科学研究和技术开发工作打下扎实的基础。

二、实验内容及学时安排本课程的实践环节由必作和选作两类实验构成,对能力较强的学生指导他们课外进行选作实验。

目前实验主要基于MATLAB仿真软件进行仿真实验。

必作实验为三个,每个实验2学时。

要求学生一人一机,独立完成必作的实验,由此使学生得到较全面的基础训练。

通过该课程的实验训练,应达到下列要求:1. 使学生了解MATLAB仿真软件的使用方法,重点掌握MATLAB控制工具箱的使用方法;2. 通过实验加强对所学理论知识的理解和应用;3. 实验前预习,实验后按要求撰写实验报告。

第二章 《线性系统理论基础》课程实验实验一 MATLAB 控制工具箱的应用及线性系统的运动分析一、实验目的1、学习掌握MATLAB 控制工具箱中的基本命令的操作方法;2、掌握线性系统的运动分析方法。

二、实验原理、内容及步骤1、学习掌握MATLAB 控制工具箱中基本命令的操作设系统的模型如式(1-1)所示:p m n R y R u R x DuCx y Bu Ax x∈∈∈⎩⎨⎧+=+= (1-1)其中A 为n ×n 维系数矩阵;B 为n ×m 维输入矩阵;C 为p ×n 维输出矩阵;D 为p ×m 维传递矩阵,一般情况下为0。

现代控制理论-4-线性系统的能控性和能观测性-第7讲

现代控制理论-4-线性系统的能控性和能观测性-第7讲

能控性的定义
能控性是指对于一个线性系统,如果 存在一个控制输入,使得系统状态能 够在有限的时间内从任意初始状态转 移到任意目标状态,则称该系统为能 控的。
能控性的判断依据是系统的能控性矩 阵,如果该矩阵满秩,则系统能控。
能观测性的定义
能观测性是指对于一个线性系统,如果存在一个观测器,能够通过系统的输出测量并估计出系统的所有状态,则称该系统为 能观测的。
传递函数判据
对于线性时不变系统,如果传递 函数的零点和极点个数满足一定 条件,则系统能观测;否则系统 不能观测。
03
能控性和能观测性的应用
在控制系统设计中的应用
系统性能分析
通过分析系统的能控性和能观测性,可以评估系统的稳定 性和动态性能,从而优化系统设计。
控制器设计
在控制器设计中,需要考虑系统的能控性和能观测性,以 确保控制器能够有效地控制系统的状态并观测系统的状态。
初始状态和目标状态
系统初始和目标状态的定义,以及它们对最优控 制策略的影响。
最优控制问题的求解方法
动态规划
将最优控制问题分解为一系列子问题, 通过求解子问题的最优解逐步逼近原问
题的最优解。
极大值原理
通过求解极值条件来找到最优控制输 入,适用于具有特定性能指标的最优
控制问题。
线性二次调节器
通过最小化状态和控制输入的二次范 数来求解最优控制问题,适用于线性 二次最优控制问题。
现代控制理论-4-线性系统 的能控性和能观测性-第7讲
目录
• 线性系统的能控性和能观测性的 定义
• 能控性和能观测性的判定方法 • 能控性和能观测性的应用 • 线性系统的状态反馈和状态观测
器设计
目录
• 线性系统的最优控制问题 • 现代控制理论的发展趋势和前沿

现代控制理论线性控制系统的能控与能观性

现代控制理论线性控制系统的能控与能观性

判断线性控制系统稳定性的方法有多 种,如劳斯判据、赫尔维茨判据等。
03
能控性与能观性概念
能控性概念
能控性是指对于一个线性控制系统,如果存在一个控 制输入,使得状态变量从任意初始状态能够被驱动到
任意目标状态,则称该系统是能控的。
能控性的判断依据是系统的能控性矩阵,如果该矩阵 非奇异,则系统是能控的,否则系统不能控。
线性控制系统是控制系统的一种重要 类型,其能控性和能观性是评价系统 性能的重要指标。
研究意义
能控性和能观性是现代控制理论中的基本概念,对线性控制系统的分析和设计具有重要意义。
研究线性控制系统的能控性和能观性有助于深入了解系统的动态行为,为优化控制策略和控制系统的 稳定性提供理论支持。
02
线性控制系统基础
04
线性控制系统的能控性分析
能控性的判断方法
矩阵判据
通过判断线性系统的状态矩阵是否满足能控性矩阵的 条件,从而判断系统的能控性。
传递函数判据
根据线性系统的传递函数,通过分析其极点和零点, 判断系统的能控性。
状态方程判据
通过分析线性系统的状态方程,判断其是否具有能控 性。
能控性的改善方法
增加控制输入
能观性分析
能观性分析在智能交通系统中同样重要,它 有助于确定交通系统的状态是否能被其传感 器完全监测。这涉及到对传感器精度、道路 条件以及传感器布局等因素的考虑。
07
结论与展望
研究结论
1
线性控制系统能控性与能观性是现代控制理论中 的重要概念,对于系统的分析和设计具有重要意 义。
2
通过研究线性控制系统的能控性和能观性,可以 深入了解系统的动态特性和行为,为控制系统设 计和优化提供理论支持。

控性线性定常系统的能观测性对偶性原理系统的能控标准形

控性线性定常系统的能观测性对偶性原理系统的能控标准形
rankQ =rank[ CB CAB … CAn -1B D] = m
例: 设某一系统,其方块图如下图所示,试分析系统 输出能控性和状态能控性。
x1(t) ∫ x1(t)
u(t)
+ y(t)
+
x2(t) ∫ x2(t)
解:描述系统的状态空间表达式为
x (t
)
0 0
0 0
x(t)
1 1u(t)
y(t)
1
1x(t)
rankQc = rank[ B AB] =
1 1
0 0
∴ 状态是不完全能控的。
rankQ = rank[ CB CAB D ] =[ 2 0 0 ] ∴ 输出是完全能控的。
系统的状态能控性与输出能控性是不等价的。
4.3 线性系统的能观测性
一、状态能观测性定义
对任意给定的输入信号u(t),在有限时间tf >t0,能 够根据输出量y(t)在[t0,tf]内的测量值,唯一地确定系 统在时刻t0的初始状态x(t0),则称此系统的状态是能观 测的。
1
~x (t)
2
~x(t
)
B~u(t
)
n
中, B~ 不包含元素全为零的行。
证明:系统经线性非奇异变换后状态能控性不变。
由前章可知,系统(A,B)和(A~ ,B~ )之间做线性
非奇异变换时有:
x P~x A~ P 1 AP B~ P 1B
Q~c B~ A~B~ A~2B~ A~n1B~
若系统的每个状态都能观测,则称系统是状态完全 能观测。
二、 状态能观测性判据
方法一: 直接根据状态空间表达式的A阵和C阵判断
方法二:
转化为约旦标准形 (Aˆ, Bˆ,Cˆ, Dˆ ),再根据 Cˆ 判断
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实 验 报 告课程 线性系统理论基础 实验日期 年 月 日 专业班级 姓名 学号 同组人实验名称 系统的能控性、能观测性、稳定性分析及实现 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念。

掌握如何使用MATLAB 进行以下分析和实现。

1、系统的能观测性、能控性分析;2、系统的稳定性分析;3、系统的最小实现。

二、实验内容(1)能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s as s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。

(2)稳定性(a )代数法稳定性判据已知单位反馈系统的开环传递函数为:)20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性已知一个单位负反馈系统开环传递函数为)22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。

(c )Bode 图法判断系统稳定性已知两个单位负反馈系统的开环传递函数分别为ss s s G s s s s G 457.2)(,457.2)(232231-+=++=用Bode 图法判断系统闭环的稳定性。

(d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。

[]x y u x x 0525,100050250100010-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=三、实验环境 1、计算机120台; 2、MATLAB6.X 软件1套。

四、实验原理(或程序框图)及步骤 1、系统能控性、能观性分析设系统的状态空间表达式如(1-1)所示。

系统的能控性、能观测性分析是多变量系统设计的基础,包括能控性、能观测性的定义和判别。

系统状态能控性定义的核心是:对于线性连续定常系统(1-1),若存在一个分段连续的输入函数u(t),在有限的时间(t 1-t 0)内,能把任一给定的初态x(t 0)转移至预期的终端x(t 1),则称此状态是能控的。

若系统所有的状态都是能控的,则称该系统是状态完全能控的。

能控性判别分为状态能控性判别和输出能控性判别。

状态能控性分为一般判别和直接判别法,后者是针对系统的系数阵A 是对角标准形或约当标准形的系统,状态能控性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能控性分为一般判别是应用最广泛的一种判别法。

输出能控性判别式为:[]p B CA CAB CB Rank RankQ n cy==-1(2-1)状态能控性判别式为:[]nB A AB BRank RankQ n c ==-1(2-2)系统状态能观测性的定义:对于线性连续定常系统(2-1),如果对t 0时刻存在t a ,t 0<t a <∞,根据[t 0,t a ]上的y(t)的测量值,能够唯一地确定系统在t 0时刻的任意初始状态x 0,则称系统在t 0时刻是状态完全能观测的,或简称系统在[t 0,t a ]区间上能观测。

状态能观测性也分为一般判别和直接判别法,后者是针对系统的系数阵A 是对角标准形或约当标准形的系统,状态能观性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能观测性分为一般判别是应用最广泛的一种判别法。

状态能观测性判别式为:[]n CA CA CRank RankQ Tn o ==-1(2-3)系统的传递函数阵和状态空间表达式之间的有(1-2)式所示关系。

已知系统的传递函数阵表述,求其满足(1-2)式所示关系的状态空间表达式,称为实现。

实现的方式不唯一,实现也不唯一。

其中,当状态矩阵A 具有最小阶次的实现称为最小实现,此时实现具有最简形式。

五、程序源代码1.(a) 了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ;gram:求解用状态空间表示的系统的可控或客观Gramian 矩阵 num=[6 -0.6 -0.12];den=[1 -1 0.25 0.25 -0.125]; H=tf(num,den,'Ts',0.1) Lc=gram(ss(H),'c')H = 6 z^2 - 0.6 z - 0.12 ------------------------------------- z^4 - z^3 + 0.25 z^2 + 0.25 z - 0.125Sample time: 0.1 secondsDiscrete-time transfer function.Lc =10.7651 7.8769 3.6759 -0.00007.8769 10.7651 7.8769 1.83793.6759 7.8769 10.7651 3.9385-0.0000 1.8379 3.9385 2.6913Ctrb:计算矩阵可控性A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5] B=[6 9;4 6;4 4;8 4];Tc=ctrb(A,B);rank(Tc)A =-2.2000 -0.7000 1.5000 -1.00000.2000 -6.3000 6.0000 -1.50000.6000 -0.9000 -2.0000 -0.50001.4000 -0.1000 -1.0000 -3.5000ans =3Obsv:计算可观察性矩阵A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5] B=[6 9;4 6;4 4;8 4];C=[1 2 3 4];Qo=obsv(A,C);Ro=rank(Qo)A =-2.2000 -0.7000 1.5000 -1.00000.2000 -6.3000 6.0000 -1.50000.6000 -0.9000 -2.0000 -0.50001.4000 -0.1000 -1.0000 -3.5000 Ro =4Lyap:解lyapunov方程A=[0 0 -6;1 0 -11;0 1 -6];B=[1 2 3;4 5 6;7 8 0];X=lyap(A,B)X =-3.2833 -3.9000 -0.1167-5.5000 -8.6500 -0.40000.2833 -0.0000 -0.0333Ctrbf:对线性系统进行能控性分解A=[0 0 -6;1 0 -11;0 1 -6];B=[3;1;0];C=[0 0 1];[Abar,Bbar,Cbar,T,K]=ctrbf(A,B,C)Abar =-3.0000 0.0000 -0.00009.4868 -3.3000 0.95398.6189 -3.1344 0.3000Bbar =-0.0000-0.00003.1623Cbar =-0.9435 0.3315 0 T =-0.1048 0.3145 -0.9435 -0.2983 0.8950 0.33150.9487 0.3162 0K =1 1 0Obsvf:对线性系统进行能观性分解A=[-2 1;1 -2];B=[1;0];C=[1 -1];[AO,BO,CO,T,K]=obsvf(A,B,C)AO =-1.0000 00.0000 -3.0000BO =0.70710.7071CO =0 1.4142T = 0.7071 0.70710.7071 -0.7071K =1 0Minreal最小实现num=[1 1];den=[1 5 20];sys=tf(num,den)[A B C D]=tf2ss(num,den)sys=ss(A,B,C,D);sysr=minreal(sys)sys =s + 1--------------s^2 + 5 s + 20Continuous-time transfer function.A = -5 -201 0B =1C =1 1D =sysr =a = x1 x2x1 -5 -20x2 1 0b = u1x1 1x2 0c = x1 x2y1 1 1 d = u1 y1 0Continuous-time state-space model.(b )已知连续系统的传递函数模型,182710)(23++++=s s s as s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性; a=-1num=[1,-1];den=[1,10,27,18];[a,b,c,d]=tf2ss(num,den) n=length(a) Qc=ctrb(a,b) nc=rank(Qc)if n==nc,disp('系统可控'), else disp('系统不可控'),end Qo=obsv(a,c) no=rank(Qo)if n==no,disp('系统可观'), else disp('系统不可观'),end a=0num=[1,0];den=[1,10,27,18];[a,b,c,d]=tf2ss(num,den) n=length(a) Qc=ctrb(a,b) nc=rank(Qc)if n==nc,disp('系统可控'), else disp('系统不可控'),end Qo=obsv(a,c) no=rank(Qo)if n==no,disp('系统可观'), else disp('系统不可观'),enda=1num=[1,1];den=[1,10,27,18];[a,b,c,d]=tf2ss(num,den) n=length(a) Qc=ctrb(a,b) nc=rank(Qc)if n==nc,disp('系统可控'), else disp('系统不可控'),end Qo=obsv(a,c) no=rank(Qo)if n==no,disp('系统可观'), else disp('系统不可观'),end矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;a=[6.666 -10.6667 -0.3333;1 0 1;0 1 2];b=[0;1;1]; c=[1 0 2]; d=0;n=length(a) Qc=ctrb(a,b) nc=rank(Qc)if n==nc,disp('系统可控'), else disp('系统不可控'),end Qo=obsv(a,c) no=rank(Qo)if n==no,disp('系统可观'), else disp('系统不可观'),end(d )求系统1827101)(23++++=s s s s s G 的最小实现。

相关文档
最新文档