第9章--飞机飞行参数传感器及检测
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.19
航空检测技术
单风标式
9.20
航空检测技术
双风标式(歼七)
9.21
航空检测技术
特性
实用措施:
1,为使之稳定,一般均加阻尼器 2,为防止结冰,叶片内部应有加温装置 3,有时为增加气动力矩,采用两个叶片 特点
优点:构造简单,体积小,无原理误差
缺点:1)安装位置的影响较大,在高速飞机上要 找到气流平稳的部位也是非常困难;
9.15 迎角信号还用于油门控制系统。
航空检测技术
9.16
航空检测技术
二、迎角传感器 1 、旋转风标式迎角传感器
精度:0.1 0.2 带阻尼器
翼形传感器即旋转风标式传感器,它由一个经过 静力平衡的风标(叶片),传动机构、信号变换器 (自整角机或电位计)及固定连结部分等组成。
9.17
航空检测技术
舵面
飞机气动力
9.3
自动驾驶仪操纵回路
航空检测技术
电传操纵(Fly-by-Wire)
飞机运动 飞机气动力 运
空气动力 力和力矩
动
驾
传
操纵面
驶 杆
感电 器信
动作筒
号
电信号传送
大气数据传感器
9.4
操纵 面位 置指
令
动作筒位置反馈
航空检测技术
飞行器通过传感器测量各种直接参数, 由机载计算机计算得到间接参数,经系统处 理转变为可显示的参数,由显示系统以指针、 数字或图形方式显示出来,或将这些参数传 输给自动控制系统,产生控制指令,直接操 纵飞行器改变飞行状态。
飞机上许多压力参数需要检测,如针对 辅助动力装置(APU),需要测量引气气压、 进气口压力、主油路压力、P3 空气压力、P1 空气总压、排气压力及燃油过滤器压差等。
9.10
航空检测技术
针对推进器/发动机需要测量的压力参数有: 滑油差压;发动机滑油绝压;发动机滑
油表压;发动机功率扭矩表压;燃油过滤器 压力;燃油泵压力;滑油过滤器差压;滑油 温度及压力;P1 空气绝对总压;P2 压气机 进气压力;P2.5 级间进气绝压;P3 引气气压; P3 压气机排气压力;传动装置滑油压力;滑 油冗余压差;燃油过滤器冗余压差;起动机 空气阀冗余压力等。
2)由于气流不稳,即使有阻尼器,不稳定的 摆动也难以消除。
9.22
航空检测技术
2、 差 压 管 式 迎 角 传 感 器
9.23
航空检测技术
差压管式迎角传感器由差压管和压力传感 器组成。差压管与皮托管相似,上页图示为 可以测量阻滞压力、迎角、侧滑角的截锥形 和球形五孔差压管。在与差压管轴线对称的 上下和左右及轴线上各开有一个孔。当差压 管轴线与气流方向一致时,各孔引入的压力 均相等;当有迎角和侧滑角时,某些压力将 不相等,由此可得出迎角和侧滑角。
航空检测技术
第9章
飞机飞行参数传感器及检测
9.1
航空检测技术
9.1 概述
机载设备是飞行器中各种测量传感器、仪 表和显示系统、导航系统、飞行控制系统 、雷 达系统、通讯系统、电源电气等系统和设备的 统称。
9.2
航空检测技术 Βιβλιοθήκη Baidu动驾驶
飞行仪表 眼、脑、手 驾驶杆
舵面
感应元件
飞机气动力 人工操纵回路
变换放大元件 执行元件
9.11
航空检测技术
针对环境控制系统(ECS),需要测量 以下压力参数:
空调压缩机排气压力;空调进气口表压 及绝压;气道差压;空气过滤器差压;机舱 空气表压及绝压;防冰系统热空气压力开关; 防冰系统表压;氧气储量测量;氧气调节器 压力;机组成员舱氧气压力;冷气系统表压 及绝压;饮用水表压;饮用水水位;蒸发循 环制冷系统压力等。
9.12
航空检测技术
测量压力最常用的方法有: 变形测量是将膜片、膜盒、波纹管、包端
管等弹性元件作为压力敏感元件,在受到流体 介质的压力后,这些元件产生变形,将变形的 位移放大后转变成指针的指示,也可通过电位 计转变为电压信号,以数字方式显示出来。
特性参数测量是将单晶硅膜片、振动膜片、 振动筒等作为敏感元件,在其受到压力后,自 身的电阻或固有振动频率发生变化,测量这些 变化就可间接得到压力数值。
参数、电源系统参数、设备完好程度、结构损坏 程度等。
9.7
航空检测技术
主要测量传感器
压力传感器 ➢ 压阻式、谐振式 ➢工作模式:表压、密封表压、绝压、差 压 ➢针对不同系统
9.8
航空检测技术
9.9
航空检测技术
压力传感器的工作模式有表压、密封表 压、绝压、差压等;压力量程从1psi ( 0.07kg/cm2 ) 到 30000psi;电磁干扰保护, 双重防护隔离;多种压力端口和电连接器规 格。
9.18
航空检测技术
分单风标与双风标两种,后者是迎角和侧 滑角的组合传感器。
单风标式迎角传感器多装于飞机侧面,而 双风标式传感器常与空速管组合在一起,安 装在机头前的撑杆上,由于远离机头,处于 较平稳的气流中,感受飞机迎角比较准确。
风标式迎角传感器的结构比较简单,工 作可靠,但对翼型剖面的加工和表面光洁度 的要求很高。
9.5
航空检测技术
★飞行参数仪表 ★发动机仪表 ★辅助仪表
9.6
航空检测技术
飞行器状态参数分类
飞行参数—飞行高度、速度、加速度、姿态角和 姿态角速度等;
动力系统参数—发动机转速、温度、燃油量、进 气压力、燃油压力等;
导航参数—位置、航向、高度、速度、距离等; 其他系统参数—生命保障系统参数、飞行员生理
9.24
航空检测技术
9.25
航空检测技术
3、零差压式迎角传感器
由探头,气室, 浆叶和角度变 换器等组成。
9.26
航空检测技术
安装在机身或机头侧面,探头旋转轴垂直 于飞机对称面,并使进气A、B的对称面与翼 弦方向平行。
零压式迎角传感器有较好的阻尼,输出 的电信号比较平稳,精度也很高(可达0.1°)。 传感器中只有锥形探头(约10厘米长)露在 飞机蒙皮之外,对飞机造成的附加阻力极小。 但传感器结构比较复杂,装配精度要求较高。
9.13
航空检测技术
温度传感器:电阻式、热电偶式 转速传感器:磁转速表、脉冲数
字式转速表 加速度传感器 迎角传感器
9.14
航空检测技术
9.2 迎角传感及检测
一、迎角与迎角传感器
➢ 迎角(也称攻角)是飞机机翼弦线(或飞机纵 轴,二者间仅差一个固定安装角)与迎面气流 间的夹角。
➢ 测量飞机迎角的装置,又称攻角传感器。迎角 信号可直接指示,供驾驶员观察。在大气数据 计算机中,迎角传感器的输出经补偿计算后变 为真实迎角,用于静压源误差修正,并可把此 信号输给仪表显示和失速警告系统。在飞行控 制系统中常引入迎角信号来限制最大法向过载。
航空检测技术
单风标式
9.20
航空检测技术
双风标式(歼七)
9.21
航空检测技术
特性
实用措施:
1,为使之稳定,一般均加阻尼器 2,为防止结冰,叶片内部应有加温装置 3,有时为增加气动力矩,采用两个叶片 特点
优点:构造简单,体积小,无原理误差
缺点:1)安装位置的影响较大,在高速飞机上要 找到气流平稳的部位也是非常困难;
9.15 迎角信号还用于油门控制系统。
航空检测技术
9.16
航空检测技术
二、迎角传感器 1 、旋转风标式迎角传感器
精度:0.1 0.2 带阻尼器
翼形传感器即旋转风标式传感器,它由一个经过 静力平衡的风标(叶片),传动机构、信号变换器 (自整角机或电位计)及固定连结部分等组成。
9.17
航空检测技术
舵面
飞机气动力
9.3
自动驾驶仪操纵回路
航空检测技术
电传操纵(Fly-by-Wire)
飞机运动 飞机气动力 运
空气动力 力和力矩
动
驾
传
操纵面
驶 杆
感电 器信
动作筒
号
电信号传送
大气数据传感器
9.4
操纵 面位 置指
令
动作筒位置反馈
航空检测技术
飞行器通过传感器测量各种直接参数, 由机载计算机计算得到间接参数,经系统处 理转变为可显示的参数,由显示系统以指针、 数字或图形方式显示出来,或将这些参数传 输给自动控制系统,产生控制指令,直接操 纵飞行器改变飞行状态。
飞机上许多压力参数需要检测,如针对 辅助动力装置(APU),需要测量引气气压、 进气口压力、主油路压力、P3 空气压力、P1 空气总压、排气压力及燃油过滤器压差等。
9.10
航空检测技术
针对推进器/发动机需要测量的压力参数有: 滑油差压;发动机滑油绝压;发动机滑
油表压;发动机功率扭矩表压;燃油过滤器 压力;燃油泵压力;滑油过滤器差压;滑油 温度及压力;P1 空气绝对总压;P2 压气机 进气压力;P2.5 级间进气绝压;P3 引气气压; P3 压气机排气压力;传动装置滑油压力;滑 油冗余压差;燃油过滤器冗余压差;起动机 空气阀冗余压力等。
2)由于气流不稳,即使有阻尼器,不稳定的 摆动也难以消除。
9.22
航空检测技术
2、 差 压 管 式 迎 角 传 感 器
9.23
航空检测技术
差压管式迎角传感器由差压管和压力传感 器组成。差压管与皮托管相似,上页图示为 可以测量阻滞压力、迎角、侧滑角的截锥形 和球形五孔差压管。在与差压管轴线对称的 上下和左右及轴线上各开有一个孔。当差压 管轴线与气流方向一致时,各孔引入的压力 均相等;当有迎角和侧滑角时,某些压力将 不相等,由此可得出迎角和侧滑角。
航空检测技术
第9章
飞机飞行参数传感器及检测
9.1
航空检测技术
9.1 概述
机载设备是飞行器中各种测量传感器、仪 表和显示系统、导航系统、飞行控制系统 、雷 达系统、通讯系统、电源电气等系统和设备的 统称。
9.2
航空检测技术 Βιβλιοθήκη Baidu动驾驶
飞行仪表 眼、脑、手 驾驶杆
舵面
感应元件
飞机气动力 人工操纵回路
变换放大元件 执行元件
9.11
航空检测技术
针对环境控制系统(ECS),需要测量 以下压力参数:
空调压缩机排气压力;空调进气口表压 及绝压;气道差压;空气过滤器差压;机舱 空气表压及绝压;防冰系统热空气压力开关; 防冰系统表压;氧气储量测量;氧气调节器 压力;机组成员舱氧气压力;冷气系统表压 及绝压;饮用水表压;饮用水水位;蒸发循 环制冷系统压力等。
9.12
航空检测技术
测量压力最常用的方法有: 变形测量是将膜片、膜盒、波纹管、包端
管等弹性元件作为压力敏感元件,在受到流体 介质的压力后,这些元件产生变形,将变形的 位移放大后转变成指针的指示,也可通过电位 计转变为电压信号,以数字方式显示出来。
特性参数测量是将单晶硅膜片、振动膜片、 振动筒等作为敏感元件,在其受到压力后,自 身的电阻或固有振动频率发生变化,测量这些 变化就可间接得到压力数值。
参数、电源系统参数、设备完好程度、结构损坏 程度等。
9.7
航空检测技术
主要测量传感器
压力传感器 ➢ 压阻式、谐振式 ➢工作模式:表压、密封表压、绝压、差 压 ➢针对不同系统
9.8
航空检测技术
9.9
航空检测技术
压力传感器的工作模式有表压、密封表 压、绝压、差压等;压力量程从1psi ( 0.07kg/cm2 ) 到 30000psi;电磁干扰保护, 双重防护隔离;多种压力端口和电连接器规 格。
9.18
航空检测技术
分单风标与双风标两种,后者是迎角和侧 滑角的组合传感器。
单风标式迎角传感器多装于飞机侧面,而 双风标式传感器常与空速管组合在一起,安 装在机头前的撑杆上,由于远离机头,处于 较平稳的气流中,感受飞机迎角比较准确。
风标式迎角传感器的结构比较简单,工 作可靠,但对翼型剖面的加工和表面光洁度 的要求很高。
9.5
航空检测技术
★飞行参数仪表 ★发动机仪表 ★辅助仪表
9.6
航空检测技术
飞行器状态参数分类
飞行参数—飞行高度、速度、加速度、姿态角和 姿态角速度等;
动力系统参数—发动机转速、温度、燃油量、进 气压力、燃油压力等;
导航参数—位置、航向、高度、速度、距离等; 其他系统参数—生命保障系统参数、飞行员生理
9.24
航空检测技术
9.25
航空检测技术
3、零差压式迎角传感器
由探头,气室, 浆叶和角度变 换器等组成。
9.26
航空检测技术
安装在机身或机头侧面,探头旋转轴垂直 于飞机对称面,并使进气A、B的对称面与翼 弦方向平行。
零压式迎角传感器有较好的阻尼,输出 的电信号比较平稳,精度也很高(可达0.1°)。 传感器中只有锥形探头(约10厘米长)露在 飞机蒙皮之外,对飞机造成的附加阻力极小。 但传感器结构比较复杂,装配精度要求较高。
9.13
航空检测技术
温度传感器:电阻式、热电偶式 转速传感器:磁转速表、脉冲数
字式转速表 加速度传感器 迎角传感器
9.14
航空检测技术
9.2 迎角传感及检测
一、迎角与迎角传感器
➢ 迎角(也称攻角)是飞机机翼弦线(或飞机纵 轴,二者间仅差一个固定安装角)与迎面气流 间的夹角。
➢ 测量飞机迎角的装置,又称攻角传感器。迎角 信号可直接指示,供驾驶员观察。在大气数据 计算机中,迎角传感器的输出经补偿计算后变 为真实迎角,用于静压源误差修正,并可把此 信号输给仪表显示和失速警告系统。在飞行控 制系统中常引入迎角信号来限制最大法向过载。