阻燃增强增韧尼龙66的制备及工艺研究

阻燃增强增韧尼龙66的制备及工艺研究
阻燃增强增韧尼龙66的制备及工艺研究

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

尼龙66注塑成型工艺 (1)

华侨大学 课程名称:增强增韧尼龙66汽车专用料姓名:彭儒 学号:9 专业:08高分子二班 任课教师:钱浩

前言: 尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。世界市场中,应用量最大的是尼龙66。 尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。 尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。 由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。 工艺特点:

⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。 ⑵结晶性尼龙66为结晶性高聚物,一般在20%~30%之间。结晶度的高低与性能有关,结晶度高,拉伸强度、耐磨性、硬度、润滑性等性能有所提高,热膨胀系数和吸水性趋于下降。 ⑶热稳定性在熔点以上温度,约254℃,水分子会与尼龙66发生化学反应,使聚合物水解或裂解,使尼龙66变色,树脂分子量及其韧性相对减弱,流动性增大,不单带来加工上的困难,而且会对制品性能造成损害。注塑时喷嘴流涎,制件飞边严重。聚合物裂解产生的气体和从空气中吸收的水分,共同夹击制件,轻则在表面形成不光洁、银丝、斑纹、微孔、气泡,重则反生熔体膨胀无法成型或成型后机械强度下降。最后,经过这种水解裂解的尼龙,其性能完全不可还原,即使重新干燥也不能再次使用。 干燥好的原料如果随便在空气中露置,会迅速在空气中吸收水分而使干燥效果丧失殆尽。即使在加盖的机台料斗内,存放的时间也不宜太长,一般雨天不超过1h,晴天限制在3h之内。 尼龙66熔融温度虽然高,但当达到熔点后,其粘度远较一般热塑性塑料如聚苯乙烯等低很多,故成型时流动性不成问题,尼龙66的流变特性是剪切速率增加时其表观粘度下降不突出,加之熔融温度范围较窄,在3~5℃之间,所以高的料温无疑是顺利冲模的保证,而不在乎高的注射速度和压力。 ⑷流动性尼龙66熔体的粘度低,流动性大,容易冲模成型,对薄壁制品更是如此,而且制品在模内能迅速固化,模塑周期短。

阻燃尼龙起作用的5种方式

阻燃尼龙起作用的5种方式 驰通金轮网销部讯:在日常生活中,我们会常常见到尼龙两个字,比如我们的衣服面料大部分都是含有尼龙成分的,这些尼龙成分就是纺丝级的尼龙,在解放初期为替代棉花立下了汗马功劳。今天驰通金轮并不是说的衣物上的尼龙材料,而是主要用于工业生产的阻燃尼龙颗粒。尼龙作为一种重要的工程塑料,具有耐磨耐油自润滑等优点,但其自身具备一定的可燃性,因此在一定程度上限制了它的使用,尤其是电子电气、汽车等行业对阻燃性能的要求较高,也正是这方面的需求,阻燃尼龙的发展阔步向前。 尼龙本身是据欧一定程度阻燃型的,属于最低级阻燃,但这往往满足不了大家的需求,阻燃尼龙是在尼龙原料中添加阻燃剂完成的,其中真正起作用的就是阻燃剂。阻燃剂是一种能够提高易燃或可燃材料难燃性、自熄性或消烟性的助剂,是重要的精细化工产品和合成材料的主要助剂之一。近年来,随着防火安全标准的日益严格,全球阻燃剂用量一直呈上升趋势。所谓"阻燃",并不是指材料不燃烧,而是使材料在火焰中能降低其可燃性,减缓火焰蔓延速度,不形成大面积燃烧,而离开火焰后,能很快自熄,没有续燃和阴燃现象发生。阻燃剂主要通过吸热作用、覆盖作用、抑制链反应、气体稀释作用等发挥阻燃效果。 驰通金轮总结阻燃尼龙起作用有5种方式,这也是阻燃尼龙的反应机理:

1、吸热作用 在高温条件下,在高温条件下,阻燃剂能够强烈地吸收燃烧过程中放出的热量,降低可燃物的表面温度,减少辐射到燃烧表面和作用于自由基的热量,可燃性气体的生成被有效抑制,燃烧的蔓延被阻止。 2、覆盖作用 在高温下,阻燃剂能形成泡沫状或玻璃状覆盖层,可以隔热、隔氧,并阻止可燃气体向外逸出,从而达到阻燃目的。 3、抑制链反应 阻燃剂可在气相燃烧区中捕捉燃烧反应中的自由基,抑制火焰的传播,使火焰的密度下降,最终使燃烧反应终止。 4、气体稀释作用 阻燃剂受热分解释放出不燃性气体,如二氧化碳、二氧化硫、氮气等,使材料裂解生成的可燃性气体被稀释到燃烧极限一下,或使火焰中心处部分区域的氧气不足,抑制燃烧的继续。例如含卤阻燃剂在受热和燃烧过程中生成不燃性气体齒化氢,稀释周围的空气,能够起到阻燃作用。 5、凝聚相阻燃 在凝聚相反应区,阻燃剂可改变材料的热裂解过程,促使材料发生脱水、缩合、环化、交联等反应,直至炭化,使炭化残渣增加,可燃性气体减少,起到阻燃作用。 目前,驰通金轮注意到,对于尼龙材料的阻燃改性通常分为含卤阻燃改性和无卤阻燃改性,而尼龙阻燃性能的关键指标可以通过极限

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙牌号及用途、尼龙增韧、尼龙增强

尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。性能:尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。尼龙与玻璃纤维亲合性十分良好。 尼龙中尼龙66的硬度、刚性最高,但韧性最差,做高韧性尼龙加南京塑泰相关的高效接枝增韧剂,和普通增韧剂相比,更好地和材料结合,更好地传递冲击能量。 尼龙增强加玻纤来的快,同样要考虑材料间的结合。 各种尼龙按韧性大小排序为: PA66<PA66/6<PA6<PA610<PA11<PA12. 尼龙的燃烧性为UL94v-2级,氧指数为24-28,尼龙的分解温度>299℃,在449~499℃时会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm PA用途对照表牌号和用途: PA6 轴承,齿轮,凸轮,滚子,滑轮,辊轴,螺钉,螺帽,垫片,高压,油管,储油,容器,等 PA66 用途与尼龙6基本一样还可作把手壳体支撑架等 PA610 机械制造,汽车用齿轮,衬垫,轴承,滑轮等精密部件,输油

管储油容器, 传动带,仪表壳,体纺织,机械部件 PA612 精密机械部件,电线电缆绝缘层,枪托弹药箱,工具架,线圈 PA9 齿轮,机械部件,电缆护套,医疗特种消毒包,渔网金属涂层PA11 输送汽油的硬管和软管,电缆护套,食品包装膜,发泡建材,静电喷涂 PA12 轴承,齿轮,精密部件,电子部件,油管软管,电线电缆护套PA1010 机械部件轴承架轴套油箱衬里电线电缆护套工业滤布筛网毛刷等

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

尼龙66的主要牌号与性能

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel? 尼龙66树脂型号与用途

V-0玻纤增强阻燃尼龙66

V-0玻纤增强阻燃尼龙66 衡水金轮网销部讯:玻纤增强尼龙66具有高强度、尺寸稳定、耐高温的特点,但其易燃性限制了其应用范围,尤其在电子电气、交通运输领域,现在很多企业对材料的阻燃性要求越来越严格,V-0玻纤增强阻燃尼龙66研究具有一定的紧迫性。 目前主要通过两种途径来使材料获得更好的阻燃性:第一种是通过共混工艺将阻燃剂和材料掺和在一起,从而提高材料的耐燃性,形成了添加型阻燃材料;第二种是在聚合物结构中引入具有耐燃性质的基团或链段,提高热稳定性和耐高温性,形成反应型阻燃材料。 由于反应型阻燃材料成本高、加工困难,批量生产和应用受到限制,而添加型的由于对工艺和设备要求简单,易于实现工业化。 将烘干的PA66、阻燃剂、润滑剂及其他助剂等在混合器中充分搅拌混合后,加入到双螺杆挤出机料斗内,玻纤从真空口处引入,在挤出机内通过加热、熔融、共混进行挤出造粒,即可得到V-0玻纤增强阻燃尼龙66材料。 按常理来推断,玻璃纤维是不燃物且耐温高达上千度,添加后阻燃性肯定会进一步提升,然而经过试验和研究发现这种推理是错的。经过玻纤增强的阻燃尼龙66阻燃性反而会下降,这主要是因为玻璃纤维在材料中会发生“烛芯效应”,热传导加快,本来能够达到V-0阻燃等级的材料也因此变成了V-1,所以要使玻纤增强尼龙66阻燃比纯尼龙66阻燃更困难,需要继续添加阻燃剂或者选择合适的阻燃

剂类型搭配使用,才能使材料重新达到V-0。 经过进一步对不同类型的阻燃剂进一步研究,发现了很多新发现。 适用于尼龙66的阻燃剂主要有有机卤化物、磷化物和氮化物, 还有锑化物、硼化物等有机阻燃剂。无机阻燃剂对材料力学性能影响较大,暂不做比较。我们选择卤化物、磷化物和氮化物作为玻纤增强尼龙66的阻燃剂做实验,加入卤系阻燃剂可得到较高阻燃等级和较 高氧指数;较少量的红磷可达到同样的阻燃效果;氮系阻燃剂阻燃效果不如前两者。 氮系阻燃剂能促使玻纤增强尼龙66滴落,纯尼龙66在滴落前就会熄灭,而经过玻纤增强的材料由于有玻璃纤维作为烛芯反而不会熄灭,而是带有火源滴落下来,扩大燃烧,所以在实际应用中氮系阻燃剂使用量较少。 衡水金轮网销部认为:从这里可以看出,要得到V-0玻纤增强阻燃尼龙66是需要一定技术做支撑的,力学性能、阻燃性、阻燃等级 兼顾,由于阻燃剂的加入使力学性能被拉低,尤其是抗冲击性变差,我们需要添加马来酸酐接枝POE或者EPDM来增加韧性,使制品性能 更无懈可击。

尼龙6的增韧性研究及应用前景

尼龙6的增韧性研究及应用前景 谢敏敏 [摘要]:综述了国内外尼龙增韧改性的研究进展,介绍了高韧性尼龙 6工程塑料的研究进展及应用前景,并从不同方面对尼龙的增韧进行了探讨,例如与聚烯烃及弹性体共混增韧、掺混高韧性工程塑料增韧、无机粒子增韧。 [关键词]:尼龙6 增韧 尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键,能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。但是尼龙6存在低温和干态冲击性能差,吸水性大等弱点,使其应用领域受到一定限制,为适应工业发展的需要,近年来通过共混改性,使其向高冲击、低吸水和优化加工等方向发展的研究成为广泛关注的课题。尼龙6的增韧工作自20世纪70年代以来一直是尼龙改性的重要课题,美国、西欧、日本先后开发了各种牌号的高抗冲尼龙6合金。尼龙6是比较容易形成合金的树脂,合适的相容剂是形成韧性尼龙的关键。 高韧尼龙6合金的获得主要有以下三种途径:一是通过与聚烯烃及弹性体共混;二是掺混高韧性工程塑料;三是无机粒子增韧。 1. 聚烯烃、弹性体增韧 尼龙6与非极性或弱极性的聚烯烃、弹性体共混可以改善韧性。但尼龙6带有强极性的酰胺基团,与聚烯烃、弹性体的相容性差,导致合金的韧性下降。解决相容性的方法有两种:一种方法是尼龙6中加入单体熔融接枝聚烯烃工弹性体,单体一般为带羧基官能团的马来酸酐(MAH)、甲基丙烯酸缩水甘油醇(GMA);另一种是加入一种能同聚烯烃或弹性体相容的、带有活性基团(如环氧基)的第三组分,反应基团可以和尼龙6分子末端的胺基实现反应性相容。另外,采用聚烯烃接枝丙烯酸的方法是改善尼龙与聚烯烃弹性体相容性的另一种有效途径。这是由于接枝丙烯酸共聚物所带的羟基官能团同样能与尼龙末端的胺基反应形成化学键。虽然羟基的反应活性不如二酸酐,但是由于丙烯酸自身可以发生聚合,在接枝过程中可形成较长的聚丙烯酸支链,因而可获得较高的接枝率;所制备的接枝共聚物与尼龙

尼龙超纤合成革染色工艺探讨样本

引言 随着社会的进步和人们生活水平的不断提高, 人们对衣着面料的花色品质的要求越来越高, 各方面的装饰、装潢也越来越高档化, 真皮面料已成为人们的追求和渴望。由于真皮面料受自然条件的限制和制约, 数量有限, 因此难以满足广泛的需要和制成多花色、多风格及实现机械化大生产。为了适应人们广泛的需求, 先后开发了聚氯乙烯人造革﹑聚氨酯合成革﹑聚氨酯人工皮革﹑超细纤维人工皮革(又称超真皮)。 当前高档合成革的生产主要在日本, 韩国及中国的台湾, 国内在这方面起步比较晚, 97年才从国外引入第一条超纤革生产线, 但从开始中国超纤革迎来了一个快速发展过程。 超细纤维服装面料具有强度高、质量均一、手感柔软滑爽、悬垂性好、可洗性好、易贮存、色泽鲜艳多样、绒毛丰满均匀、利于设计和裁剪等优点, 而且超细纤维服装面料具有天然真皮的许多特点, 同时又兼容传统面料的特点, 因此能够为服装设计师提供广阔的设计空间, 彻底摆脱真皮尺寸不规则、内在质量差异大、颜色变化少的弊端, 有利于进行时装化的设计。该产品广泛用于男女上衣、休闲装、风衣、女裙等服装领域以及汽车坐套、沙发、箱包、装饰材料、高级鞋材及制球等多个行业。因此说超细纤维织物是一种新型、高效科技、高附加值的产品。由于织物中含有性质不同的成分, 给超细纤维的染色带来了一定困难。锦纶超细纤维 PU 合成革就是这样一类产品。 锦纶超细纤维 PU 合成革的组成及主要工艺原理 锦纶超细纤维PU合成革由锦纶超细纤维和聚氨酯两个组分组成。它的生产的主要工艺原理为:

( 1) 海岛纤维制做。利用两种或三种切片, 以不同的比例进行混融纺丝, 生产出细度达0.01d以下的束状海岛超细纤维, 束状超细纤维与天然真皮中的束状 超细纤维相似。 ( 2) 模拟真皮结构基材。天然真皮的基本成分主要是束状超细胶原纤维, 并呈三维立体结构络合在一起, 从而赋予天然皮革优良的柔软性和丰满的手感。当前先进的针刺非织造布加工技术完全能够将纤维加工成三维立体络合基材, 使其 络合密度达到高于天然真皮的密度结构, 使其无论外观特征和内在结构特性均 接近和达到真皮程度。 ( 3) 浸渍、分离抽出。将呈三维络合结构的非织造布基材浸渍聚氨酯树脂, 再用聚氨酯海绵体将束状超细纤维套串起来, 同时又不使聚氨酯浸入超细纤维束内。为使其与纤维束之间保持微小的滑移间隙, 再经过特殊的分离抽出技术处理, 使纤维束进一步分开, 并抽掉一种成分, 最终形成由络合在一起的束状超细纤 维与具有开式微孔结构的聚氨酯海绵套网络成一体的片状材料。 ( 4) 后整理。为使产品具有真皮的特性和满足消费者多样化的需求, 需要再进行多种颜色的染色、柔软处理、仿麂皮处理、贴膜处理。经过这些整理, 保证了产品的染色牢度、良好的柔软手感和仿皮效果。 尼龙的染色原理及影响因素 1. 尼龙纤维的特性 ⑴尼龙纤维具有以下官能团 -NH2 末端氨基 -COOH 末端羧基 -NH- 分子链中的亚氨基

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

尼龙6聚合工艺

尼龙6聚合工艺

PA6聚合生产技术 本文叙述了国外PA6聚合生产工艺与设备,介绍了几种常用的聚合方法及特点,并进行了对比。德国Zimmer公司,Kart Fischer公司,瑞士 Inventa 公司,意大利Noy公司,德国Aqufil公司等的工艺技术设计合理,所生产的产品质量较好,分子量分布均匀。其设备特点是在聚合管内广泛采用静态混合器或整流器。萃取塔采用狭缝式结构,干燥塔采用热氮气干燥,聚合过程采用DCS集散系统控制,生产过程全部连续化。 关健词:PA6聚合先进工艺比较 1938年,德国的P Schlack发明了已内酰胺聚合制取聚已内酰胺(PA6)和生产纤维的技术,并于1941年投入工业化生产。迄今,已内酰胺聚合工艺在长达半个多世纪的生产过程中,经历了从小容量到大容量,从间歇聚合到连续聚合,设备结构不断改进、完善,工艺技术日趋合理、成熟。本文就国外几个有代表性的公司所设计的PA6聚合工艺及设备的特点作一综合性的介绍。

1、PA6聚合方法 随着新技术的发展,PA6生产装置(包括切片萃取、干燥和废料回收)已进入大型化、连续化,自动化的高科技之列。PA6聚合技术有代表性的公司有德国Zimmer公司,Kart Fischer公司,Didier公司,Aqufil公司,瑞士 Inventa公司,意大利Noy公司,以及日本东丽、龙尼吉卡公司等。其聚合工艺根据产品用途不同而有几种不同的方法,表1列出了德国吉玛公司有关VK管能力、单耗、质量指标及切片用途等参数。 表1Zimmer公司PA6聚合工艺参数

*不包括回收的已内酰胺 -

1.1常压连续聚合法 该方法用于生产PA6民用丝。NOY公司特点:采用大型VK管(○1440mm×1690mm)连续聚合,聚合温度260℃,时间20h。热水逆流萃取切片中残余单体及低聚物、氮气气流干燥、DCS集散系统控制,单体回收采用萃取水连续三效蒸发浓缩,间断蒸馏浓缩液工艺。具有生产连续化、产量高、质量好、占地面积少的特点。是当前世界普遍采用的生产民用丝PA6切片的典型工艺。 1.2二段聚合法 该法由前聚合与后聚合二个聚合管组成,主要用于生产高粘度的工业帘子布用丝。二段聚合法又分为前聚合高压、后聚合常压;前聚合加压、后聚合减压;前、后聚合均为常压三种方法。在三种方法中从聚合时间及产物中含单体和低聚体量等比较则以加压、减压聚合法最好(但设备投资大,操作费用最高),高压、常压次之,前、后聚合均为常压最差(但设备投资最省,操作费用最低)、巴陵石化

尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/b617339052.html,)尼龙的改性特性以及应用范围 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。 因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。 改性PA产品的最新发展 前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。 20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。 20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。 在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。 改性尼龙发展的趋势 尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

增强增韧尼龙66汽车专用料的性能研究

新技术与产品开发 增强增韧尼龙66汽车专用料的性能研究 Ξ 崔 欣1,王静江2 (11中国石油辽阳石化分公司研究院,辽宁辽阳111003;21中国石油辽阳石油化纤公司技术中心,辽宁辽阳111003) 摘要:采用双螺杆挤出加工工艺,对增强增韧尼龙66材料综合性能进行了研究;比较了尼龙品种、增韧剂、玻璃纤维及助剂对内饰件材料的改性效果;并分析了生产工艺对材料性能的影响。确定了材料的最佳工艺参数和配方,并成功应用在出口汽车座椅滑块制品上。 关键词:尼龙;玻璃纤维;增韧剂;结构;性能;应用 中图分类号:T Q32316 文献标识码:B 文章编号:1005-5770(2007)04-0062-04 Study of Property of R einforced and Toughened N ylon 66 Special Compound for Auto I ndustry C UI X in 1,W ANGJing 2jiang 2 (11Research Institute of Liaoyang Petrochemical Branch ,PetroChina ,Liaoyang 111003,China ;21T echnical Center of Liaoyang Petrochemical Fiber C o.,PetroChina ,Liaoyang 111003,China ) Abstract :The overall property of rein forced and toughened nylon 66com pound was studied by means of extru 2sion technology on twin 2screw extruder 1The effect of the variety of nylon and the effects of toughener ,glass fiber and additive on the m odification of the decorative com pounds were com pared ,the effect of processing technology on the property of the com pound was analyzed 1The optimum processing parameter and formulation for the com pound were determined and applied to the production of the slide bar of the saddle of car for export success fully 1 K eyw ords :Nylon ;G lass Fiber ;T oughener ;Structure ;Property ;Application 汽车上零部件要求能耐高低温、耐油、耐化学药 品、耐候和一定的机械性能,达到节能降耗、提高车速、改进外观和舒适性、降低成本等众多目标。普通单牌号尼龙虽具有良好的强度和刚性,但冲击强度各有不同,且熔融范围较窄,熔体强度对温度敏感,以30%玻纤增强尼龙66为例,其熔体质量流动速率(MFR )为10~25g/10min ,波动较大,给注塑制件的工艺调整带来不便。随着国内汽车业的不断发展和成熟,对车用材料提出了更高要求的同时,成本控制也近乎苛刻,通过合金工艺生产的尼龙合金复合材料,可以很好地解决上述问题,满足汽车用材料的要求。以汽车座椅滑块为例,要求材料具有高强度、高刚性,良好的尺寸稳定性,并具备适当的韧性和良好的加工性。本项目组采用共混合金工艺,经过反复试验,取得了良好的效果,材料性能满足使用要求。 1 实验部分 111 主要原材料及设备 尼龙66:中黏EPR27、高黏EPR32,平顶山神马集团;尼龙6:高黏32,岳阳石化;中黏26228,岳阳石化/石家庄化纤;接枝聚丙烯:K T J 21A ,沈阳科通;接枝聚乙烯:K T 25A ,大连工大;接枝POE :K TR 23C ,沈阳科通;接枝POE :长春应化所;接枝POE :9805,上海日之升;接枝EPDM :9802,上海 日之升;接枝EPDM :南京驰鸿;玻璃纤维:988(长),浙江巨石;抗氧剂:1010,瑞士汽巴/吉林大河东;光亮润滑剂:T AF ,苏州国光。 双螺杆挤出机:SH J582Ⅱ,南京信立;注塑机:CWI 2120D ,上海纪威;万能试验机:C MT5204,深圳 新三思;冲击试验机:X JU 2515,承德金建;热变形温度检测仪:XRW 2300,承德金建;熔体质量流动速率仪:SRZ 2400C ,长春智能;尺寸变化测定仪:XC B 2150,承德金建。 ? 26?塑料工业 CHI NA P LASTICS I NDUSTRY 第35卷第4期2007年4月 Ξ作者简介:崔欣,女,1968年生,大学本科,高级工程师,长期从事化工材料材料的研究,发表论文多篇。 cuixin823@sina 1com

尼龙的增韧改性

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

相关文档
最新文档