高等数学BII模拟试题参考答案
ib考试sl试题及答案

ib考试sl试题及答案 IB考试SL试题及答案一、IB数学SL(标准水平)试题1. 多项选择题题目:在以下数学表达式中,哪一个是正确的?A. \( \sqrt{4} = 2 \)B. \( \sqrt{4} = -2 \)C. \( \sqrt{4} = 2 \) 或 \( \sqrt{4} = -2 \)D. \( \sqrt{4} = 4 \)答案:A. \( \sqrt{4} = 2 \)2. 解答题题目:解方程 \( 3x^2 - 5x - 2 = 0 \)。
答案:使用二次公式 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \),其中\( a = 3 \),\( b = -5 \),\( c = -2 \)。
\( x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-2)}}{2 \cdot 3} \)\( x = \frac{5 \pm \sqrt{25 + 24}}{6} \)\( x = \frac{5 \pm \sqrt{49}}{6} \)\( x = \frac{5 \pm 7}{6} \)所以,\( x = \frac{12}{6} = 2 \) 或 \( x = \frac{-2}{6} = -\frac{1}{3} \)。
3. 应用题题目:一个球从20米的高度自由落下。
每次弹起的高度是前一次的一半。
求球在第5次弹起后达到的最大高度。
答案:球的初始高度是20米。
每次弹起的高度是前一次的一半,所以第5次弹起的高度是:\( 20 \times \left(\frac{1}{2}\right)^5 = 20 \times \frac{1}{32} = \frac{20}{32} = \frac{5}{8} \) 米。
二、IB物理SL(标准水平)试题1. 多项选择题题目:以下哪个选项描述了牛顿第二定律?A. \( F = ma \)B. \( F = mv \)C. \( F = ma^2 \)D. \( F = m \frac{dv}{dt} \)答案:A. \( F = ma \)2. 解答题题目:一个质量为2千克的物体以10米/秒的速度在水平面上移动。
高等数学BII样题

高等数学BII样题一、判断题1、积分-=11)()()(2dx x f e e dx x f e dy xyy.( ) 2、二重积分-=Ddx x f ab dxdy byf a x f 211])([)()(,其中D :a x ≤||,b y ≤||.( )3、若积分区域}20,10|),{(≤≤≤≤=y x y x D ,则4)1(1≤++≤Dd y x σ.( )4、积分区域D 为椭圆12222=+b y a x 所围成的闭区域,则ab dxdy Dπ=??.( )5、若极坐标下的积分区域为}20,30|),{(πθθ≤≤≤≤=r r D ,则49πθ=Drdrd .( ) 6、若积分区域D 为22(1)1x y -+=所围成的区域,则在极坐标下{(,)|01,0}2D r r πθθ=≤≤≤≤.( )7、若积分区域D 为22(2)4x y +-=所围成的区域,则在极坐标下表示为{(,)|04sin ,0}D r r θθθπ=≤≤≤≤.( )8、若积分区域D 为22199x y +=所围成的区域,则在极坐标下表示为{(,)|03,0}D r r θθπ=≤≤≤≤.( )9、一阶微分方程的通解中含有一个任意常数. ( ) 10、dx x dy y231=是可分离变量的微分方程. ( ) 11、01'=-y xy 的通解为y Cx =. ( ) 12、xe y x y x=+1'通解为x e C y x +=. ( )13、'ln '''y y xy =的通解中有两个相互独立的任意常数. ( )14、某商品的需求量Q 对价格P 的弹性ln 3P -,若该商品的最大需求量为1200,当价格为1元时,市场对该商品的需求量为400()15、如果幂级数n n n a x ∞=∑的所有系数0n a ≠,设1limn n na a ρ+→∞=,若ρ=∞,则级数的收敛半径0R =. ( ) 16、设级数n n a x∞=∑和nn n b x∞=∑的收敛半径分别为12,R R ,且12min{,}R R R =,那么级数nn n a x∞=∑±nn n b x∞=∑的收敛区间为(,)R R -. ( )17、级数n n n a x ∞=∑,0n n n b x ∞=∑的收敛半径分别为12,R R ,则级数0nnn n nn a xb x∞=∞=∑∑的收敛半径为12R R . ( ) 18、幂级数n n a x∞=∑的和函数()s x 在其收敛域I 上连续. ( )19、对幂级数nn n a x∞=∑的和函数()s x 在其收敛域I 的积分,可以表达成对原级数各项积分和的形式. ( ) 20、幂级数nn n a x∞=∑的和函数()s x 在其收敛域I 的导函数,可以表达成对原级数各项求导和的形式. ( )二、选择题 1、二重积分??+=Ddxdy y x I 22,其中区域D 为圆222a y x ≤+在第二象限的部分,则=I ( ).选项A)33a π选项B)93a π选项C)3a π选项D) 02、设平面区域0,1:22≥≤+y y x D ,则积分??=Dxd σ( ).选项A)π 选项B) 31 选项C)4π 选项D) 03、设区域D 由直线3,1==x x 和0,==y x y 所围成,则在极坐标系下二重积分=??Ddxdy y x f ),(( ).选项A)20cos 3cos 1)sin ,cos (πθθθθθrdr r r f d选项B)40cos 3cos 1)sin ,cos (πθθθθθrdr r r f d选项C) ?203)sin ,cos (πθθθrdr r r f d选项D)20cos 3cos 1)sin ,cos (πθθθθθdr r r f d4、设),(y x f 是连续函数,则二次积分? =xdy y x f dx I 2040),(交换次序后为( ).选项A)14140),(dx y x f dy选项B)-24140),(y ydx y x f dy 选项C)441402),(y dx y x f dy选项D) ?141942),(y dx y x f dy5、??=Dd xy I σ2,D 是由圆周422=+y x及y 轴所围成的右半闭区域,则=I ( ).选项A)--240222y dx xy dy 选项B)-24022y dx xy dy选项C) ?-24022x dx xy dy 选项D)-222x dy xy dx6、设区域}10,10|),{(:≤≤≤≤y x y x D ,则=++Dd y y x xσ)3(323( ).选项A)316 选项B) 2 选项C) 1选项D) 317、设区域D 是由两坐标轴以及直线2=+y x 围成的闭区域,则=+Ddxdy y x )23(( ).选项A)38选项B) 35选项C) 6选项D) 3208、设D 为圆域222R y x ≤+,则??=+Ddxdy y x 22( ).选项A) 3R Rdxdy Dπ??=选项B) ??R rdr d 0220πθπ选项C) ??=RR dr r d 0322032πθπ选项D)=RR dr R d 032202πθπ9、某城市受地理限制呈直角三角形分布,斜边临一条河,由于交通关系,城市发展不均衡,这一点可从税收状况反映出来,若以两直角边为坐标轴建立直角坐标系,则位于x 轴和y 轴上的城市长度各为16km 和12km ,且税收与地理位置关系大体为(x,y)20x 10R y =+(万元/平方千米)则该市总的税收收入为()选项A) 14080万元选项B) 12000万元选项C)24000万元选项D) 36000万元10、设D 是由x y x y =-=,及1=y 所围成的闭区域,则=??dxdy y x D2( ).选项A)74 选项B) 2选项C) 81选项D) 011、设积分区域D 为14922≤+y x ,则??=Ddxdy 4( ).选项A)π24选项B) π6 选项C) π36 选项D) π3212、微分方程2'2y xy =的通解是( ). 选项A )x y ce = 选项B )2x y ce = 选项C )210x c y++= 选项D )032=++y y x13、微分方程''2'20y y y -+=的通解为( ). 选项 A) 212x x y C e Ce -=+ 选项 B) 212x x y C e C e --=+ 选项 C) 3212x x y C e C e -=+ 选项 D 12(sin cos )x y e C x C x =+14、微分方程200''(y')1,|0,'|0x x y y y ==+===的特解为( ). 选项A) 2ln(1)y x =+ 选项B) 32y x x =- 选项C) ln(e e )ln 2x xy -=+-选项D) 41(1)2y x =+15、微分方程''2'20y y y -+=的通解为( ). 选项 A) 212x x y C e Ce -=+ 选项 B) 212x x y C e C e --=+ 选项 C) 3212x x y C e C e -=+ 选项 D 12(sin cos )x y e C x C x =+ 16、求0',|0x y x y e y +===的特解( ).选项 A) 21(1)2y x e e =+选项 B) 21(1)2x y e =+选项 C) (2)y x e e -=-- 选项 D) 1(ln 1)2y e x =+17、微分方程''2'50y y ++=的特征根为( ). 选项 A) 1,1- 选项 B) 12i -± 选项 C) 1,1-- 选项 D) 2,1-18、微分方程'cos y x =的通解为( ). 选项 A) sin y x C =+ 选项 B) cos y x C =+ 选项 C) cos y x C =-+ 选项 D)tan y x C =+19、微分方程2dx x y dy y+=的通解为( ). 选项 A) tan yCy x= 选项 B) 21()y C x y-= 选项 C) 2x Cy e = 选项 D) 1tany Cy x+=20、下列微分方程可分离变量的是( ). 选项A)xy dxdy2= 选项B) 4()20x y x y dy xe dx +++= 选项C)2x y xe e y=+? 选项D) ''2'y y xy x ++=21、微分方程xy y 2'=的通解是( ). 选项A) x y ce = 选项B) 2x y ce = 选项C) 24x y += 选项D) 032=++y y x22、微分方程dy x y dx y x )1()1(22+=+在1,1x y ==处的特解( ). 选项A) y x = 选项B) 12=+x y 选项C) 2y x = 选项D) 2 x y =参考答案:A23、以下不是级数的是 ( ). 选项A)2111n nn ∞=++∑ 选项B)2211n nn ∞=++∑ 选项C)2311n nn ∞=++∑ 选项D)102111n nn=++∑24、级数()选项A) 收敛选项B) 发散选项C)敛散性不确定选项D) 以上都不正确 25、幂级数的收敛半径 ( ).选项A) 0 选项B) 1 选项C) 选项D) 26、级数的和是()选项A) 1选项B)选项C)选项D)27、以下级数中收敛的是 ( ). 选项A)选项B)选项C)选项D)28、设,且正项级数收敛,则( ). 选项A)选项B) 选项C)选项D)可取任意正数11(1)nn n ∞=+∑1!nn n x∞=∑R =n +∞11(4)(5)n n n ∞=++∑14151911n n ∞=∑1n ∞=n ∞=1n n ∞=∑0a >111nn a ∞=+∑1a >01a <<1a =a29、以下级数中收敛的是 ( ). 选项A) 选项B)选项C)选项D)30以下级数中收敛的是 ( ). 选项A) 选项B)选项C)选项D)参考答案判断题1、正确2、正确3、错误4、正确5、正确6、错误7、正确8、错误9、正确10、正确11、正确12、正确13、正确14、正确15、正确16、正确17、错误 18、正确19、正确、20、正确二、选择题CDBCA CDCAD ACDCD CBABA BADBA CCACC113n n∞=∑n ∞=112nn n ∞=+∑121nn n ∞=+∑2112n n n ∞=++∑1!3n n n ∞=∑1()21nn nn ∞=+∑11ln(1)n n ∞=+∑。
吉林大学高数BII作业答案.

高等数学作业答案BⅡ吉林大学公共数学教学与研究中心2013年3月第一次作业学院 班级 姓名 学号一、单项选择题 1.22003limx y xyx y→→=+( D ). (A )32; (B )0; (C )65; (D )不存在.2.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在)0,0(处( C ).(A )连续,偏导数存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在;(D )不连续,偏导数不存在.3.设22(,)(1)(2)f x y y x x y =-+-,在下列求(1,2)x f 的方法中,不正确的一种是( B ).(A )因2(,2)2(1),(,2)4(1)x f x x f x x =-=-,故1(1,2)4(1)|0x x f x ==-=; (B )因(1,2)0f =,故(1,2)00x f '==;(C )因2(,)2(1)(2)x f x y y x y =-+-,故12(1,2)(,)0x x x y f f x y ====;(D )211(,2)(1,2)2(1)0(1,2)lim lim 011x x x f x f x f x x →→---===--.4.若(,)f x y 的点00(,)x y 处的两个偏导数都存在,则( C ). (A )(,)f x y 在点00(,)x y 的某个邻域内有界; (B )(,)f x y 在点00(,)x y 的某个邻域内连续;(C )0(,)f x y 在点0x 处连续,0(,)f x y 在点0y 处连续; (D )(,)f x y 在点00(,)x y 处连续.5.设22(,),2zz f x y y∂==∂,且(,0)1,(,0)y f x f x x ==,则(,)f x y 为( B ).(A )21xy x -+; (B )21xy y ++; (C )221x y y -+; (D )221x y y ++. 二、填空题1.z =的定义域为2224,01y x x y ≤<+<. 2.00x y →→= 1/2 .3.设22),(y x y x y x f +-+=,则=')4,3(x f 2/5,=')4,3(y f 1/5 . 4.设ln(32)u x y z =-+,则d u =3232dx dy dzx y z-+-+.5.设yz x =,则2z x y∂=∂∂()11ln y x y x -+.三、计算题1.已知2)z f =+,且当1y =时z x =,求()f t 及z 的表达式.将1,y z x ==代入,)12x f =+有)21fx =-解一:)))222423f=-+ ∴()243f t t t =-+解二:令2t =,则()22x t =-∴()()221f t t =--∴)22211z x =--=-2.讨论函数2222222,0,(,)0,0x xyx y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩的连续性..解一:当(),p x y 沿y 轴(x=0)趋于0(0,0)时, 当(),p x y 沿y x =,趋于0(0,0)时,∴()0lim,x y f x y →→不存在 ∴不连续解二:当(),p x y 沿y kx =趋于0(0,0)时,()()222222200011lim lim 11x x y kx k x x xy k x y k k x →→=→+++==+++ 与k 有关,∴不连续 3.设(1)y z xy =+,求d z . 解一:取对数()ln ln 1z y xy =+()1ln 11z x xy y z y xy ∂⋅=++⋅∂+,∴()()1ln 11y z xy xy xy y xy ⎡⎤∂=+++⎢⎥∂+⎣⎦解二:()()()()ln 1ln 1e ,e ln 111yy xy y xy z x xy y xy y xy ++⎡⎤∂∂==⋅++⋅=+⎢⎥∂+⎣⎦∴()()()12d 1d 1ln 1+xy d 1y y x z y xy x xy y xy -⎡⎤=++++⎢⎥+⎣⎦4.求2e d yzt xz u t =⎰的偏导数.5.设r =0r ≠时,有2222222r r r x y z r∂∂∂++=∂∂∂.222223xr x rr x r xr r-⋅∂-==∂,同理:2222222323,r r y r r z y r z r ∂-∂-==∂∂ ∴()2222222222233322r x y x r r r r x y z r r r-++∂∂∂++===∂∂∂ 6.证明函数(,)f x y =(0, 0)处:(1)连续;(2)偏导数存在;(3)不可微.(1)0ε∀>0=≤0ε-<ε<<取δ=,则当0δ<<0ε<,∴()()000lim ,lim00,0x x y y f x y f →→→→===(或:()00lim00,0x y f →→==),(),f x y =(2)()(),00,0,0x f x f =;()()0,0,0,00y f y f == (3)()()0,00,0x y z z f x f y =-⋅-=V V V V 考察:000limlimx x y y →→→→=V V V V 当(),p x y 沿直线y kx =趋于0(0,0)有00limlimx x y k x →→=⋅→=V V V V 与k 有关∴上式不存在,不可微第二次作业学院 班级 姓名 学号一、单项选择题 1.设22()y z f x y =-,其中()f u 为可导函数,则zx∂∂=( B ). (A )2222()xyf x y --;(B )222222()()xyf x y f x y '---;(C )22222()()yf x y f x y '---;(D )2222222()()()f x y yf x y f x y '-----.2.设方程(,,)0F x y y z z x ---=确定z 是x ,y 的函数,F 是可微函数,则z x∂∂=( D ).(A )13F F '-'; (B )13F F ''; (C )x zy zF F F F --;(D )1323F F F F ''-''-.3.设(,),(,),(,)x x y z y y z x z z x y ===都由方程(,,)0F x y z =所确定的隐函数,则下列等式中,不正确的一个是( C ).(A )1x yy x∂∂=∂∂; (B )1x zz x∂∂=∂∂; (C )1x y zy z x∂∂∂=∂∂∂;(D )1x y zy z x∂∂∂=-∂∂∂.4.设(,),(,)u u x y v v x y ==都是可微函数,C 为常数,则在下列梯度运算式中,有错误的是( A ).(A )0C ∇=;(B )()Cu C u ∇=∇; (C )()u v u v ∇+=∇+∇;(D )()uv v u u v ∇=∇+∇.5.()u f r =,而r =,且函数()f r 具有二阶连续导数,则22ux∂+∂2222u uy z ∂∂+=∂∂( B ).(A )1()()f r f r r '''+; (B )2()()f r f r r '''+;(C )211()()f r f r r r '''+; (D )212()()f r f r r r '''+.二、填空题1.已知(1,2)4,d (1,2)16d 4d ,d (1,4)64d 8d f f x y f x y ==+=+,则(,(,))z f x f x y =在点(1, 2)处对x 的偏导数为 192 .2.由方程e z xy yz zx -+=所确定的隐函数(,)z z x y =在点(1, 1)处的全微分为 d dy x +.3.r 在点(0, 0)处沿x 轴正向的方向导数为 1 .4.函数2222u x y z xy yz =++-+在点(1,2,3)--. 三、计算与解答题 1.设f 是C (2)类函数,22(e ,)xyz f x y =-,求2zx y∂∂∂.2.设32(32)x y z x y -=-,求d z .解一:解二:,32,32vz u u x y v x y ==-=- ∴()()()32d 32ln 3213d 2dy x yz x y x y x -=--+-⎡⎤⎣⎦3.设f ,ϕ是C (2)类函数,x y z yf x y x ϕ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,证明:(1)2220z z x y x x y ∂∂+=∂∂∂; (2)2222220z z x y x y ∂∂-=∂∂. 证21z y y yf x f x y x x ϕϕϕϕ∂⎛⎫''''=⋅++⋅⋅-=+- ⎪∂⎝⎭4.设arctan yx,求22d d y x .''2222x yy y x yx y x y+-=++∴ ()(),x yy x y x y y x y+''-=-+=-一阶:()()22222222112,ln arctan ,221x y y x x y x F x y x y F x x y x y y x -+=+-=⋅-=++⎛⎫+ ⎪⎝⎭22222211221y y y x x F y x y x y x-=⋅-=+++∴d d y Fx x y x y x Fy y x x y ++=-=-=-- 二阶:5.设e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩求,u v x y ∂∂∂∂. ∴()()1sin cos d d d sin cos 1sin cos 1u D v vu x y D e v v eu v v ==--+-+ ∴()sin e sin cos 1u u v x v v ∂=∂-+ ∴()()()2u cos e d e sin d d e sin -cos 1u uv x v y D v D u v v -++==⎡⎤+⎣⎦∴()e sin e sin cos 1u u v vy u v v ∂+=∂-+ 6.设2(,,),(,e ,)0,sin y u f x y z x z y x ϕ===,其中求f ,ϕ是C (1)类函数,求d d ux. ∴''12''332e ,y x z Fx z Fyx Fz y Fz ϕϕϕϕ∂∂=-=--=-=--∂∂ 解二:全微分'''123'''123d d d d 2d e d d 0d cos d y u f x f y f z x x y z y x x ϕϕϕ⎧=⋅++⎪⋅+⋅⋅+=⎨⎪=⎩ 即'''231'''231d d d d e d d 2d d cos d yu f y f z f x y z x x y x x ϕϕϕ⎧--=⎪+=-⎨⎪=⎩代入消元解得:'sin ''''12123'32cos d cos d x x e x u f f x f x ϕϕϕ⎛⎫+=+- ⎪⎝⎭∴…… 7.求函数ln()z x y =+的点(1, 2)处沿着抛物线24y x =的该点切线方向的方向导数.∴()()()111,21111,2cos 1,2cos 32323zzx zy αβ∂=⋅+=⋅+⋅=∂l第三次作业学院 班级 姓名 学号一、单项选择题1.在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线( B ). (A )只有一条;(B )只有两条;(C )至少有三条; (D )不存在.2.设函数(,)f x y 在点(0, 0)附近有定义,且(0,0)3,(0,0)1x y f f ==,则( C ). (A )d (0,0)3d d z x y =+;(B )曲面(,)z f x y =在点(0,0,(0,0))f 的法向量为{3,1,1}; (C )曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为{1,0,3};(D )曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为{3,0,1}.3.曲面()z x f y z =+-的任一点处的切平面 ( D ). (A )垂直于一定直线;(B )平等于一定平面; (C )与一定坐标面成定角;(D )平行于一定直线.4.设(,)u x y 在平面有界闭区域D 上是C (2)类函数,且满足20ux y∂≠∂∂及22220u ux y ∂∂+=∂∂,则(,)u x y 的 ( B ). (A )最大值点和最小值点必定都在D 的内部; (B )最大值点和最小值点必定都在D 的边界上; (C )最大值点在D 的内部,最小值点在D 的边界上; (D )最小值点在D 的内部,最得到值点在D 的边界上. 二、填空题1.如果曲面6xyz =在点M 处的切平面平行于平面63210x y z -++=,则切点M 的坐标是 (-1,2,-3) .2.曲线2224914,1x y z x y z ⎧++=⎨++=⎩在点(1,1,1)-处的法平面方程是 13x -10y -3z -6=0 .3.22z x y =+在条件1x y +=下的极小值是12.4.函数u 在点(1,1,1)M 处沿曲面222z x y =+在该点的外法线方向的方向导数是13.三、计算题1.求曲线222226,x y z z x y⎧++=⎪⎨=+⎪⎩在点(1,1,2)处的切线方程. 解一:22222yy zz x yy z x ''⎧+=-⎪⎨''-+=⎪⎩①②①+②:0z '=代入(),1,1,21xy y y''=-=- ∴()1,1,0s =-v切成:112110x y z ---==,即112x y z -=-⎧⎨=⎩解二:()()2221,,6,2,2,2,2,2,4F x y z x y z Fx x Fy y Fz z n =++-====u u v取()1121,1,2,n s n n ==⨯u v v u v u u v1s 切平面:()()()1111220260x y z x y z ⋅-+⋅-+-=+-=即+2s 切平面:()()()21212020x y z x y z -+---=--=即:2+2∴2602220x y z x y z ++-=⎧⎨+--=⎩2.过直线102227,0x y z x y z +-=⎧⎨+-=⎩作曲面222327x y z +-=的切平面,求其方程.解:设切点为0000(,,)M x y z ,切平面方程为:0003270x x y y z z +--=……① 过已知直线的平面束方程为()1022270x y z x y z λ+--++-= 即:()(10)2(2)270x y z λλλ++++---=……②当①②为同一平面时有:000103,2,2x y z λλλ+=+=--=-且222000327x y z +-=解得00000033117117x x y y z z ==-⎧⎧⎪⎪==-⎨⎨⎪⎪==-⎩⎩或对应的切平面方程为:927091717270x y z x y z +--=+-+=3.证明曲面2/32/32/32/3(0)x y z a a ++=>上任意点处的切平面在各个坐标轴上的截距平方和等于2a ..设000M x 0(,y ,z )为曲面上任一点 切平面方程为:()()111333000000222()0333x x x y y y z z z ----+-+-=即:11123333000x x y y z z a --++= 令0y z ==得x 轴截距1233x n a = 同理121233332,Y z a Z z a ==∴222422223333()X Y Z x y z a a ++=++=4.求函数22(,)(2)ln f x y x y y y =++的极值..①令222(2)02ln 10x y f x y f x y y '⎧=+=⎪⎨'=++=⎪⎩ ②得驻点10,e M ⎛⎫ ⎪⎝⎭③2212(2),4,2xx xy f y f xy fyy x y =+==+④M 处: AC-B 2>0,A>0,∴极小值110,f e e⎛⎫=-⎪⎝⎭5.求函数22(,)1216f x y x y x y =+-+在区域22{(,)|25}D x y x y =+≤上的最大值和最小值.2120621608fx x x fy y y =-==⎧⎧⎨⎨=+==-⎩⎩ 不在D 内,∴D 内无极值点 在边界2225x y +=上,(),251216f x y x y =-+12201620Lx x Ly y λλ=-+=⎧⎨=+=⎩ 解得3344x x y y ==-⎧⎧⎨⎨=-=⎩⎩ ()3,475f -=- 最小()3,4125f -= 最大61的一个切平面,使其在三个坐标轴上的截距之积为最大. 设切点为()()0000,,,,,1M x y z F x y zFn Fy ==)))0000x x y y z z -+--=1=令0y z==,得x轴截距X=x z==,得y轴截距Y=x y==,得z轴截距Z=令113 fx yz yzx xfy xz xzy yfz xy xyz z⎧===⎪⎪⎪=+==⎪⎪⎨⎪=+==⎪====19x y z===即切点为111,,999⎛⎫⎪⎝⎭切平面为:13x y z++=第四次作业学院 班级 姓名 学号一、单项选择题1.设(,)f x y 连续,且(,)(,)d d Df x y xy f x y x y =+⎰⎰,其中D 是由0y =,2y x =,1x =所围区域,则(,)f x y 等于( C ).(A )xy ;(B )2xy ;(C )18xy +; (D )1xy +.2.设D 是xOy 平面上以(1, 1), (-1, 1)和(-1, -1)为顶点的三角形区域,D 1是D 的第一象限部分,则(cos sin )d d Dxy x y x y +⎰⎰等于( A ).(A )12cos sin d d D x y x y ⎰⎰;(B )12d d D xy x y ⎰⎰;(C );14cos sin )d d D xy x y x y +⎰⎰( (D )0.3.设平面区域22:14,(,)D x y f x y ≤+≤是在区域D 上的连续函数,则d d Df x y ⎰⎰等于 ( A ).(A )212()d rf r r π⎰;(B )21002()d ()d rf r r rf r r π⎡⎤+⎣⎦⎰⎰;(C )2212()d rf r r π⎰; (D )2122002()d ()d rf r r rf r r π⎡⎤+⎣⎦⎰⎰.4.设有空间区域22221:,0x y z R z Ω++≤≥及22222:x y z R Ω++≤,0x ≥,0y ≥,0z ≥,则( C ).(A )12d 4d x V x V ΩΩ=⎰⎰⎰⎰⎰⎰; (B )12d 4d y V y V ΩΩ=⎰⎰⎰⎰⎰⎰;(C )12d 4d z V z V ΩΩ=⎰⎰⎰⎰⎰⎰;(D )12d 4d xyz V xyz V ΩΩ=⎰⎰⎰⎰⎰⎰.二、填空题1.积分2220d e d y x x y -=⎰⎰()-411e 2-. 2.交换积分次序:14012d (,)d d (,)d x x f x y y x f x y y -+=⎰⎰⎰⎰()2221d ,d y yy f x y x +-⎰⎰.3.设区域D 为||||1x y +≤,则(||||)d d Dx y x y +=⎰⎰43. 4.设区域D 为222x y R +≤,则2222d d Dx y x y a b ⎛⎫+= ⎪⎝⎭⎰⎰422114R a b π⎛⎫+ ⎪⎝⎭.5.直角坐标中三次积分22110d (,,)d x y I x y f x y z z +-=⎰⎰⎰在柱面坐标中先z 再r 后θ顺序的三次积分是()221d d cos ,sin ,d r r f r r z r z πθθθ⎰⎰⎰三、计算题1.计算|cos()|d d Dx y x y +⎰⎰,其中D 是由直线,0,2y x y x π===所围成的三角形区域.原式()()12cos d d cos d d D D x y x y x y x y =+-+⎰⎰⎰⎰=[][]240411cos 2cos 2122242y x ππππππ+++=- 2.计算sin d d Dx yx y y⎰⎰,其中D 是由2y x =和y x =所围成的区域. ①图交点,先x,②:01y x D y ⎧≤≤⎪⎨≤≤⎪⎩③21100sin sin d d d 22y y y y F f x y y y ⎛⎫==⋅- ⎪⎝⎭⎰⎰3.计算22()d d Dx y x y +⎰⎰,其中{(,)|02,D x y x y =≤≤≤.①图,极坐标,方程②2cos 2:02r D θπθ≤≤⎧⎪⎨≤≤⎪⎩ ③22202cos d d I r r r πθθ=⋅⎰⎰4.计算23d xy z V Ω⎰⎰⎰,其中Ω是由曲面z xy =与平面,1y x x ==和0z =所围成的闭或区域.①图,投影域Dxy②0:001z xy y y x ≤≤⎧⎪Ω≤≤⎨⎪≤≤⎩③1230d d d x xyI x y sy z z =⎰⎰⎰5.计算d I xyz V Ω=⎰⎰⎰,其中222{(,,)|1,0,0,0}x y z x y z x y z Ω=++≤≥≥≥.①图,已求坐标r=1②01:0202r πϕπθ⎧⎪≤≤⎪⎪Ω≤≤⎨⎪⎪≤≤⎪⎩③1222d d sin cos sin sin cos sin d I x r r r r r ππϕϕθϕθϕϕ=⋅⋅⋅⋅⋅⋅⎰⎰⎰6.设()d F t fV Ω=⎰⎰⎰,其中2222:,()x y z t f t Ω++≤在0t =可导,且(0)0f =,求4()lim t F t tπ+→. ∴()()()()()()02043000040lim lim lim lim '040t t t t F t f t t f t f t f f t t t t πππ→→→→⋅-+====- 四、证明题设函数)(x f 在闭区间],[b a 上连续且恒大于零,证明2d ()d ()()bbaaxf x x b a f x ≥-⎰⎰. 证明:设:a x bD a y b≤≤⎧⎨≤≤⎩∵2d d 0D x y ≥⎰⎰ 即:()()()()d d 2d d D Df x f y x y x y f y f x ⎡⎤+≥⎢⎥⎣⎦⎰⎰⎰⎰ ∴()()()()()211d d d d 2b bb b aaa a f x x y f y y xb a f y f x +⋅≥-⎰⎰⎰⎰∴()()()212d d 2bbaaf x x x b a f x ⋅≥-⎰⎰∴()()()21d d bbaaf x x x b a f x ⋅≥-⎰⎰第五次作业学院 班级 姓名 学号一、单项选择题1.设L 是圆周222x y a +=,则22()d nL x y s +=⎰Ñ(D ) .(A )2n a π; (B )12n a π+; (C )22n a π; (D )212n a π+.2.设L 是由(0, 0), (2, 0), (1, 1)三点连成的三角形边界曲线,则d L y s =⎰Ñ( A ).(A(B )2+(C )(D )2+3.设∑是锥面222x y z +=在01z ≤≤的部分,则22()d x y S ∑+=⎰⎰( D ). (A )1300d d r r πθ⎰⎰; (B )21300d d r r πθ⎰⎰;(C 1300d d r r πθ⎰;(D 21300d d r r πθ⎰.4.设∑为2222(0)x y z a z ++=≥,1∑是∑在第一卦限中的部分,则有(C ). (A )1d 4d x S x S ∑∑=⎰⎰⎰⎰;(B )1d 4d y S x S ∑∑=⎰⎰⎰⎰;(C )1d 4d z S x S ∑∑=⎰⎰⎰⎰;(D )1d 4d xyz S xyz S ∑∑=⎰⎰⎰⎰.二、填空题1.设曲线L 为下半圆y =22()d L x y s +=⎰1d π1LS =⋅⎰.2.设L 为曲线||y x =-上从1x =-到1x =的一段,则d L y s =⎰3.设Γ表示曲线弧,,,(02)2tx t y t z t π==≤≤,则222()d xy z s Γ++=⎰332ππ23+. 4.设∑是柱面222(0)x y a a +=>在0z h ≤≤之间的部分,则2d x S ∑=⎰⎰3a h π.5.设∑是上半椭球面2221(0)94x y z z ++=≥,已知∑的面积为A ,则222(4936)d x y z xyz S ∑+++=⎰⎰36A .三、计算题1.计算L s ⎰Ñ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.解:所以:原式=2(1-ae )+4aπa e2.2d z s Γ⎰Ñ,其中2222,:0.x y z a x y z ⎧++=Γ⎨++=⎩.(222d d d rrrx s y s z s ==⎰⎰⎰Q蜒?)3.计算曲面积分()d xy yz zx S ∑++⎰⎰,其中曲面:z ∑=被柱面222x y x +=所截得部分。
ib考试试题及答案

ib考试试题及答案IB考试试题及答案1. 在IB数学课程中,以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 在IB物理课程中,一个物体以10m/s的初速度向上抛出,忽略空气阻力,求其到达最高点的时间。
答案:1秒3. 在IB化学课程中,下列哪个元素的原子序数为11?A. SodiumB. MagnesiumC. AluminumD. Silicon答案:A4. 在IB生物学课程中,以下哪个过程不属于细胞周期?A. G1阶段B. S阶段C. G2阶段D. DNA修复答案:D5. 在IB历史课程中,冷战时期的两大对立阵营是什么?A. 北约和华沙条约组织B. 欧盟和东盟C. 联合国和国际货币基金组织D. 世界贸易组织和世界银行答案:A6. 在IB经济学课程中,以下哪个因素会导致商品的需求曲线向左移动?A. 商品价格上升B. 消费者收入增加C. 替代品价格下降D. 互补品价格上升答案:C7. 在IB英语文学课程中,以下哪位作家不属于现代主义文学运动?A. Virginia WoolfB. James JoyceC. Charles DickensD. T.S. Eliot答案:C8. 在IB环境系统和社会课程中,可持续发展的三个核心领域是什么?A. 经济、社会、环境B. 政治、文化、技术C. 教育、健康、能源D. 人口、资源、安全答案:A9. 在IB计算机科学课程中,以下哪个算法是用于排序的?A. Dijkstra's algorithmB. QuicksortC. Depth-first searchD. Binary search答案:B10. 在IB心理学课程中,弗洛伊德的心理发展理论中,哪个阶段与性有关?A. Oral stageB. Anal stageC. Phallic stageD. Latency stage答案:C。
2009~2010学年第二学期《高等数学BII》半期试题参考答案

2009~2010学年第二学期《高等数学BII》半期试题参考答案西南交通大学2009-2010学年第(二)学期半期考试题一、单项选择题(共5个小题,每小题4分,共20分).1.累次积分cos 2(cos ,sin )d f r r rdr πθθθθ??可表示成【 D】(A )100(,)dy f x y dx ?(B )10(,)dy f x y dx(C )10(,)dx f x y dy ?(D )10(,)dx f xy dy ?解:根据该二重积分可知,积分区域为半圆域:01,0x y ≤≤≤≤,所以应选D 。
2. 两直线1112y z x λ+--==与11x y z +=-=相交,则必有【 D 】(A )1λ= (B )32λ=(C )54λ=- (D )54λ=解:直线11x y z +=-=的参数方程为:11x t y t z t =-??=+??=?,将此参数方程代入直线1112y z x λ+--==,得2122t t t λ+--==,解得654t λ=??=??,故应选(D )。
3.极限332200lim x y x y x xy y →→+-+=【 A 】(A) 0 (B) 1 (C)12(D)不存在极限解;因为33222222000000()()lim lim lim()0x x x y y y x y x y x xy y x y x xy y x xy y →→→→→→++-+==+=-+-+,故应选(A )。
4.曲面2xyz =的切平面与三个坐标面所围四面体的体积V =【 C 】 (A) 3 (B) 6 (C) 9 (D) 12解:设曲面2xyz =在第一卦限的任意一个切点为(,,)x y z ,则切平面方程为:班级学号姓名密封装订线密封装订线密封装订线()()()0yz X x xz Y y xy Z z -+-+-=,其中2xyz =,即36yzX xzY xyZ xyz ++==,则该切平面与三个坐标轴的交点分别为:6(,0,0)yz,6(0,,0)xz ,6(0,0,)xy ,则该切平面与三个坐标面所围四面体的体积221666363696()2V yz xz xy xyz ====,故应选(C )。
高等数学b1期末试题及答案

高等数学b1期末试题及答案一、选择题(每题5分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B2. 计算定积分∫(0,1) x^2 dx 的值。
A. 1/3B. 1/2C. 1D. 2答案:A3. 以下哪个选项是洛必达法则的应用?A. 计算极限lim(x→0) (sin x)/xB. 计算定积分∫(0,π) sin x dxC. 计算导数 d/dx (x^3)D. 计算不定积分∫e^x dx答案:A4. 以下哪个选项是二阶导数?A. d^2y/dx^2B. dy/dxC. d^2y/dy^2D. d^2y/dxdy答案:A5. 以下哪个选项是泰勒公式的展开式?A. f(x) = f(a) + f'(a)(x-a)B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2!C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^3/3!答案:B6. 以下哪个选项是傅里叶级数的组成部分?A. 正弦函数B. 余弦函数C. 指数函数D. 所有选项答案:D二、填空题(每题5分,共20分)1. 函数 f(x) = x^3 - 6x 在 x = 2 处的导数是 _______。
答案:-62. 微分方程 y'' - 2y' + y = 0 的通解是 _______。
答案:y = C1 * e^x + C2 * e^(-x)3. 计算极限lim(x→0) (e^x - 1)/x 的值是 _______。
答案:14. 函数 y = sin x 的不定积分是 _______。
高等数学b1期末考试试题及答案

高等数学b1期末考试试题及答案一、选择题(每题5分,共30分)1. 极限的定义是:A. 函数在某点的函数值B. 函数在某点的导数C. 函数在某点的左、右极限存在且相等D. 函数在某点的连续性答案:C2. 以下哪项是连续函数的性质?A. 可导性B. 可积性C. 可微性D. 以上都是答案:D3. 函数f(x) = x^2在x=0处的导数是:A. 0B. 2C. 1D. 不存在答案:C4. 以下哪个选项不是定积分的性质?A. 可加性B. 可乘性C. 可微性D. 可减性答案:C5. 微分方程dy/dx + y = x的通解是:A. y = e^(-x) + xB. y = e^x + xC. y = e^(-x) - xD. y = e^x - x答案:A6. 以下哪个选项是二阶可导函数的性质?A. 可积性B. 可微性C. 可导性D. 以上都是答案:D二、填空题(每题5分,共20分)1. 函数f(x) = ln(x)的导数是________。
答案:1/x2. 函数f(x) = e^x的二阶导数是________。
答案:e^x3. 定积分∫<0,1> x^2 dx的值是________。
答案:1/34. 函数f(x) = sin(x)的泰勒展开式在x=0处的前三项是________。
答案:x - x^3/6三、解答题(每题10分,共50分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
答案:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1 和 x = 11/3。
然后计算二阶导数f''(x) = 6x - 12。
对于x = 1,f''(1) = -6 < 0,所以x = 1是极大值点;对于x = 11/3,f''(11/3) = 2 > 0,所以x = 11/3是极小值点。
大一高数b1期末考试题及答案解析

大一高数b1期末考试题及答案解析一、选择题(每题5分,共20分)1. 以下哪个选项是微分的定义?A. 函数在某点的导数B. 函数在某点的切线斜率C. 函数在某点的极限D. 函数在某点的增量答案:C解析:微分是函数在某点的极限,即函数增量与自变量增量之比当自变量增量趋近于零时的极限。
2. 函数f(x)=x^3+2x-1的导数是?A. 3x^2+2B. x^3+2C. 2x^2+2D. x^2+2x答案:A解析:根据导数的定义,f'(x)=3x^2+2。
3. 以下哪个选项是定积分的定义?A. 函数在某区间的原函数B. 函数在某区间的增量C. 函数在某区间的极限D. 函数在某区间的差分答案:C解析:定积分是函数在某区间的极限,即函数在该区间上所有小矩形面积的和的极限。
4. 曲线y=x^2与x轴围成的面积是?A. 1/3B. 1/2C. 2/3D. 1/4答案:A解析:曲线y=x^2与x轴围成的面积可以通过定积分计算,即∫(0,1)x^2dx=1/3。
二、填空题(每题5分,共20分)1. 已知函数f(x)=x^2-3x+2,求f'(x)=________。
答案:2x-3解析:根据导数的定义,f'(x)=2x-3。
2. 函数f(x)=ln(x)的导数是________。
答案:1/x解析:自然对数函数ln(x)的导数是1/x。
3. 求定积分∫(0,1)x^2dx的值。
答案:1/3解析:通过计算定积分∫(0,1)x^2dx=1/3。
4. 曲线y=x^3与x轴围成的面积是________。
答案:1/4解析:曲线y=x^3与x轴围成的面积可以通过定积分计算,即∫(0,1)x^3dx=1/4。
三、解答题(每题10分,共20分)1. 求函数f(x)=e^x的导数。
答案:f'(x)=e^x解析:指数函数e^x的导数仍然是e^x。
2. 求定积分∫(0,2)e^xdx的值。
答案:e^2-1解析:通过计算定积分∫(0,2)e^xdx=e^2-1。
IB数学模块(含答案)

IB数学模块题号:03“不等式选讲”模块(10分)(Ⅰ)已知f(x)=x2+|2x-4|+a,若不等式f(x)≥0 的解集为实数集R,求实数a的取值范围;(Ⅱ)已知x,y,z∈R,且x2+y2+z2=1,求xy-的取值范围.题号:04“坐标系与参数方程”模块(10分)已知椭圆C的参数方程为cossinx ay bαα=⎧⎨=⎩,,(α为参数,a>b>0),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求椭圆C的极坐标方程;(Ⅱ)对于90,60AOB OAB∠=︒∠=︒的△AOB(只考虑A,O,B按顺时针方向排列的情形),试判断是否存在椭圆C使△AOB的顶点A,B都在椭圆上?并说明理由.参考答案03 解:(Ⅰ)当x≥2时,22()24+(1)5f x x x a x a=+-=+-+,f(x)在x=2时,取最小值a+4;当x<2时,22()24(1)3f x x x a x a=-++=-++,f(x)在x=1时,取最小值a+3,∴f (x )的最小值为a +3,∴要使f (x )≥0的解集为实数集R ,须a +3≥0,即a ≥-3, 故实数a 的取值范围为[-3,+∞). (Ⅱ)∵222()()xy y x =222222221(13)[()]4(1)412y y y x z y y ⎛⎫+-++-=-= ⎪⎝⎭≤≤.∴11xy -≤≤其中当x z y ==或x z y ===xy 取最大值1;当x z y ===或x z y ===xy 取最小值-1.故xy 的取值范围为[-1,1].04 解: (Ⅰ)∵cos sin x a y b αα=⎧⎨=⎩,,∴22x y a b ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=cos 2α+sin 2α=1,得22221x y a b +=把cos sin x y ρθρθ=⎧⎨=⎩,代入得:222222cos sin 1a b ρθρθ+= ∴所求椭圆C 的极坐标方程为:2222222sin cos a b a b ρθθ=+.(Ⅱ)不妨设A (ρ,θ ),,2B θπ⎫+⎪⎭,由A ,B 在椭圆上可知:222222222222sin cos 3sin cos 22a b a b a b a b θθθθ=+⎡ππ⎤⎛⎫⎛⎫+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 得:(3a 2-b 2)cos 2θ=(a 2-3b 2)sin 2θ,若cos θ=0,则sin θ≠0,a 2-3b 2=0,∴a =;若cos θ≠0,又3a 2-b 2>0,则 222223tan 3a b a b θ-=->0,∴a 2-3b 2>0,∴a >.因此,当a 时符合要求的椭圆C存在,当a <时符合要求的椭圆C 不存在.。
05-06微积分BII期末(答案)

浙江大学城市学院2005— 2006学年第二学期期末考试试卷《 微积分(B )》解答一. 微分方程问题(本大题共 3 题,每题 5分,共15 分)1. 求解微分方程 xxx y dx dy sin =+. 解:()11ln ln sin sin 11sin cos dx dx x x x x x x y e e dx C e e dx C x x xdx C x C x x --⎡⎤⎡⎤⎰⎰=+=+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=+=-+⎣⎦⎰⎰⎰2. 求解微分方程01tan 22=--dx dyx dx y d . 解 令dy p dx =,得 tan 10p x p '--=,cos tan 1,,1sin ln 1ln sin , 1sin ,c dp dp x x p dx dx p x p x C p e x =+=++=++=±⎰⎰即 11sin p C x += 1sin 1y C x '=-,()112sin 1cos y C x dx C x x C=-=-+⎰所以通解 12cos y C x x C =-+3. 已知曲线过点)3,1(,且曲线上任一点的切线斜率等于自原点到该切点的连线的斜率的二倍,求此曲线方程。
解 设曲线为()y f x =,则2yy x'=,且(1)3f = 22 , dy y dy dx dx x y x == 2, ln 2ln dy dx y x C y x ==+⎰⎰ 即 2y Cx =,由(1)3f =得3C =,所以曲线方程为23y x =二.求下列各题(本大题共 3 题,每题 5 分,共 15 分)1. 设向量 k j i a32-+=,向量 k j i b 23+-=。
求(1)→⋅-b b a )32(,(2)a b a ⨯+)2(.解: (1) (23){1,11,12}{1,3,2}56a b b →-⋅=-⋅-=-;a b a⨯+)2(=2,b a ⨯而b a ⨯=132777213i jki j k -=++-, 所以ab a⨯+)2(=2227b a ⨯=+=2. 求过点(1,3,2)且与直线⎩⎨⎧=++-=+-+,022;0332z y x z y x 平行的直线方程。
高等数学模拟考试题及答案1

《高等数学》模拟试题一一、选择题(本大题共5小题,每小题4分,共20分)1.点1=x 是函数112--=x x y 的 ( )A .连续点B .可去间断点C .跳跃间断点D .无穷间断点2.设)(x f 在),(b a 内可导,则在),(b a 内,0)(>'x f 是)(x f 在),(b a 内单调增加的 ( )A .必要条件B .充分条件C .充分必要条件D .无关条件3.设x x x F cos )(2+=是)(x f 的一个原函数,则)(x f 等于 ( )A .x x cos 2B .2cos xxC .x x sin 33+D .x x sin 2-4.级数∑∞=-11)1(n nn( ) A .绝对收敛 B .条件收敛 C .发散 D .敛散性不确定 5.微分方程'''20y y y ++=的通解为 ( )A .x ceB ..x ce -C .12()x c c x e +D .12()x c c x e -+二、 填空题(本大题共5小题,每小题4分,共20分)1. =--+→121lim21x x x . 2. 设),1cos()(+=x x f 则=')(x f .3. 过点(1,1,1)且与平面2x +3y =1垂直的直线方程为4. 设,1xyz =则=dz . 5. 设⎰-+=xx x dx x f 02,1sin )(则=')(x f .三、计算题(本大题共6小题,共48分).1. 计算极限: 302)1ln(limx dttxx ⎰+→ (5分).2.设0sin 2=++z z x e xy ,求xz∂∂ (5分). 3.设x x x f ln 2)(2-=,求)(x f 的单调区间和极值.(8分)4.D 是由曲线x e y =,Ox 轴,Oy 轴及4=x 围成的平面区域,试在(0,4)内找一点0x ,使直线0x x =平分平面区域D 的面积.(8分)5.验证函数2()n yz x f x =满足方程2z z x y nz x y ∂∂+=∂∂(其中f 可微).(8分) 6.改变二次积分21101(,)yy dy f x y dx --⎰⎰的积分次序(7分)7.求解下列微分方程:'2'1.y xy x y -=+(7分)四、证明题(本大题共2小题,共12分).1.证明:当1>x 时,1)1(2ln +->x x x .(6分) 2.函数f (x )在[0,1]上可导,且f (1)=2120()xf x dx ⎰,证明:存在一点ξ∈(0,1)使得ξf '(ξ)+ f (ξ)=0 (6分).《高等数学》模拟试题二一、选择题(本大题共5小题,每小题4分,共20分)1.曲线11+-=x x y 的垂直渐近线为 ( ) A .1-=x B .1=x C .1-=y D .1=y2.当0→x 时,)21ln(xα+与x 是等价无穷小,则α等于( )A .2B . 2-C .21D .21-3.下列式子中正确的是 ( )A .⎰+='c x f dx x f )3()3(B .'[()]()d f x dx f x =⎰C .⎰=bax f dx x f dx d )()( D .⎰⎰=-b a b a du u f dx x f 0)()( 4.下列命题中,正确的是 ( )A .0lim =∞→n n u ,则∑∞=1n n u 必收敛 B .0lim =∞→n n u ,则∑∞=1n n u 必发散C .0lim ≠∞→n n u ,则∑∞=1n n u 必收敛 D .0lim ≠∞→n n u ,则∑∞=1n n u 必发散5.微分方程'''23x y y y xe +-=的特解形式为 ( )A .()x ax b e +B .2x ax eC .x axeD .2()x ax bx e + 二、 填空题(本大题共5小题,每小题4分,共20分)6. 201cos limx xx →-=7. 设x x x f ln )(=,则='')1(f . 8.'(sin 1)cos f x xdx +⎰=9. 过点(2,0,1)且与直线210x y z==垂直的平面方程为 10. 幂级数∑∞=⎪⎭⎫⎝⎛02n nx 的收敛半径为=R .三、计算题(本大题共4小题,共48分).1. 求极限: lim (arctan )2x x x π→+∞- (5分).2.设),(y x z z =是由方程133=-xyz z 确定的隐函数,求全微分dz (5分).3.求函数x x x f ln )(2-=在],1[e 上的最值(8分).4.求由曲线1-=x y ,4=x 与0=y 所围成的平面图形绕Ox 轴旋转所得到的旋转体的体积V (8分).5.f (x )在[0,1]上连续,求证211()()()y x dy f x dx e e f x dx =-⎰⎰ (7分).6.求解下列微分方程: 2()0ydx x y dy ++= (7分).7.已知1(0),2f =-求f (x )使曲线积分[()]()x l e f x ydx f x dy +-⎰与路径无关,并计算(8分).(1,1)(0,0)[()]()x e f x dx f x dy +-⎰四、证明题(本大题共2小题,共12分).1.证明:当x >0时,2x arctan x >ln(1+x 2) (6分).2.设f (x )在(-1,1)内可微,且f (0)=0, |f ' (x )|< M (M >0), 试证在(-1,1)内恒有|f (x )|<M(6分).《高等数学》模拟试题三一、选择题(本大题共5小题,每小题4分,共20分)1.设53)(+=x x f ,则[]2)(-x f f 等于 ( )A .149+xB .33+xC .149-xD .33-x2.设x x f 3)(= ,则ax a f x f a x --→)()(lim 等于( )A .3ln 3aB .a3 C .3ln D .3ln 3a3.设函数f (x )连续,0(),s t I t f tx dx =⎰其中t >0,s >0,则积分I ( )A .依赖于s 和tB .依赖于s ,t,xC .依赖于t 和xD .依赖于s ,不依赖于t4.级数111nn a∞=+∑收敛的条件为( ) A .a ≥1 B .a >1 C . a ≤1 D .a <15.微分方程0cos =+x y dxdy的通解为 ( )A .x c y sin =B .x ce y sin -=C .x ce y cos -=D .x c y cos =二、 填空题(本大题共5小题,每小题4分,共20分)11. 设3lim ln()16,xx x a x a→∞+=-则a =12. 设22sin ,cos ,x t y t ==则dydx=13. ⎰=xdx x sin cos 3 .14.''()xf x dx ⎰=5.设sin y =xy , 则dydx= 三、计算题(本大题共4小题,共48分). 1. 求极限lim x →+∞(5分).2.求函数f (x )=20(1)(2)xt t dt --⎰的极值(7分).3.平面图形由曲线3,4y x y x=+=,求此图形的面积S (7分).4.求微分方程'cot ln y x y y =满足初始条件4x y π==(5分).5.求幂级数112nnn n x ∞=+∑的收敛区间以及和函数 (8分). 6. 计算二重积分:⎰⎰+Ddxdy y x )3(22,其中区域D 是由直线2,1,2,====x x x y x y 围成(8分)7.设函数f (x )满足0()()()x xx f x x f t dt e tf t dt +=+⎰⎰,求f (x ) (8分).四、证明题(本大题共2小题,共12分).1.证明:当0>x 时,2211)1ln(x x x x +>+++(6分).2.证明:双曲线)0(1>=x xy 上任一点处的切线与两坐标轴所围三角形的面积等于2(6分).《高等数学》模拟试题一参考答案一、选择题(本大题共5小题,每小题4分,共20分)1.B 2.B 3.D 4.B 5.D二、 填空题(本大题共5小题,每小题4分,共20分)1.1422.2sin(1)x x +3.111230x z z ---==4.2()ydx xdyxy + 5. sin 2x -+三、计算题(本大题共4小题,共44分).1.解:220322000ln(1)ln(1)21111limlim lim 6310331x x x x t dtx x x x xx →→→++==⨯=⨯=++⎰ 2.解:方程两边对x 求导得:22sin cos 0xy z zye x z x z x x∂∂+++=∂∂22sin 1cos xy z ye x z x x z∂+∴=-∂+3.解:对函数x x x f ln 2)(2-=求导得:'1()4f x x x =-,令11140 ()22x x x -==-得舍去, 列表:x (0,12) 12 (12,+∞) y’ - 0+ y单减极小值1ln 22+单增由表可知, f (x )在(0,12)上单调减少,在(2,+∞)上单调增加,在12x =处取得极小值1ln 22+.4.解:由题意知,4x xx x e dx e dx =⎰⎰,所以0041x x e e e -=-401 ln2e x +∴=5.证:求函数2()nyz x f x =的偏导数: 113223222()()()()2(),n n n n z y y y y y nx f x f nx f x yf x x x x x x---∂-=+•=-∂ 22221()()(),n n z y y x f x f y x x x-∂=•=∂ 所以132222222222[()2()]2[()] ()2()2()n n n n n n z z y y yxy x nx f x yf y x f x y x x xy y ynx f x yf x yf nzx x x -----∂∂+=-+∂∂=-+=6.解:21101(,)yy dy f x y dx --⎰⎰=0110(,)x dx f x y dy +-⎰⎰+110(,)xdx f x y dy -⎰⎰7.解:整理方程为1(1)dy dx y x x =-+,所以 (ln(1))(ln ln(1))d y d x x -=-+ 1ln(1)ln1xy C x -=++ 11x y Cx =++ 四、证明题(本大题共2小题,共12分).1.证明:令2(1)()ln ,(0)21x F x x F x -=-=+,由于2'2(1)()0 (1)(1)x F x x x x -=>>+, 所以,当1>x 时()(0)20F x F >=>,即1)1(2ln +->x x x .2.证明:令()()F x xf x =,函数F (x )在[0,1]上可导. 根据积分中值定理,存在1(0,)2c ∈,使得1122001(1)(1)2()2()2()()2F f xf x dx F x dx F c F c ====••=⎰⎰再根据罗尔定理,存在一点ξ∈(c ,1使得'()0,F ξ=即 ξf '(ξ)+ f (ξ)=0《高等数学》模拟试题二参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、 填空题(本大题共5小题,每小题4分,共20分)(sin 1)f x C ++ 40x y +-=三、计算题(本大题共4小题,共48分).22221arctan12lim (arctan )lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞--+-====+-233()0z dz yzdx xzdy xydz -++=2 yzdx xzdydz z xy+∴=-x x x f ln )(2-=求导得:'()2ln f x x x x =--,令'()0,f x =得12x e-=. 比较112211(),(1)0,()22f e e f f e e e --====-可知, f (x ) 在],1[e 上的最小值为2e -,最大值为12e.4442211119(1)()22V dx x dx x x ππππ==-=-=⎰⎰222111111000()()()[]()()yyyx x x dy f x dx dx e f x dy f x e dy dx e e f x dx ===-⎰⎰⎰⎰⎰⎰20ydx xdy y dy ++=31()03d xy y +=313xy y C +=曲线积分与路径无关的条件,有()()x df x e f x dx=+' (())x y y e y f x -==微分方程'x y y e -=的通解为x x y ce xe =+,由于1(0),2f =-有12c =-,所以1()2x x f x e xe =-+四、证明题(本大题共2小题,共12分).2()2arctan ln(1),(0)0F x x x x F =-+=,由于'2222()2arctan 2arctan 0 (0)11x xF x x x x x x =+-=>>++, 所以,当x >0时()(0)0F x F >=,即2x arctan x >ln(1+x 2).设x 为(-1,1)内任意点,函数f (x )在[x ,0](x <0)或[0, x ](x >0)上可导. 根据拉格朗日中值定理,存在介于x 与0之间的点c ,使得''|()||()(0)||()||0||()|f x f x f f c c f c M =-=-<<《高等数学》模拟试题三参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、填空题(本大题共5小题,每小题4分,共20分)2-141cos4x C-+'()()x f x C++cosyy x-三、计算题(本大题共4小题,共48分).3 lim lim lim2 x x x→+∞===f(x)=2(1)(2)xt t dt--⎰求导得:'2()(1)(2)f x x x=--,令'()0,f x=得121,2x x==. 列表:由表可知, f112320017(1)(2)[584]12t t dt t t t dt--=-+-=-⎰⎰.3321131(4)(43ln)43ln32S x dx x x xx=--=--=-⎰整理微分方程得tanlndyxdxy y=1ln ln tan ln|cos|y xdx x C==-+⎰ln|cos|xCey e-=对于初始条件4x y π==C =1. 所以所求特解为ln|cos |x e y e-=幂级数112n n n n x ∞=+∑的收敛半径为1112lim lim 222n n n n n n u n R u n +→∞→∞++==⨯=+,且当x =2或-2时幂级数发散,所以幂级数的收敛区间为(-2,2).设其和函数为S (x ),则1'1112221''22122222()(1)() (1)()222(1)2 ()()1(1)(1)444 1.(2)(2)(1)2n nn n n n n n x x S x n t n t t t t t t t t tt t t x x x x xx x ∞∞∞+===∞+==+=+=+-+====+++++===-+++∑∑∑∑⎰⎰+Ddxdy y x)3(22化为二次积分为222222122223311(3)(3) [()]830.xxDx xx y dxdy dx x y dy x y y dx x dx +=+=+==⎰⎰⎰⎰⎰⎰'()()xx f x f t dt e +=⎰两边再求导数,整理得到'''()()x f x f x e +=或'''x y y e +=微分方程'''x y y e +=对应的齐次方程的通解为12x y c c e -=+,特解为12x y e =.所以'''x y y e +=的通解为1212x x y c c e e -=++.又由于(0)1f =(原方程两边代入x =0), '(0)1f =(求一次导数后的方程两边代入x =0),所以11,c =212c =-,所求方程的解为11sh 2x x e e y x --=+=+.四、证明题(本大题共2小题,共12分).()ln(1(0)0F x x x F =+=,由于'()ln(0 (0)F x x x =>>,所以,当x >0时()(0)0F x F >=,即2211)1ln(x x x x +>+++.t 为(0,+∞)内任意点,双曲线1y x =上在x=t 处的切线方程为 211()y x t t t -=-- 该直线与两坐标轴分别相交于2(0,),(2,0)A B t t由A ,B 和坐标原点O 形成三角形面积为12|||2|22S t t=⨯⨯=所以结论成立.。
高等数学b1期末考试试题和答案

高等数学b1期末考试试题和答案高等数学B1期末考试试题一、单项选择题(每题3分,共30分)1. 函数y=x^2+2x+1的导数是()。
A. 2x+2B. 2x+1C. 2xD. 2x-12. 极限lim(x→0) (x^2-1)/(x-1)的值是()。
A. -1B. 1C. 0D. 23. 函数y=e^x的不定积分是()。
A. e^x + CB. e^x - CC. xe^x + CD. xe^x - C4. 曲线y=x^3-3x^2+2x+1在x=1处的切线斜率是()。
A. 0B. 1C. -1D. 25. 函数y=ln(x)的二阶导数是()。
A. 1/x^2B. 1/xC. -1/xD. -1/x^26. 曲线y=x^2+2x+1与x轴的交点个数是()。
A. 0B. 1C. 2D. 37. 函数y=x^3-3x^2+2x+1的极值点是()。
A. x=1B. x=2C. x=-1D. x=08. 函数y=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 89. 函数y=x^2+2x+1的值域是()。
A. (-∞, +∞)B. [0, +∞)C. (-1, +∞)D. [1, +∞)10. 曲线y=x^3-3x^2+2x+1在x=2处的切线方程是()。
A. y=x-1B. y=2x-1C. y=3x-2D. y=4x-3二、填空题(每题4分,共20分)11. 函数y=x^3的导数是_________。
12. 极限lim(x→∞) (x^2-1)/(x^2+1)的值是_________。
13. 函数y=e^x的二阶导数是_________。
14. 曲线y=x^2-4x+4在x=2处的切线斜率是_________。
15. 函数y=ln(x)的值域是_________。
三、计算题(每题10分,共40分)16. 求函数y=x^2-4x+4的极值点。
17. 求函数y=x^3-3x^2+2x+1的不定积分。
吉林大学高数bii作业答案.-2013-2(一)复习课程

吉林大学高数B I I作业答案.2012-2013-2(一)高等数学作业答案BⅡ吉林大学公共数学教学与研究中心2013年3月收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除第一次作业学院 班级 姓名 学号一、单项选择题 1.223limx y xyx y →→=+( D ). (A )32; (B )0; (C )65;(D )不存在.2.二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在)0,0(处( C ). (A )连续,偏导数存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在;(D )不连续,偏导数不存在.3.设22(,)(1)(2)f x y y x x y =-+-,在下列求(1,2)x f 的方法中,不正确的一种是( B ).(A )因2(,2)2(1),(,2)4(1)x f x x f x x =-=-,故1(1,2)4(1)|0x x f x ==-=; (B )因(1,2)0f =,故(1,2)00x f '==;(C )因2(,)2(1)(2)x f x y y x y =-+-,故12(1,2)(,)0x x x y f f x y ====;(D )211(,2)(1,2)2(1)0(1,2)lim lim 011x x x f x f x f x x →→---===--. 4.若(,)f x y 的点00(,)x y 处的两个偏导数都存在,则( C ). (A )(,)f x y 在点00(,)x y 的某个邻域内有界; (B )(,)f x y 在点00(,)x y 的某个邻域内连续;收集于网络,如有侵权请联系管理员删除(C )0(,)f x y 在点0x 处连续,0(,)f x y 在点0y 处连续; (D )(,)f x y 在点00(,)x y 处连续.5.设22(,),2zz f x y y∂==∂,且(,0)1,(,0)y f x f x x ==,则(,)f x y 为( B ).(A )21xy x -+; (B )21xy y ++; (C )221x y y -+; (D )221x y y ++.二、填空题1.z =的定义域为2224,01y x x y ≤<+<. 2.0x y →→= 1/2 . 3.设22),(y x y x y x f +-+=,则=')4,3(x f 2/5,=')4,3(y f 1/5 . 4.设ln(32)u x y z =-+,则d u =3232dx dy dzx y z-+-+.5.设yz x =,则2z x y∂=∂∂()11ln y x y x -+. 三、计算题1.已知2)z f =,且当1y =时z x =,求()f t 及z 的表达式.将1,y z x ==代入,)12x f=+有)21fx =-解一:)))222423f =-+ ∴()243f t t t =-+解二:令2t =,则()22x t =- ∴()()221f t t =--∴)22211z x =--=-收集于网络,如有侵权请联系管理员删除2.讨论函数2222222,0,(,)0,0x xyx y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩的连续性..解一:当(),p x y 沿y 轴(x=0)趋于0(0,0)时, 2222limlim0x y y x xyx y y →→→+==+ 当(),p x y 沿y x =,趋于0(0,0)时,222220002lim lim 12x x y x x xy x x y x→→=→+==+ ∴()00lim,x y f x y →→不存在 ∴不连续解二:当(),p x y 沿y kx =趋于0(0,0)时,()()222222200011lim lim 11x x y kx k x x xy k x y k k x →→=→+++==+++ 与k 有关,∴不连续 3.设(1)y z xy =+,求d z .()()11211y y z y xy y y xy x--∂=⋅+⋅=+∂ 解一:取对数()ln ln 1z y xy =+()1ln 11z x xy y z y xy ∂⋅=++⋅∂+,∴()()1ln 11y z xy xy xy y xy ⎡⎤∂=+++⎢⎥∂+⎣⎦ 解二:()()()()ln 1ln 1e ,e ln 111y y xy y xy z x xy y xy y xy ++⎡⎤∂∂==⋅++⋅=+⎢⎥∂+⎣⎦ ∴()()()12d 1d 1ln 1+xy d 1y y x z y xy x xy y xy -⎡⎤=++++⎢⎥+⎣⎦4.求2e d yzt xz u t =⎰的偏导数.t220e e xz yzt u dt dt =-+⎰⎰22x z e uz x ∂=-⋅∂ 22y e z uz y∂=⋅∂收集于网络,如有侵权请联系管理员删除2222x y e e z z ux y z∂=-⋅+⋅∂5.设r =0r ≠时,有2222222r r r x y z r∂∂∂++=∂∂∂.r xx r ∂==∂ 222223xr x rr x r x r r -⋅∂-==∂,同理:2222222323,r r y r r z y r z r ∂-∂-==∂∂∴()2222222222233322r x y x r r r r x y z r r r-++∂∂∂++===∂∂∂6.证明函数(,)f x y =(0, 0)处:(1)连续;(2)偏导数存在;(3)不可微. (1)0ε∀>0=≤0ε<ε<<取δ=,则当0δ<<0ε<,∴()()000lim ,lim00,0x x y y f x y f →→→→===(或:()00lim00,0x y f →→==),(),f x y =(2)()(),00,0,0x f x f =;()()0,0,0,00y f y f == (3)()()0,00,0x y z z f x f y =-⋅-=V V V V 考察:000limlimx x y y →→→→=V V V V 当(),p x y 沿直线y kx =趋于0(0,0)有00lim limx x y k x →→=⋅→=V V V V 与k 有关∴上式不存在,不可微收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除第二次作业学院 班级 姓名 学号一、单项选择题 1.设22()y z f x y =-,其中()f u 为可导函数,则zx∂∂=( B ). (A )2222()xyf x y --;(B )222222()()xyf x y f x y '---;(C )22222()()yf x y f x y '---;(D )2222222()()()f x y yf x y f x y '-----. 2.设方程(,,)0F x y y z z x ---=确定z 是x ,y 的函数,F 是可微函数,则zx∂∂=( D ). (A )13F F '-'; (B )13F F ''; (C )x zy zF F F F --;(D )1323F F F F ''-''-. 3.设(,),(,),(,)x x y z y y z x z z x y ===都由方程(,,)0F x y z =所确定的隐函数,则下列等式中,不正确的一个是( C ).(A )1x yy x∂∂=∂∂; (B )1x zz x∂∂=∂∂; (C )1x y zy z x ∂∂∂=∂∂∂;(D )1x y zy z x∂∂∂=-∂∂∂.4.设(,),(,)u u x y v v x y ==都是可微函数,C 为常数,则在下列梯度运算式中,有错误的是( A ).收集于网络,如有侵权请联系管理员删除(A )0C ∇=; (B )()Cu C u ∇=∇;(C )()u v u v ∇+=∇+∇;(D )()uv v u u v ∇=∇+∇.5.()u f r =,而r ()f r 具有二阶连续导数,则22ux∂+∂2222u uy z ∂∂+=∂∂( B ). (A )1()()f r f r r'''+; (B )2()()f r f r r '''+; (C )211()()f r f r r r'''+;(D )212()()f r f r r r'''+.二、填空题1.已知(1,2)4,d (1,2)16d 4d ,d (1,4)64d 8d f f x y f x y ==+=+,则(,(,))z f x f x y =在点(1, 2)处对x 的偏导数为 192 .2.由方程e z xy yz zx -+=所确定的隐函数(,)z z x y =在点(1, 1)处的全微分为 d dy x +.3.r 在点(0, 0)处沿x 轴正向的方向导数为 1 . 4.函数2222u x y z xy yz =++-+在点(1,2,3)--处的方向导数的最大值等于三、计算与解答题 1.设f 是C (2)类函数,22(e ,)xyzf x y =-,求2zx y∂∂∂.''''[1212e 2e 2xy xy zf y f x y f xf x∂=⋅⋅+⋅=+∂ ()()2''"''''''1111122122e e e e 22e 2xy xy xy xy xy z f y xf y f x f y x f x f y x y∂⎡⎤⎡⎤=+⋅⋅+⋅+⋅-+⋅⋅+⋅-⎣⎦⎣⎦∂∂ ()()'2"22""11112221e e 2e 4xy xy xy xy f xy f x y f xyf =+++-- 2.设32(32)x y z x y -=-,求d z .收集于网络,如有侵权请联系管理员删除解一:()()()()()()()d ln d 32ln 32,1d d 3x-2y ln 3232d ln 32z x y x y z x y x y x y z=-⋅-=⋅-+-⋅- ()()()32d 32ln 3213d 2dy x yz x y x y x -=--+-⎡⎤⎣⎦解二:,32,32v z u u x y v x y ==-=- ()()3213332ln 321x yv x u x v x z z u z v v u x y x y --=⋅+⋅=⋅⋅=-⋅-+⎡⎤⎣⎦()()()321y 2232ln 321x yv u y v y z z u z v v u x y x y --=⋅+⋅=⋅⋅-=--⋅-+⎡⎤⎣⎦∴()()()32d 32ln 3213d 2dy x yz x y x y x -=--+-⎡⎤⎣⎦3.设f ,ϕ是C (2)类函数,x y z yf x y x ϕ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,证明:(1)2220z z x y x x y ∂∂+=∂∂∂; (2)2222220z z x y x y ∂∂-=∂∂. 证21z y y yf x f x y x x ϕϕϕϕ∂⎛⎫''''=⋅++⋅⋅-=+- ⎪∂⎝⎭222222311z y y y y y f f x y x x x x yx ϕϕϕϕ∂⎛⎫⎛⎫''''''''''=⋅+⋅-+-⋅-=+ ⎪ ⎪∂⎝⎭⎝⎭2222111z x y x y f f x y y x x x x y x ϕϕϕϕ⎛⎫∂''''''''''=⋅-+⋅--=-- ⎪∂∂⎝⎭21z x xf y f x f f y y x y ϕϕ⎛⎫∂''''=+⋅-+⋅=-+ ⎪∂⎝⎭222222311z x x x x x f f f f y y y y y x y x ϕϕ⎛⎫⎛⎫∂'''''''''=⋅-+-⋅⋅-+⋅=+ ⎪ ⎪∂⎝⎭⎝⎭4.设arctan yx,求22d d y x .()''2222221122ln arctan ,221y x yyx y y x x y xx y y x -+⋅+=⋅=+⎛⎫+ ⎪⎝⎭''2222x yy y x yx y x y+-=++∴ ()(),x yy x y x y y x y+''-=-+=-()()()()()()()()()()'''22"222321122x y x y y x y x y y x y y x y x y y x y x y x y x y ⎛⎫+⋅- ⎪+--+-⋅-+-⎝⎭====---- 一阶:()()22222222112,ln arctan ,221x yy x x y x F x y x y F x x y x y y x -+=+-=⋅-=++⎛⎫+ ⎪⎝⎭22222211221y y y x x F y x y x y x -=⋅-=+++∴d d y Fx x y x y x Fy y x x y ++=-=-=-- 二阶:()()()()222'2'""''"11/1,y x y x y yy y y x y y y x y x y+++-++⋅=+-==--()()()()()2222332x y x y x y x y x y +-++==--5.设e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩求,u v x y ∂∂∂∂. ()1d cos e sin cos e sin cos 1,sin d cos d d sin e cos sin u u u x u v v u v D u v v D u v x u v y y u v v u v+⎡⎤==-+==-⎣⎦-∴()()1sin cos d d d sin cos 1sin cos 1u D v vu x y D e v v eu v v ==--+-+ ∴()sin e sin cos 1u u v x v v ∂=∂-+ ()2e sin d e sin d e cos d e -cos d u u u u v x D v y v x v y+==+--∴()()()2u cos e d e sin d d e sin -cos 1u uv x v y D v D u v v -++==⎡⎤+⎣⎦∴()e sin e sin cos 1u u v vy u v v ∂+=∂-+6.设2(,,),(,e ,)0,sin y u f x y z x z y x ϕ===,其中求f ,ϕ是C (1)类函数,求d d u x. ()()22''''223,,,e ,2,e ,y z F x y z x xz Fx x Fy F ϕϕϕϕ==⋅== ∴''12''332e ,y x z Fx z Fyx Fz y Fz ϕϕϕϕ∂∂=-=--=-=--∂∂ '''''12123''332e d cos cos d y x u f f x f x x ϕϕϕϕ⎛⎫=+⋅+--⋅ ⎪⎝⎭()''''sin '12312cos 2e cos x f f x f x x ϕϕ=+⋅++解二:全微分'''123'''123d d d d 2d e d d 0d cos d y u f x f y f zx x y z y x x ϕϕϕ⎧=⋅++⎪⋅+⋅⋅+=⎨⎪=⎩ 即'''231'''231d d d d e d d 2d d cos d yu f y f z f x y z x x y x x ϕϕϕ⎧--=⎪+=-⎨⎪=⎩代入消元解得:'sin ''''12123'32cos d cos d x x e x u f f x f x ϕϕϕ⎛⎫+=+- ⎪⎝⎭∴…… 7.求函数ln()z x y =+的点(1, 2)处沿着抛物线24y x =的该点切线方向的方向导数.()()111,,1,21,23zx zy zx zy x y x y ====++()''1,221tan 1y y y α=====121233,,,4444ππααπββπ====11cos cos cos42παβ===223cos cos cos 4παβ===∴()()()111,21111,2cos 1,2cos 33zzx zy αβ∂=⋅+==∂l()()()221,22111,2cos 1,2cos 32323z zx zy αβ⎛⎛∂=⋅+=⋅-+-=- ∂⎝⎭⎝⎭l第三次作业学院 班级 姓名 学号一、单项选择题1.在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线( B ). (A )只有一条;(B )只有两条;(C )至少有三条;(D )不存在.2.设函数(,)f x y 在点(0, 0)附近有定义,且(0,0)3,(0,0)1x y f f ==,则( C ).(A )d (0,0)3d d z x y =+;(B )曲面(,)z f x y =在点(0,0,(0,0))f 的法向量为{3,1,1}; (C )曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为{1,0,3};(D )曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为{3,0,1}.3.曲面()z x f y z =+-的任一点处的切平面 ( D ). (A )垂直于一定直线;(B )平等于一定平面; (C )与一定坐标面成定角;(D )平行于一定直线.4.设(,)u x y 在平面有界闭区域D 上是C (2)类函数,且满足20ux y∂≠∂∂及22220u ux y ∂∂+=∂∂,则(,)u x y 的 ( B ). (A )最大值点和最小值点必定都在D 的内部; (B )最大值点和最小值点必定都在D 的边界上; (C )最大值点在D 的内部,最小值点在D 的边界上; (D )最小值点在D 的内部,最得到值点在D 的边界上. 二、填空题1.如果曲面6xyz =在点M 处的切平面平行于平面63210x y z -++=,则切点M 的坐标是 (-1,2,-3) .2.曲线2224914,1x y z x y z ⎧++=⎨++=⎩在点(1,1,1)-处的法平面方程是 13x -10y -3z -6=0.3.22z x y =+在条件1x y +=下的极小值是12.4.函数u =在点(1,1,1)M 处沿曲面222z x y =+在该点的外法线方向的方向导数是13.三、计算题1.求曲线222226,x y z z x y ⎧++=⎪⎨=+⎪⎩在点(1,1,2)处的切线方程. 解一:22222yy zz x yy z x ''⎧+=-⎪⎨''-+=⎪⎩①②①+②:0z '=代入(),1,1,21xy y y''=-=- ∴()1,1,0s =-v切成:112110x y z ---==,即112x y z -=-⎧⎨=⎩解二:()()2221,,6,2,2,2,2,2,4F x y z x y z Fx x Fy y Fz z n =++-====u u v取()1121,1,2,n s n n ==⨯u v v u v u u v()()222,,.2.2 1.2,2,1G x y z x y z Gx x Gy y n =+-===-=-u u v1s 切平面:()()()1111220260x y z x y z ⋅-+⋅-+-=+-=即+2s 切平面:()()()21212020x y z x y z -+---=--=即:2+2∴2602220x y z x y z ++-=⎧⎨+--=⎩ 2.过直线102227,x y z x y z +-=⎧⎨+-=⎩作曲面222327x y z +-=的切平面,求其方程.解:设切点为0000(,,)M x y z ,切平面方程为:0003270x x y y z z +--=……① 过已知直线的平面束方程为()1022270x y z x y z λ+--++-= 即:()(10)2(2)270x y z λλλ++++---=……②当①②为同一平面时有:000103,2,2x y z λλλ+=+=--=-且222000327x y z +-= 解得00000033117117x x y y z z ==-⎧⎧⎪⎪==-⎨⎨⎪⎪==-⎩⎩或对应的切平面方程为:927091717270x y z x y z +--=+-+=3.证明曲面2/32/32/32/3(0)x y z a a ++=>上任意点处的切平面在各个坐标轴上的截距平方和等于2a . .设000M x 0(,y ,z )为曲面上任一点 切平面方程为:()()111333000000222()0333x x x y y y z z z ----+-+-=即:11123333000x x y y z z a --++= 令0y z ==得x 轴截距1233x n a = 同理121233332,Y z a Z z a ==∴222422223333()X Y Z x y z a a ++=++=4.求函数22(,)(2)ln f x y x y y y =++的极值..①令222(2)02ln 10x yf x y f x y y '⎧=+=⎪⎨'=++=⎪⎩ ②得驻点10,e M ⎛⎫⎪⎝⎭③2212(2),4,2xx xy f y f xy fyy x y=+==+④M 处: AC-B 2>0,A>0,∴极小值110,f e e ⎛⎫=- ⎪⎝⎭5.求函数22(,)1216f x y x y x y =+-+在区域22{(,)|25}D x y x y =+≤上的最大值和最小值.2120621608fx x x fy y y =-==⎧⎧⎨⎨=+==-⎩⎩ 不在D 内,∴D 内无极值点 在边界2225x y +=上,(),251216f x y x y =-+()()22,25121625L x y x y x y λ=-+++-12201620Lx x Ly y λλ=-+=⎧⎨=+=⎩ 解得3344x x y y ==-⎧⎧⎨⎨=-=⎩⎩2225x y +=()3,475f -=- 最小()3,4125f -= 最大6.求曲面1=的一个切平面,使其在三个坐标轴上的截距之积为最大.设切点为()()0000,,,,,1M x y z F x y zFn Fy ==切平面:)))0000x x y y z z ---=即:1+=令0y z ==,得x轴截距X = 0x z ==,得y轴截距Y = 0x y ==,得z轴截距Z =XYZ =()),,1f x y z xyz λ=+令000113fx yz yzx x fy xz xzy y fz xy xyz z ⎧===⎪⎪⎪=+==⎪⎪⎨⎪=+==⎪==== 19x y z ===即切点为111,,999⎛⎫⎪⎝⎭切平面为:13x y z ++=第四次作业学院 班级 姓名 学号一、单项选择题1.设(,)f x y 连续,且(,)(,)d d Df x y xy f x y x y =+⎰⎰,其中D 是由0y =,2y x =,1x =所围区域,则(,)f x y 等于( C ).(A )xy ; (B )2xy ; (C )18xy +;(D )1xy +.2.设D 是xOy 平面上以(1, 1), (-1, 1)和(-1, -1)为顶点的三角形区域,D 1是D 的第一象限部分,则(cos sin )d d Dxy x y x y +⎰⎰等于( A ).(A )12cos sin d d D x y x y ⎰⎰;(B )12d d D xy x y ⎰⎰;(C );14cos sin )d d D xy x y x y +⎰⎰((D )0.3.设平面区域22:14,(,)D x y f x y ≤+≤是在区域D 上的连续函数,则d d Df x y ⎰⎰等于 ( A ).(A )212()d rf r r π⎰;(B )21002()d ()d rf r r rf r r π⎡⎤+⎣⎦⎰⎰; (C )2212()d rf r r π⎰;(D )2122002()d ()d rf r r rf r r π⎡⎤+⎣⎦⎰⎰. 4.设有空间区域22221:,0x y z R z Ω++≤≥及22222:x y z R Ω++≤,0x ≥,0y ≥,0z ≥,则( C ).(A )12d 4d x V x V ΩΩ=⎰⎰⎰⎰⎰⎰;(B )12d 4d y V y V ΩΩ=⎰⎰⎰⎰⎰⎰;(C )12d 4d z V z V ΩΩ=⎰⎰⎰⎰⎰⎰;(D )12d 4d xyz V xyz V ΩΩ=⎰⎰⎰⎰⎰⎰.二、填空题 1.积分2220d e d y x x y -=⎰⎰()-411e 2-.2.交换积分次序:14012d (,)d d (,)d x x f x y y x f x y y -+=⎰⎰⎰⎰()2221d ,d y yy f x y x +-⎰⎰.3.设区域D 为||||1x y +≤,则(||||)d d Dx y x y +=⎰⎰43. 4.设区域D 为222x y R +≤,则2222d d Dx y x y a b ⎛⎫+= ⎪⎝⎭⎰⎰422114R a b π⎛⎫+ ⎪⎝⎭. 5.直角坐标中三次积分22110d (,,)d x y I x y f x y z z +-=⎰⎰⎰在柱面坐标中先z再r 后θ顺序的三次积分是()221d d cos ,sin ,d r r f r r z r z πθθθ⎰⎰⎰三、计算题1.计算|cos()|d d Dx y x y +⎰⎰,其中D 是由直线,0,2y x y x π===所围成的三角形区域.原式()()12cos d d cos d d D D x y x y x y x y =+-+⎰⎰⎰⎰()()42204d cos d d cos d yxyxx y x y x x x y y πππππ--=+-+⎰⎰⎰⎰()()422024sin d sin yxyx x y y x y πππππ--=+-+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰4204sin sin 2d sin 2sin d 22y y x x πππππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭⎰⎰ =[][]240411cos 2cos 2122242y x ππππππ+++=- 2.计算sin d d Dx yx y y⎰⎰,其中D 是由2y x =和y x =所围成的区域. ①图交点,先x,②:01y x D y ⎧≤≤⎪⎨≤≤⎪⎩③21100sin sin d d d 22y y y y F f x y y y ⎛⎫==⋅- ⎪⎝⎭⎰⎰110011sin d sin d 22y y y y y =-⎰⎰ ()()111cos1cos1sin 22x =-+- ()11sin12=-3.计算22()d d Dx y x y +⎰⎰,其中{(,)|02,D x y x y =≤≤≤.①图,极坐标,方程②2cos 2:02r D θπθ≤≤⎧⎪⎨≤≤⎪⎩ ③22202cos d d I r r r πθθ=⋅⎰⎰()24422002cos d =41cos d 4r ππθθθθ⎡⎤=-⎢⎥⎣⎦⎰⎰3135442242244πππππ=⋅-⋅⋅⋅=-=4.计算23d xy z V Ω⎰⎰⎰,其中Ω是由曲面z xy =与平面,1y x x ==和0z =所围成的闭或区域. ①图,投影域Dxy②0:001z xy y y x ≤≤⎧⎪Ω≤≤⎨⎪≤≤⎩③1230d d d x xyI x y sy z z =⎰⎰⎰7115120001d d 728xy x x x x ⎡⎤==⎢⎥⎣⎦⎰⎰1112813364=⨯= 5.计算d I xyz V Ω=⎰⎰⎰,其中222{(,,)|1,0,0,0}x y z x y z x y z Ω=++≤≥≥≥.①图,已求坐标r=1②01:0202r πϕπθ⎧⎪≤≤⎪⎪Ω≤≤⎨⎪⎪≤≤⎪⎩③12220d d sin cos sin sin cos sin d I x r r r r r ππϕϕθϕθϕϕ=⋅⋅⋅⋅⋅⋅⎰⎰⎰135220sin cos d sin cos d d r r ππθθθϕϕϕ=⋅⋅⋅⋅⎰⎰⎰3220011111sin dsin sin d sin 662448ππθθϕϕ=⋅⋅⋅⋅=⋅⋅=⎰⎰6.设()d F t f V Ω=⎰⎰⎰,其中2222:,()x y z t f t Ω++≤在0t =可导,且(0)0f =,求40()limt F t tπ+→. ()()2t 20d d sin d F t f r r r ππθϕϕ=⋅⎰⎰⎰()2t20d sin d d f r r r ππθϕϕ=⋅⋅⋅⎰⎰⎰()204d tf r r r π=⋅⋅⎰()()2'4F t f t t π=⋅⋅∴()()()()()()02043000040lim lim lim lim '040t t t t F t f t t f t f t f f t t t t πππ→→→→⋅-+====- 四、证明题设函数)(x f 在闭区间],[b a 上连续且恒大于零,证明2d ()d ()()bbaaxf x x b a f x ≥-⎰⎰. 证明:设:a x bD a y b≤≤⎧⎨≤≤⎩∵2d d 0D x y ≥⎰⎰ 即:()()()()d d 2d d D Df x f y x y x y f y f x ⎡⎤+≥⎢⎥⎣⎦⎰⎰⎰⎰∴()()()()()211d d d d 2b bb b aaa a f x x y f y y xb a f y f x +⋅≥-⎰⎰⎰⎰∴()()()212d d 2b baaf x x x b a f x ⋅≥-⎰⎰∴()()()21d d b baaf x x x b a f x ⋅≥-⎰⎰第五次作业学院 班级 姓名 学号一、单项选择题1.设L 是圆周222x y a +=,则22()d nL x y s +=⎰Ñ(D ) .(A )2n a π; (B )12n a π+; (C )22n a π;(D )212n a π+.2.设L 是由(0, 0), (2, 0), (1, 1)三点连成的三角形边界曲线,则d L y s =⎰Ñ( A ).(A )(B )2(C )(D )2+.3.设∑是锥面222x y z +=在01z ≤≤的部分,则22()d x y S ∑+=⎰⎰( D ).(A )1300d d r r πθ⎰⎰; (B )21300d d r r πθ⎰⎰;(C 1300d d r r πθ⎰;(D 21300d d r r πθ⎰.4.设∑为2222(0)x y z a z ++=≥,1∑是∑在第一卦限中的部分,则有(C ).(A )1d 4d x S x S ∑∑=⎰⎰⎰⎰;(B )1d 4d y S x S ∑∑=⎰⎰⎰⎰;(C )1d 4d z S x S ∑∑=⎰⎰⎰⎰;(D )1d 4d xyz S xyz S ∑∑=⎰⎰⎰⎰.二、填空题1.设曲线L 为下半圆y =22()d L x y s +=⎰1d π1LS =⋅⎰.2.设L 为曲线||y x =-上从1x =-到1x =的一段,则d L y s =⎰.3.设Γ表示曲线弧,,,(02)2t x t y t z t π==≤≤,则222()d x y z s Γ++=⎰332ππ23+.4.设∑是柱面222(0)x y a a +=>在0z h ≤≤之间的部分,则2d x S ∑=⎰⎰3a h π.5.设∑是上半椭球面2221(0)94x y z z ++=≥,已知∑的面积为A ,则222(4936)d x y z xyz S ∑+++=⎰⎰36A .三、计算题 1.计算L s ⎰Ñ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.解:123222123:0,0::,02L L L L L y x a L x y a aL y x x =++=≤≤+==≤≤1e d e 1ax a L s x ==-⎰⎰224a aL L as e ds e π==⎰⎰4aπ3e 1a L s x ==-⎰所以:原式=2(1-a e )+4aπa e2.2d z s Γ⎰Ñ,其中2222,:0.x y z a x y z ⎧++=Γ⎨++=⎩.(222d d d r rrx s y s z s ==⎰⎰⎰Q蜒?)2Γ222223d 1()d 31d 322π.33r r z s x y z s a s a a a π=++==⋅=⎰⎰⎰ÑÑÑ 3.计算曲面积分()d xy yz zx S ∑++⎰⎰,其中曲面:z ∑=被柱面222x y x +=所截得部分。
高等数学BII单元测试+重积分曲线积分和曲面积分解答

解
x2
y2
3 y2 sin x
dxdydz
x2
y2
dxdydz
2 0
dz
x2
y2
dxdy
Dz
xr cos
yr sin
2
dz
2 d
1z12 r 2rdr
Dz :x 2 y2 1z12 0
0
0
2
1
z
12
2
dz
20
28 . 15
12. 设有一半径为 R 的球体, P0 是此球面上的一定点,球体上任一点的密度与
关于xOz面对称
3x4 y为关于y的奇函数
解
x2 y2 3x4 y dS
x2 y2 dS
x2dS = y2dS z2dS
=
2
x2 y2 z2 dS
3
2 4 x2 y2 z2 4 dS 128 .
3
3
5.设区域 D : x2 y2 2, x2 y2 2x ,则二重积分 xdxdy ______.
1 2
.
dS
1
z x
2
z y
2
1
c2 a2
x z
2
c2 a2
y z
2 dxdy
c z
x2 a4
y2 a4
z2 c4
dxdy,
投影区域 Dxy : x2 y2 a2 . 故
6
( x, y, z)dS c 2 1 dxdy c
z Dxy
Dxy
1
dxdy
1
x2 a2
1
dx
1 x
dz
1 xz 1 y e 1 yz 2 dy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。