高二文科数学试卷带答案

合集下载

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题(含答案解析)

陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。

文科数学高二期末考试试卷答案

文科数学高二期末考试试卷答案

高二年级2022年12月月考文科数学答案一、 选择题ACDDB BACCA BD二、 填空题13、4 14、15 15、16、_ [0,42)210三、解答题17、解:命题p 真:1﹣m >2m >0⇒, 命题q 真:,且m >0,⇒0<m <15, 若p ∨q 为真,p ∧q 为假, p 真q 假,则空集;p 假q 真,则; 故m 的取值范围为.19、解:初中生中,阅读时间在小时内的频率为, (1)[30,40)1−(0.005+0.03+0.04+0.005)×10=0.20所有的初中生中,阅读时间在小时内的学生约有人;∴[30,40)0.2×1800=360同理,高中生中,阅读时间在小时内的频率为, [30,40)1−(0.005+0.025+0.035+0.005)×10=0.30学生人数约有人,0.30×1200=360该校所有学生中,阅读时间在小时内的学生人数约有人[30,40)360+360=720.由分层抽样知,抽取的初中生有名,高中生有名, (2)100×18001800+1200=60100−60=40记“从阅读时间不足个小时的样本学生中随机抽取人,至少抽到名初中生”为事件,1032A初中生中,阅读时间不足个小时的学生频率为,样本人数为人; 100.005×10=0.050.05×60=3高中生中,阅读时间不足个小时的学生频率为,样本人数为人 100.005×10=0.050.05×40=2.记这名初中生为,这名高中生为,公众号高中僧试题下载3A 、B 、C 2d 、e 则从阅读时间不足个小时的样本学生中随机抽取人,所有可能结果共种,10310即:,,,,,,,,,;ABC ABd ABe ACd ACe Ade BCd BCe Bde Cde 而事件的结果有种,A 7它们是:,,,,,,;ABC ABd ABe ACd ACe BCd BCe 至少抽到名初中生的概率为; ∴2P(A)=710天内,初中生平均每人阅读时间为小时, (3)605×0.05+15×0.3+25×0.4+35×0.2+45×0.05=24()国家标准下天内初中生每人需阅读小时,6060×0.5=30()因为,该校需要增加初中学生课外阅读时间.24<30(2)由题意可得,设直线P 的方程为:,设 2(1,0)F Q 21x my =+P (x 1,y 1),Q 2(x 2,y 2)则M (x 2,y 2)联立,整理可得:, 221143x my x y =+⎧⎪⎨+=⎪⎩22(43)690m y my ++-=可得:,, 122643m y y m -+=+122943y y m -=+因为,,所以可得| =2| ||,PN =2NQ 2PN NQ 2所以 S △Q 2MN =13S △Q 2MP =23S △OPQ 2=23∙12|OF 2|∙|y 1−y 2|111333===,143==令,所以在,单调递增,所以,当且仅当时取等号,则1t=13y tt=+[1)+∞314y+=…1t=S△Q2MN=1.所以面积的取值范围,.△Q2MN(01]。

高二文数参考答案

高二文数参考答案

高二文数参考答案1.C 2.A 3.B 4.D 5.C6.C 7.B 8.C 9.C 10.B11.C 12.C13.1 14.215.2116.1/217.(1)cosB=1517;(2)b=2.试题解析:(1)由题设及A+B+C=π得sinB=8sin2π2,故sinB=4(1-cosB)上式两边平方,整理得17cos2B-32cosB+15=0解得cosB=1(舍去),cosB=1517(2)由cosB=1517得sin B=817,故SΔABC=12a csinB=417ac又SΔABC=2,则ac=172由余弦定理学得b2=a2+c2−2accosB=(a+c)2−2ac(1+cosB)=36−2×172×(1+1517)=4所以b=2.18.(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积19. (1)旧养殖法的箱产量低于50kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5+0.62. 因此,事件A 的概率估计值为0.62.K 2的观测值k +200×(62×66−34×38)2100×100×96×104≈15.705.由于15.705+6.635,故有99%的把握认为箱产量与养殖方法有关. (3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50kg 到55kg 之间,旧养殖法的箱产量平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.20(1)22222{ 1314c a a b a b c =+==+,解得2{ 1a b ==.故椭圆C 的方程为2214x y +=. (2)由题意可知直线l 的斜率存在且不为0,设直线l 的方程为()0y kx m m =+≠,由22{ 14y kx mx y =++=,消去y 整理得()()222148410k x kmx m +++-=,∵直线l 与椭圆交于两点,∴()()()222222641614116410k m kmk m ∆=-+-=-+>.设点,P Q 的坐标分别为()()1122,,,x y x y ,则()2121222418,1414m kmx x x x k k --+==++, ∴()()()2212121212y y kx m kx m k x x km x x m =++=+++.∵直线,,OP l OQ 的斜率成等比数列,∴()2212122212112·k x x km x x m y y k x x x x +++==,整理得()2120km x x m ++=,∴22228014k m m k-+=+, 又0m ≠,所以214k =, 结合图象可知12k =-,故直线l 的斜率为定值. 21.(1)当0m =时, ()2x x f x e =-. ()2xf x e '=-,令()0f x '>,得ln2x >.易知()f x 在()ln2-∞,上单调递减, ()f x 在()ln2+∞,上单调递增.(2)证明: ()22xf x e mx =--', ()()222?=22x xxe f x e m e e e -=->--'-'. 当[)0x ∈+∞,时, 12x e e ≥>-,故()0f x ''>,故()f x '单调递增. 又()()0121012m 221202e f f e e ⎛⎫=-=-=---⨯--=⎪⎝⎭'',,故存在唯一的()0x 01∈,,使得()00f x '=,即0022=0x e mx --, 且当()0x 0x ∈,时, ()0f x '<,故()f x 单调递减, 当()0x x +∈∞,时, ()0f x '>,故()f x 单调递增. 故()()02000min 2xf x f x e mx x ==--.因为0x x =是方程0022=0x e mx --的根,故002m=2x x e -.故()0000x 20000min0212=2x 2x x x e f x e x x e x e x -=----.令()()x 1g =012xx e xe x x --∈,,, ()11g'=x 122x x x e e --, ()1g =x 02x x e "-<. 故()g'x 在(0,1)上单调递减,故g ()()1''002x g <=-<,故()g x 在(0,1)上单调递减,∴()()g 112e x g >=-,故()12ef x >-.22.(1)因为圆1C 的普通方程为22480x y x y +--=,把cos ,sin x y ρθρθ==代入方程得24cos 8sin 0ρρθρθ--=, 所以1C 的极坐标方程为4cos 8sin ρθθ=+,2C 的平面直角坐标系方程为y =;(2)分别将,36ππθθ==代入4cos 8sin ρθθ=+,得1224ρρ=+=+则OMN ∆的面积为((124sin 8236ππ⎛⎫⨯+⨯+⨯-=+ ⎪⎝⎭。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。

高二数学文科试题及答案

高二数学文科试题及答案

高二数学文科测试第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆221259yx +=上一点P 到一个焦点的距离为6,则P 到另一个焦点的距离为( ) A 、10 B 、6 C 、5 D 、42.椭圆2255x ky +=的一个焦点是(0,2),那么k=( )A .1B .2C .3D .4 3.已知双曲线221169yx-=,则它的渐近线的方程为( )A . 35y x =±B . 43y x =± C . 34y x =±D . 54y x =± 4. 下列命题:①空集是任何集合的子集;②若整数a 是素数,则a 是奇数;③若空间中两条直线不相交,则这两条直线平行;④ 2(2)2-=其中真命题的个数是A .1个B .2个C .3个D .4个5. 22221(0,0)a b y x a b-=>>双曲线的离心率是2,则213ab +的最小值为( ) A .3 B. 1 C. 23 D. 26. 平面内有两定点A,B 及动点P ,设命题甲是:“ ||||PA PB +是定值”,命题乙是:“点P 的轨迹是以A,B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C . 甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件 7.已知方程221||12m myx+=--表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <2B .1<m <2C .m <-1或1<m <32D .m <-1或1<m <2 8.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠12PF Q π=,则双曲线的离心率e 等于( ) A . 21+ B . 21- C . 2 D .22+9.有关命题的说法错误..的是( ) A .命题“若则”的逆否命题为:“若, 则”B.“”是“”的充分不必要条件C.对于命题:. 则:D.若为假命题,则、均为假命题10.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是( )A B C D二、填空题(本大题共5小题,每小题5分,共25分。

高二下学期期中考试数学(文科)试题与答案

高二下学期期中考试数学(文科)试题与答案

高二下学期期中考试数学(文科)试题与答案高二年级下学期期中考试数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分)1.复数 $2-i$ 与 $2+i$ 的商为()A。

$1-\frac{4}{5}i$。

B。

$\frac{33}{43}+\frac{4}{5}i$。

C。

$1-\frac{1}{5}i$。

D。

$1+\frac{1}{5}i$2.设有一个回归方程为 $y=2-2.5x$,则变量 $x$ 增加一个单位时()A。

$y$ 平均增加 $2.5$ 个单位。

B。

$y$ 平均减少$2.5$ 个单位。

C。

$y$ 平均增加 $2$ 个单位。

D。

$y$ 平均减少 $2$ 个单位3.所有金属都能导电,铁是金属,所以铁能导电,属于哪种推理().A。

类比推理。

B。

演绎推理。

C。

合情推理。

D。

归纳推理4.点 $M$ 的极坐标 $(5,\frac{2\pi}{3})$ 化为直角坐标为()A。

$(-\frac{5\sqrt{3}}{2},-2)$。

B。

$(2,-2)$。

C。

$(-\frac{5}{2},2)$。

D。

$(2,2)$5.用反证法证明命题“若 $a^2+b^2=0$,则 $a$、$b$ 全为$0$($a$、$b\in R$)”,其假设正确的是()A。

$a$、$b$ 至少有一个不为 $0$。

B。

$a$、$b$ 至少有一个为 $0$。

C。

$a$、$b$ 全不为 $0$。

D。

$a$、$b$ 中只有一个为 $0$6.直线 $y=2x+1$ 的参数方程是($t$ 为参数)()A。

$\begin{cases}x=t^2\\y=2t^2+1\end{cases}$。

B。

$\begin{cases}x=2t-1\\y=4t+1\end{cases}$。

C。

$\begin{cases}x=t-1\\y=2t-1\end{cases}$。

D。

$\begin{cases}x=\sin\theta\\y=2\sin\theta+1\end{cases}$7.当 $\frac{2}{3}<m<1$ 时,复数 $m(3+i)-(2+i)$ 在复平面内对应的点位于()A。

高二数学(文科)中段考试题(附答案)

高二数学(文科)中段考试题(附答案)

高二数学(文科)中段考试题说明:1.试卷满分150分,考试时间120分钟.2.选择题选项涂在答题卡上,填空题和解答题答案写在试卷纸上。

一、选择题(10×5分=50分) 1、设15|{+==k x x A ,}N k ∈,6|{≤=x x B ,}x Z ∈,则=⋂B A ( *** )。

A .{1,4}B .{1,6}C .{4,6}D .{1,4,6} 2、为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是(***)A . 1l 与2l 重合 B. 1l 与2l 一定平行 C . 1l 与2l 相交于点(,)x y D. 无法判断1l 和2l 是否相交 3、,P Q 是两个非空集合,定义P @Q ={}(,)|,a b a P b Q ∈∈,若{}2,3,4p =,{}4,5,6Q =,则P @Q 中元素的个数( *** )A. 3个B. 4 C . 9 D. 124、有一段演绎推理是这样的:“直线b ⊆/平面α,直线a ≠⊂平面α,若直线b ∥平面α,则直线b ∥直线a ”.该结论显然是错误的,这是因为 ( *** ) A .大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 5、分析法证明不等式的推理过程是寻求使不等式成立的( *** )A .必要条件;B .充分条件;C .充要条件;D .必要条件或充分条件6、已知)()()(b f a f b a f +=+且2)1(=f ,则)()2()1(n f f f +++ 不能是(***)A .)1()1(3)1(2)1(nf f f f ++++B .]2)1([+n n f C .)1(+n n D .)1()1(f n n + 7、11()()()(),11n ni i f n n Z i i+-=+∈-+则集合{}|()x x f n =中的元素个数( *** )A. 1个B. 2个 C . 3个 D. 无穷多个8、已知2()22x f x x =-,则在下列区间中,()0f x =有实数解的是( *** ).A .(-3,-2)B .(-1,0) C. (2,3) D.(4,5)9、把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( B )10、我们把1,3,6,10,15,……这些数叫做三角形数,因为这些数目的点子可以排成一个正三角形(如下图)。

2022-2023学年四川省成都市高二(上)期末数学试卷(文科)(含答案解析)

2022-2023学年四川省成都市高二(上)期末数学试卷(文科)(含答案解析)

2022-2023学年四川省成都市高二(上)期末数学试卷(文科)1. 若x∈R,则“0<x<2”是“x>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2. 过点(0,−2)且与直线x−y=0垂直的直线方程为( )A. x+y−2=−0B. x−y−2=0C. x+y+2=0D. x−y+2=03. 若一个圆的标准方程为x2+(y−1)2=4,则此圆的圆心与半径分别是( )A. (−1,0);4B. (1,0);2C. (0,−1);4D. (0,1);24. 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示如下:则x=( )A. 2B. 3C. 4D. 55. 某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是( )A. 简单随机抽样B. 先用分层抽样,再用随机数表法C. 分层抽样D. 先用抽签法,再用分层抽样6. 已知命题p:∀x∈R∗,x+1x≥2,则¬p为( )A. ∃x0∈R∗,x0+1x0≥2B. ∃x0∈R∗,x0+1x0<2C. ∃x0∉R∗,x0+1x0<2D. ∀x∈R,x+1x<27. 下列命题为真命题的是( )A. 若a<b<0,则1a <1bB. 若ac>bc,则a>bC. 若a>b,c>d,则a−c>b−dD. 若ac2>bc2,则a>b8. 已知双曲线的上、下焦点分别为F1(0,5),F2(0,−5),P是双曲线上一点且满足||PF1|−|PF2||=6,则双曲线的标准方程为( )A. x 216−y 29=1B.x 29−y 216=1C. y 216−x 29=1D.y 29−x 216=19. 已知⊙O 的方程为x 2+y 2=12,且与直线√3x −y −2√3=0相交于A ,B 两点,则|AB|=( )A. 4√3B. 4C. 6√3D. 610. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为7,5,则输出的a =( )A. 1B. 2C. 3D. 411. 若两个正实数x ,y 满足x +y =1,则1x +1y 的最小值为( ) A. 2√2B. 2C. 4D. 4√212. 在平面直角坐标系xOy 中,椭圆C 的中心在原点,焦点F 1,F 2在y 轴上,离心率为12,过F 1的直线l 交椭圆于A ,B 两点,且△ABF 2的周长为24,则椭圆C 的方程为( )A. x 227+y 236=1 B. x 224+y 236=1 C. y 227+x 236=1 D. x 227+y 224=113. 以下两个变量成负相关的是______.①学生的学籍号与学生的数学成绩; ②坚持每天吃早餐的人数与患胃病的人数; ③气温与冷饮销售量;④电瓶车的重量和行驶每千米的耗电量.14. 若圆x 2+y 2=4与圆(x +m)2+y 2=9(m >0)外切,则实数m =______. 15. 若抛物线y 2=12x 上的点M 到焦点的距离为8,则点M 到y 轴的距离为______.16. 已知抛物线y 2=4x 上的两点A ,B 满足OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =60(O 为坐标原点),且A ,B 分处对称轴的两侧,则直线AB 所过定点为______.17. 已知命题p :方程x 2m−1+y 2m−3=1表示焦点在x 轴上的双曲线,命题q :a <m <a +4.(1)若p 为真,求实数m 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18. 已知直线l :12x +5y −4=0与圆C :(x −1)2+(y −1)2=9交于A ,B 两点.(1)求圆C 的弦AB 的长;(2)若直线m 与直线l 平行,且与圆C 相切,求直线m 的方程.19. 已知抛物线C :y 2=2px(p >0)的焦点为F ,与椭圆x 24+y 23=1其中一个焦点重合.过抛物线的焦点F 且斜率为1的直线l 与抛物线交于A ,B 两点.(1)求抛物线C 的方程; (2)求线段AB 的中点P 的坐标.20. 世界对中国的印象很多,让很多人印象深刻的肯定包括“吃”,中国有句话叫民以食为天,中国人认为吃对于人来说是一件很重要的事情,不但要能吃,也要会吃.我们四川更是遍地美食,四川人很多也是“好吃嘴”,但是好吃不等于健康,有人对不同类型的某些食品做了一次调查,制作了下表.其中x 表示某种食品所含热量的百分比,y 表示一些“好吃嘴”以百分制给出的对应的评分.r 为正时,x 和y 正相关,当r 为负时,x 和y 负相关,统计学认为如果|r|∈[0.75,1]相关性很强,如果|r|∈[0.30,0.75)相关性一般,如果|r|∈[0.25,0.25]相关性较弱.r =∑n i=1i −i −√∑(i=1x i −x −)∑(i=1y i−y −),b ̂=∑(n i=1x i −x −)(y i −y −)∑(n i=1x i −x −)2,a ̂=y −−b ̂x −.参考数据:√185≈13.60.(1)试用r 对两个变量x ,y 的相关性进行分析(r 的结果保留两位小数); (2)求回归方程.21. 四川新高考于2022年启动,2025年整体实施,2025年参加高考的学生将面临“3+1+2”高考新模式.其中的“3”指“语、数、外”三个必选学科,“1”是指“物理、历史”两个学科二选一,“2”是指“化学、政治、生物、地理”这四个再选学科中选两科,对于再选学科会通过等级赋分的办法计入总成绩.等级赋分以30分作为赋分起点,满分为100分,将考生每门的原始成绩从高到低划定为A 、B 、C 、D 、E 五等,各等级人数所占比例分别为15%、35%、35%、13%、2%.现在高2022级新高一学生已经开始使用新教材,并且新高一的学生也参加了进高中以来的第一次期中考试,成都市某高中为了调研新高一学生在此次期中考试中政治学科的学情,随机抽取了100名新高一学生的政治成绩,统计了如下表格:分数范围[50,60)[60,70)[70,80)[80,90)[90,100]学生人数52535305(1)根据统计表格画出频率分布直方图;(2)根据统计数据估计该学校新高一学生在此次期中考试中政治成绩的平均分;(3)根据统计数据结合等级赋分的办法,预估此次考试政治赋分等级至少为B的大致分数线(取整数).22. 已知椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1(−√3,0),F2(√3,0),且过点P(√3,12).(1)求椭圆E的标准方程;(2)过椭圆E的左焦点F1的直线与椭圆E交于A,B两点,求△F2AB的面积最大时直线AB的方程.答案和解析1.【答案】A【解析】解:设A={x|0<x<2},B={x|x>0},∵A⫋B,∴x∈A⇒x∈B,但x∈B推不出x∈A,∴“0<x<2”是“x>0”的充分不必要条件,故选:A.直接根据充分与必要条件的概念即可得解.本题考查了充分必要条件的定义,属于基础题.2.【答案】C【解析】解:由题意知与直线x−y=0垂直的直线的斜率为−1,故过点(0,−2)且与直线x−y=0垂直的直线方程为y+2=−(x−0),即x+y+2=0.故选:C.根据已知条件,结合直线垂直的性质,即可求解.本题主要考查直线的一般式方程与直线垂直的性质,属于基础题.3.【答案】D【解析】解:∵一个圆的标准方程为x2+(y−1)2=4,∴此圆的圆心与半径分别是(0,1),半径为2,故选:D.由题意,根据圆的标准方程的特征,得出结论.本题主要考查圆的标准方程的特征,属于基础题.4.【答案】C【解析】解:由图可知去掉的两个数是87,99,因为七个剩余分数的平均分为91,=91,解得x=4.所以87+94+90+91+90+90+x+917故选:C.去掉最高分和最低分可以得到剩余的七个数,根据七个数的平均数为91,可以列出关于x的等式,解出x即可.本题主要考查茎叶图的应用,属于基础题.【解析】解:先在高二年级12个班中抽取3个班,宜用抽签法,再按每个班男女生比例抽取样本,适合使用分层抽样,所以先用抽签法,再用分层抽样.故选:D.根据抽样特点选择抽样方法即可.本题考查了抽样方法的应用,解题时应该根据抽样特点选择抽样方法,属于基础题.6.【答案】B【解析】解:根据题意,命题p:∀x∈R∗,x+1x≥2,则¬p为∃x0∈R∗,x0+1x0<2,故选:B.根据题意,由全称命题和特称命题的关系,分析可得答案.本题考查命题的否定,注意全称命题和特称命题的关系,属于基础题.7.【答案】D【解析】解:对于A,若a<b<0,则ab>0,故1b <1a,故A错;对于B,若ac>bc,当c<0时,则a<b,故B错;对于C,若a>b,c>d,则当a=2,b=1,c=1,d=−5,则a−c=1,b−d=6,则a−c<b−d,故C错;对于D,若ac2>bc2,则c2>0,则a>b,故D正确;故选:D.根据不等式的性质以及取特殊值法可解.本题考查不等式的性质,属于基础题.8.【答案】D【解析】解:根据题意可得c=5,2a=6,∴a=3,∴b=4,又焦点在y轴上,∴双曲线的标准方程为y29−x216=1,故选:D.根据双曲线的几何性质即可求解.本题考查双曲线的几何性质,属基础题.【解析】解:圆x 2+y 2=12的圆心(0,0)到直线√3x −y −2√3=0的距离为√3|√(√3)+(−1)=√3,则由垂径定理可得,|AB|=2×√12−(√3)2=6. 故选:D.先求出圆心到直线的距离,再由垂径定理即可得解.本题考查直线与圆的位置关系,考查运算求解能力,属于基础题.10.【答案】A【解析】解:当a =7,b =5时,满足a ≠b ,满足a >b ,执行a =7−5=2, 当a =2,b =5时,满足a ≠b ,不满足a >b ,执行b =5−2=3, 当a =2,b =3时,满足a ≠b ,不满足a >b ,执行b =3−1=1, 当a =2,b =1时,满足a ≠b ,满足a >b ,执行a =2−1=1, 当a =1,b =1时,满足a =b ,跳出循环,输出a =1. 故选:A.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.11.【答案】C【解析】解:∵两个正实数x ,y 满足x +y =1,则1x +1y =(x +y)(1x +1y )=1+yx +xy +1=2+2√y x ⋅xy =4,当且仅当y =x =12时,1x +1y 取得最小值为4. 故选:C.利用“乘1法”与基本不等式的性质即可得出.本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.【答案】A【解析】解:由于椭圆的焦点在y 轴上,故设椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0),又离心率为12,则ca =12,又过F 1的直线l 交椭圆于A ,B 两点,且△ABF 2的周长为24,则|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =24,解得a=6,所以c=3,则b2=a2−c2=36−9=27,所以椭圆C的方程为y 236+x227=1.故选:A.根据题意设椭圆C的方程为y 2a2+x2b2=1(a>b>0),易知ca=12,4a=24,由此求得a,c的值,进而求得b,由此可得解.本题考查椭圆的定义及其标准方程,考查椭圆的简单几何性质,考查运算求解能力,属于基础题.13.【答案】②【解析】解:①学生的学籍号与学生的数学成绩,两个变量无相关,②坚持每天吃早餐的人数与患胃病的人数,两个变量负相关,③气温与冷饮销售量,两个变量正相关,④电瓶车的重量和行驶每千米的耗电量,两个变量正相关.故答案为:②.根据已知条件,结合变量间的相关关系,即可求解.本题主要考查变量间的相关关系,属于基础题.14.【答案】5【解析】解:圆x2+y2=4的圆心坐标为O(0,0),半径为2,圆(x+m)2+y2=9(m>0)的圆心坐标为C(−m,0),半径为3,∵m>0,且两圆外切,∴|m|=2+3,解得m=5,故答案为:5.由两圆的方程分别求得圆心坐标与半径,再由圆心距与半径的关系列式求解.本题考查圆与圆的位置关系的判定及应用,是基础题.15.【答案】5【解析】解:∵抛物线方程为y2=12x,∴p=6,又点M到焦点距离为8,∴p2+x M=8,∴3+x M=8,∴x M=5,∴点M到y轴距离为5.故答案为:5.根据抛物线的几何性质,方程思想,即可求解.本题考查抛物线的几何性质,方程思想,属基础题.16.【答案】(10,0)【解析】解:设直线AB 的方程为x =ky +m , 联立{x =ky +m y 2=4x,消x 可得y 2−4ky −4m =0, 由已知可得Δ=16k 2+16m >0, 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4k ,y 1y 2=−4m ,又两点A ,B 满足OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =60(O 为坐标原点), 则x 1x 2+y 1y 2=60,则(1+k 2)y 1y 2+km(y 1+y 2)+m 2=60, 即m 2−4m −60=0, 即m =10或m =−6, 又A ,B 分处对称轴的两侧, 则m >0, 即m =10,即直线AB 的方程为x =ky +10, 则直线AB 所过定点为(10,0), 故答案为:(10,0).由抛物线的性质,结合直线与抛物线的位置关系求解即可.本题考查了抛物线的性质,重点考查了直线与抛物线的位置关系,属基础题.17.【答案】解:(1)由命题p :方程x 2m−1+y 2m−3=1表示焦点在x 轴上的双曲线,可得{m −1>0m −3<0,解得1<m <3,即实数m 的取值范围为(1,3);(2)若p 是q 的充分不必要条件,则(1,3)真含于(a,a +4), 则有{a ≤1a +4≥3,解得−1≤a ≤1,即实数a 的取值范围为[−1,1].【解析】(1)根据命题p ,得到{m −1>0m −3<0,进而求得实数m 的取值范围;(2)若p 是q 的充分不必要条件,则(1,3)真含于(a,a +4),得到{a ≤1a +4≥3,进而求得实数a 的取值范围.本题考查根据方程表示双曲线求参数的范围,根据充分必要条件求参数的范围,属于基础题.18.【答案】解:(1)圆C :(x −1)2+(y −1)2=9的圆心为C(1,1),半径为3,圆心(1,1)到直线l :12x +5y −4=0的距离为√12+5=1,则由垂径定理可得,|AB|=2×√32−12=4√2;(2)由于直线m 与直线l 平行,则设直线m 的方程为12x +5y +t =0, 又直线m 与圆C 相切,则√12+5=3,即|17+t|=39,解得t =22或t =−56,所以直线m 的方程为12x +5y +22=0或12x +5y −56=0. 【解析】(1)先求出圆心到直线的距离,再由垂径定理即可得解;(2)由平行关系设出直线m 的方程,再根据圆心到直线m 的距离等于半径,即可得解. 本题考查直线与圆的位置关系,考查运算求解能力,属于基础题.19.【答案】解:(1)已知抛物线C :y 2=2px(p >0)的焦点为F ,与椭圆x 24+y 23=1其中一个焦点重合.又椭圆的右焦点坐标为(1,0), 则抛物线的焦点F 坐标为(1,0), 则p2=1, 即p =2,即抛物线方程为y 2=4x ;(2)已知过抛物线的焦点F 且斜率为1的直线l 与抛物线交于A ,B 两点, 则AB 所在直线方程为y =x −1, 联立{y =x −1y 2=4x ,则x 2−6x +1=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=6,y 1+y 2=x 1+x 2−2=4, 则x 1+x 22=3,y 1+y 22=2,则线段AB 的中点P 的坐标为(3,2).【解析】(1)先求出椭圆的焦点坐标,然后求出抛物线方程即可;(2)由题意可得AB 所在直线方程为y =x −1,联立{y =x −1y 2=4x ,则x 2−6x +1=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=6,y 1+y 2=x 1+x 2−2=4,然后求解即可.本题考查了抛物线方程的求法,重点考查了直线与抛物线的位置关系,属基础题.20.【答案】解:(1)由图表可得x −=15+20+25+30+355=25,y −=68+78+80+82+925=80,∑(5i=1x i −x −)2=(15−25)2+(20−25)2+...+(35−25)2=250,∑(5i=1y i −y −)2=(68−80)2+...+(92−80)2=296,∑(5i=1x i −x −)(y i −y −)=(15−25)×(68−80)+...+(35−25)(92−80)=260, ∴r =260√250×296=13√185≈1313.60≈0.96∈[0.75,1],∴r 为正且接近于1,∴两个变量x ,y 之间成正相关,并且有相当强的相关性;(2)易得b ̂=260250=2625=1.04,则a ̂=80−1.04×25=54,∴回归方程为y ̂=1.04x +54.【解析】(1)利用已知条件以及相关系数的公式即可求解,进而可以判断;(2)求出回归方程的系数b 的值,由此求出a 的值,进而可以求解.本题考查了回归直线方程的求解以及回归直线方程系数的判断,属于基础题.21.【答案】解:(1)根据统计表格画出频率分布直方图,如图:(2)根据统计数据估计该学校新高一学生在此次期中考试中政治成绩的平均分为1100×(55×5+65×25+75×35+85×30+95×5)=74.55;(3)等级赋分以30分作为赋分起点,满分为100分,将考生每门的原始成绩从高到低划定为A 、B 、C 、D 、E 五等,各等级人数所占比例分别为15%、35%、35%、13%、2%.则此次考试政治赋分等级至少为B 所占比例为15%+35%=50%,即求原始成绩的百分之五十分位数,根据直方图可知,[50,60)对应频率为0.05,[60,70)对应频率为0.25,[70,80)对应频率为0.35,故原始成绩的百分之五十分位数位于[70,80)区间内,0.5−0.30.65−0.3×10+70≈76,故此次考试政治赋分等级至少为B 的大致分数线为76分.【解析】(1)根据题意,画出频率分布直方图即可;(2)根据平均数的求法,求解即可;(3)根据统计数据结合等级赋分的办法,此次考试政治赋分等级至少为B 所占比例为50%,即求原始成绩的百分之五十分位数,根据百分位数的定义,求解即可. 本题考查频率分布直方图的应用,属于基础题.22.【答案】解:(1)由题意可得{c =√3c 2=a 2−b 23a2+14b2=1,解得a 2=4,b 2=1,所以椭圆E 的标准方程为:x 24+y 2=1;(2)由(1)可得过左焦点F 1的直线AB 的斜率不为0,设直线AB 的方程x =my −√3,设A(x 1,y 1),B(x 2,y 2),联立{x =my −√3x 24+y 2=1,整理可得:(4+m 2)y 2−2√3my −1=0, 显然Δ>0,y 1+y 2=2√3m 4+m 2,y 1y 2=−14+m 2, 则|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√12m 2(4+m 2)2−4⋅−14+m 2=4√1+m 24+m 2, 所以S △F 2AB =12|F 1F 2|⋅|y 1−y 2|=12⋅4√3⋅4√1+m 24+m 2=8√3√1+m 24+m 2, 令t =√1+m 2≥1,可得m 2=t 2−1,所以√1+m 24+m 2=t4+t 2−1=t 3+t 2=1t+3t,令g(t)=1t+3t,t≥1,因为t ≥1,所以t +3t≥2√t ⋅3t=2√3,当且仅当t =3t,即t =√3时取等号, 此时√3=√1+m 2,解得m =±√2, 所以g(t)≤2√3,即g(t)的最大值为:2√3,所以S △F 2AB ≤8√3⋅2√3=4,即S △F 2AB 的最大值为4;此时直线AB 的方程为:x =±√2y −√3, 即△F 2AB 的面积最大时直线AB 的方程x ±√2y +√3=0.【解析】(1)由椭圆的焦点坐标及过的点P 的坐标和a ,b ,c 之间的关系,可得a ,b 的值,进而求出椭圆E 的标准方程;(2)由题意可得直线AB的斜率不为0,设直线AB的方程,与椭圆的方程联立,可得两根之和及两根之积,进而求出AB的纵坐标的差的绝对值的表达式,代入三角形的面积公式,换元,由均值不等式可得三角形的面积的最大值,并求出此时直线AB的方程.本题考查椭圆方程的求法及直线与椭圆的综合应用,换元法及均值不等式的性质的应用,属于中档题.。

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

(完整word版)高二第一学期数学期末考试题及答案(人教版文科)

2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。

高二数学文科A卷参考答案

高二数学文科A卷参考答案

高二数学文科A 卷参考答案二、11. 存在实数x,使得210x x ++≤ 12. 330x y -+= 13. 314. 34y x =± 15. 13288.9三、16.解:当命题p 为真时,则2(1)40a ∆=+-≥3a ⇒-≤或1a ≥……………2分当命题q 为真时,则24110a =-⨯⨯<22a ⇒-<<……………………4分 由已知得命题p 与命题q 为一真一假…………………………………………5分 当p 真q 假时,3122a a a a -⎧⎨-⎩≤≤≥≥或或3a ⇒-≤或2a ≥…………………………8分当p 假q 真时,3122aa -<<⎧⎨-<<⎩21a ⇒-<<……………………………………11分综上,a 的取值范围为(,3](2,1)[2,)-∞--+∞………………………12分17.解:(Ⅰ)证明:取PB 的中点M ,连接FM ,EM ,∵E 为AD 的中点,∴FM =//12BC =//DE ∴四边形DEMF 是平行四边形∴DF ∥EM ……………………………………………………………5分 又DF ⊄面PBE ,EM ≠⊂面PBE∴DF ∥平面PBE …………………………………………………………………6分 (Ⅱ)∵四边形ABCD 是边长为2的菱形,060BAD ∠=∴由(Ⅰ)的11sin 212222ABE S AB AE BAD ∆=⨯⨯⨯∠=⨯⨯⨯=…9分 ∵PD ⊥底面ABCD ,且PD =2∴11233B AEP P ABE ABE V V S PD --∆==⨯⨯== ……………12分 18.解:(Ⅰ)AB 的中点坐标为(2,4)C,则R AC ===∴圆C 的方程为: 22(2)(4)5x y -+-=……………………………5分 (Ⅱ)由于直线l 经过点()1,3P -,当直线l 的斜率不存在时,1x =-与圆C 相离. ……………………7分 当直线l 的斜率存在时,可设直线l 的方程为()31y k x -=+, 即:30kx y k -++=.…………………………………………………9分 因为直线l 与圆C 相切,且圆C 的圆心为()2,4=∴2k =或12k =-. …………………………………………………11分 ∴直线l 的方程为()321y x -=+或()1312y x -=-+,即:250x y -+=或250x y +-= …………………12分19.解:2()341f x x x '=-+ ………………………………………2分(Ⅰ)(0)1f '=∴曲线在原点(0,0)O 处的切线方程: y x =(Ⅱ)设曲线32()2f x x x x =-+过原点(0,0)的切线的切点为00(,)P x y ,则P 处的切线的斜率为2000()341f x x x '=-+ …………………………………4分 ∴切线方程为20000(341)()y y x x x x -=-+⋅-∵切线过原点(0,0)∴200000(341)(0)y x x x -=-+⋅- 即20000(341)y x x x =-+⋅………………7分 又3200000()2y f x x x x ==-+,∴320002x x x -+2000(341)x x x =-+⋅ …………………………………9分 ∴3200220x x -=∴00x =或01x = ………………………………………………11分 ∴(0)0f =,(0)1f '=;(1)0f =,(1)0f '=∴过原点(0,0)的曲线的切线的方程为:y x =或0y = ……………………13分 20.解:(Ⅰ)3()125f x x x =-+212()312,()0,2,2f x x f x x x ''=-==-=令得∴当22()0,22,()0x x f x x f x ''<->>-<<<或 时 当 时 , ∴)(x f 的单调递增区间是(,2)(2,)-∞-+∞及,单调递减区间是(2,2)- …………………………………………………5分 (Ⅱ)当2,()21x f x =-有极大值;当2,()x f x =有极小值-11 …………8分 (Ⅲ)由(Ⅰ)和(Ⅱ)知关于x 的方程a x f =)(有3个不同实根()y f x ⇔=的函数图像与直线y a =有三个不同的交点, ()()f x a f x ⇔<<极小值极大值1121a ⇔-<<即关于x 的方程a x f =)(有3个不同实根时,a 的取值范围为(11,21)-……13分 21.解:(Ⅰ)∵1F (1,0)-、2F (1,0)∴1c =又c e a ==∴a = …………………………………2分 ∴21b =∴所求椭圆的方程为:22121x y +=…………………………………5分 (Ⅱ)由以MN 为直径的圆过2F ,得220F M F N ⋅=u u u u v u u u v………………………… 7分(1) 若直线l 的斜率不存在,则直线l 的方程为1x =-. 将1x =-代入椭圆方程得2y =±。

高二上学期期末文科数学试卷带答案(必修5+选修1-1)

高二上学期期末文科数学试卷带答案(必修5+选修1-1)

深圳市布吉高级中学学业评价测试试卷高二数学(文科)满分:150分 时间:120分钟考生注意:客观题请用2B 铅笔填涂在答题卡上,主观题用黑色的水笔书写在答题卡上。

一、选择题:(本大题共10小题,每小题5分,共50分。

)1. 在ABC ∆中,若a =,60A =︒,6b =,则角B 是A .30︒或150︒B .30︒C .150︒D .45︒2. 命题“2,210x R x ∀∈+>”的否定是A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+> C .200,210x R x ∃∈+≤ D .200,210x R x ∃∈+<3. 椭圆13610022=+y x 的焦距等于 A .20B .16C .12D .84. “0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 5. 等比数列{}n a 中,42=a ,1617=a ,则5463a a a a +的值是 A .1B .2C .12D .146. 如果实数,x y 满足:102010x y x y x -+≤⎧⎪+-≤⎨⎪+≥⎩,则目标函数4z x y =+的最大值为A .2B .3C .27D .47. 已知函数()2xf x =,则'()f x =A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x8. 已知双曲线12222=-b y a x 的一条渐近线方程为,34x y =则双曲线的离心率为A .35 B .34 C .45 D .23 9. 若抛物线22(0)y px p =>的焦点与双曲线221124x y -=的右焦点重合,则p 的值为A .8B.C .4D .210. 已知椭圆的方程为13422=+y x ,P 是椭圆上的一点,且 6021=∠PF F ,则21PF F ∆的面积为A .33B .3C .32D .33二、填空题:(本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档