不动点定理及其应用
不动点定理

不动点定理不动点定理(Fixed Point Theorem)是数学中的一项重要定理,它在现代数学的许多领域中都有广泛的应用。
该定理的推导和证明过程相对复杂,但是可以通过举例来更直观地理解。
不动点定理最基本的形式是:对于一个连续函数f,如果存在一个数a使得f(a) = a,那么这个数a就被称为函数f的不动点。
假设有一个长度为1的线段,你可以将它折叠成任何形状的折线。
对于一条折线上的每一点,你都可以轻松地找到一个它的对应点,使得折线的对折后这两个点重合。
这个过程中,不动点就是指那些折线上的点,对折后依然保持不动。
我们先来看一个简单的例子,假设有一条直线y = x,我们希望找到这条直线上的一个不动点。
我们可以将其代入方程中,得到x = x,即x满足这个等式。
很明显,所有的实数都满足这个等式,所以直线y = x上的所有点都是它的不动点。
现在我们将问题扩展到更一般的函数。
假设有一个函数f(x) =x^2,我们可以将其图像绘制出来,并找到它的不动点。
通过描点,我们可以发现这个函数的图像在x = 0和x = 1处都与直线y = x有交点,也就是不动点。
这两个点分别是函数f(x)= x^2的两个不动点。
不动点定理告诉我们,如果一个函数在某个区间上满足某些条件,那么它一定存在一个不动点。
这个定理有着广泛的应用,例如在经济学中的均衡问题、微积分中的方程求解、组合数学中的图像理论等等。
不动点定理的推导和证明过程相对较为复杂,需要利用到现代数学中的许多高级概念和理论。
例如,需要使用到连续性、紧致性、度量空间等概念,以及开集、闭集、紧集等性质。
这些都是数学中非常重要的概念,它们为不动点定理提供了坚实的理论基础。
总结起来,不动点定理是数学中的一项重要定理,它有着广泛的应用。
通过找到函数中的某个不动点,我们可以解决一些实际问题或者推导出一些有意义的结论。
不动点定理的证明过程相对复杂,但通过举例可以更加直观地理解。
在日常生活中,我们也可以通过不动点定理来理解一些问题,例如折纸和折线、函数的交点问题等等。
不动点定理的实际应用

不动点定理的实际应用
不动点定理是数学中的一个重要概念,它在许多领域都有广泛的应用。
以下是一些不动点定理的实际应用:
1. 经济学:在经济学中,不动点定理被用来研究经济模型的稳定性和均衡性。
例如,它可以用于分析市场竞争、价格形成等问题。
2. 计算机科学:在计算机科学中,不动点定理被用来研究迭代算法的收敛性和稳定性。
例如,它可以用于分析搜索算法、图像处理算法等问题。
3. 物理学:在物理学中,不动点定理被用来研究量子力学中的对称性和守恒定律。
例如,它可以用于分析粒子的运动轨迹、能量转换等问题。
4. 工程学:在工程学中,不动点定理被用来研究控制系统的稳定性和性能优化。
例如,它可以用于分析飞机的姿态控制、机器人的运动规划等问题。
不动点定理在各个领域都有着广泛的应用,它为我们理解和解决实际问题提供了重要的数学工具和方法。
几个不动点定理及其应用

几个不动点定理及其应用
1. 香农不动点定理:若一个函数在一个闭区间上是连续的,那么这个函数在这个闭区间上至少有一个不动点。
应用:此定理可以用来证明某些函数的最小值或最大值存在。
2. 黎曼不动点定理:若一个函数在一个闭区间上是连续的,又在这个闭区间上的两个端点处有有限的导数,那么这个函数在这个闭区间上至少有一个不动点。
应用:此定理可以用来证明某些函数的最小值或最大值存在,也可以用来证明某些不可导函数的最小值或最大值存在。
3. 卡尔曼不动点定理:若一个函数在一个闭区间上是连续的,又在这个闭区间上的两个端点处有有限的导数,且在这个闭区间上的每一点处都有有限的导数,那么这个函数在这个闭区间上至少有一个不动点。
应用:此定理可以用来证明某些函数的最小值或最大值存在,也可以用来证明某些不可导函数的最小值或最大值存在,还可以用来判断某些函数的最小值或最大值是否存在。
第5讲 巴拿赫不动点定理

An x∗ = x∗
下面证明
x∗
的唯一性.设存在
x∗ 1
∈X
且
x∗ 1
=
A(
x∗ 1
)
,得
A2
x∗ 1
=
x∗ 1
,A3
x∗ 1
=
x∗ 1
,…,An
x∗ 1
=
x∗ 1
,
那么
d
(
x∗
,
x∗ 1
)
=
d ( Ax∗ , Ax1∗ )
=…
=
d
(
An
x∗
,
An
x∗ 1
)
≤
α
d
(
x∗ 1
,
x
∗
)
于是
(1
−
α
)d
(
4
44
f ' (x) < 3 < 1 4
于是得 f (x) 是 (0.5,1) 上的压缩映射,取 x0 = 0.75 ,由迭代 xn+1 = f (xn ) 可得 x1 = 0.7521 , x2 = 0.7533 , x3 = 0.7540 , x4 = 0.7544 ,
x5 = 0.7546 , x6 = 0.7547 , x7 = 0.7548 , x8 = 0.7548 ,….
d (xn
,
xn−1 )
=
d
( Axn−1,
Axn−2
)
≤
α
d (xn−1,
xn − 2
)
≤
α
c n−1 0
.
因此对于正整数 k 有
第 1-5-1页
西安电子科技大学理学院 杨有龙
brouwer 不动点定理

brouwer 不动点定理Brouwer不动点定理是数学分析中的一个重要定理,它由荷兰数学家L.E.J. Brouwer于1910年提出。
该定理在拓扑学、函数分析和经济学等领域具有广泛的应用。
它的核心思想是:对于一个连续变换的闭集,至少存在一个点在变换后不发生移动,即保持不动。
为了更好地理解Brouwer不动点定理,我们可以通过一个简单的例子来说明。
假设有一个地球仪,我们将地球仪放在桌子上,然后以任意方式移动地球仪,再将它放在桌子上,这个过程可以看作是一个连续变换。
根据Brouwer不动点定理,无论我们怎样移动地球仪,至少存在一个点在移动后保持不动,这个点就是地球仪的一个不动点。
在数学上,Brouwer不动点定理可以用更严谨的方式描述。
假设有一个从一个n维球面到自身的连续函数f(x),其中x表示球面上的点。
根据Brouwer不动点定理,存在至少一个点x0,使得f(x0) = x0,即f(x0)保持不动。
要证明Brouwer不动点定理,需要使用拓扑学中的一些基本概念和定理。
首先,我们需要了解拓扑空间和连续映射的概念。
一个拓扑空间是一个集合,其中的元素被称为点,同时还有一些子集被称为开集,这些开集满足一定的性质。
一个连续映射是指在两个拓扑空间之间的映射,它将一个空间中的点映射到另一个空间中的点,并保持拓扑结构不变。
在这个基础上,我们可以引入Brouwer不动点定理的证明。
我们假设不存在不动点,即对于任意的x,f(x) ≠ x。
然后,我们构造一个函数g(x),使得g(x) = f(x) - x。
根据我们的假设,g(x) ≠ 0。
接下来,我们考虑g(x)的零点集合Z = {x | g(x) = 0}。
由于g(x)是一个连续函数,Z是一个闭集。
根据定义,球面是一个紧致空间,因此Z也是一个紧致集合。
然后,我们需要使用反证法来推导出矛盾。
假设Z是一个非空集合,那么根据Brouwer分割定理,Z的补集是连通的。
角谷不动点定理kakutani's fixed point theorem

角谷不动点定理kakutani's fixed point theorem
摘要:
1.角谷不动点定理的定义和背景
2.角谷不动点定理的证明
3.角谷不动点定理的应用
4.角谷不动点定理的重要性
正文:
角谷不动点定理,又称卡库塔尼不动点定理(Kakutani"s fixed point theorem),是数学分析领域的一个重要定理。
该定理在研究方程和不等式中有着广泛的应用,特别是在微分方程、积分方程和概率论等领域中。
角谷不动点定理的定义是这样的:设f 是一个从集合X 到其自身的函数,如果对于X 中的任意x,都有f(x) 不等于x,那么我们就说f 在X 上存在一个不动点。
换句话说,不动点就是函数在其定义域内没有与之相等的自变量。
证明角谷不动点定理的方法有很多,其中一种比较常见的方法是使用布尔- 皮亚诺公理系统。
通过这一系统,我们可以证明在满足一定条件下,角谷不动点定理一定成立。
角谷不动点定理在数学分析中有着广泛的应用。
例如,在研究微分方程时,我们可以通过寻找不动点来求解方程的解。
另外,在概率论中,不动点定理也有着广泛的应用,例如在马尔可夫链的研究中,不动点定理可以帮助我们找到链的稳态分布。
角谷不动点定理的重要性在于,它为我们提供了一种寻找方程和不等式解的方法。
布劳威尔不动点定理

目录
02 历史 04 例子
在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一 般不动点定理的基石。布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(荷兰语:. Brouwer)。
关于不动点的定理很多,但布劳威尔不动点定理是最著名的不动点定理之一,因为它在不少领域中都有应用。 在最初的领域中,这个结果与若尔当曲线定理、毛球定理和博苏克-乌拉姆定理一样,是少数刻画欧几里得空间 之拓扑性质的关键定理之一。因此,布劳威尔定理在拓扑学中也有重要的地位。这个定理也被应用于证明各种微 分方程的深入结果中,在大部分的微分几何课程中都可以见到对这个定理的介绍。即使在看上去与这个定理没有 什么关系的领域,例如博弈论中,也能见到布劳威尔定理的应用。在经济学中,布劳威尔不动点定理以及其推广: 角谷静夫定理在证明经济学市场中全局平衡的存在性中扮演了重要角色。后者是由诺贝尔奖获得者吉拉德·德布 鲁和肯尼斯·阿罗在二十世纪五十年代发展起来的。
例子
这个定理可以通过很实际的例子来理解。比如:取两张一样大小的白纸,在上面画好垂直的坐标系以及纵横 的方格。将一张纸平铺在桌面,而另外一张随意揉成一个形状(但不能撕裂),放在第一张白纸之上,不超出第 一张的边界。那么第二张纸上一定有一点正好就在第一张纸的对应点的正上方。一个更简单的说法是:将一张白 纸平铺在桌面上,再将它揉成一团(不撕裂),放在原来白纸所在的地方,那么只要它不超出原来白纸平铺时的 边界,那么白纸上一定有一点在水平方向上没有移动过。
最初研究这个定理的是专研微分方程的以亨利·庞加莱和皮卡为首的法国数学家,因为在证明类似庞加莱-本 迪克松定理时需要用到拓扑学的方法。19世纪末期,这个定理的各种类似的版本。一般性的定理是由法国数学家 雅克·阿达马在1910年证明的,1912年,鲁伊兹·布劳威尔给出了一个新的证明。
不动点理论及其应用

不动点理论及其应用主要内容:●不动点理论—压缩映像原理●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用目录:一、引言二、压缩映像原理三、在微分方程中的应用四、在中学数学中的应用五、其它一、 引言取一张照片,按比例缩小,然后把小照片随手放在大照片上,那么大小两张照片在同一个部位,一定有一个点是重合的。
这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理定理:(Banach 不动点定理—压缩映像原理)设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。
X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:(1)。
0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。
),(),(x y y x ρρ=;(3)。
),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。
定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<<a , 使得 ),(),(y x a Ty Tx ρρ≤ ),(X y x ∈∀成立。
三、 在微分方程中的应用定理:(存在和唯一性)考虑如下初值问题⎪⎩⎪⎨⎧==.00)(),,(y x y y x f dx dy假设 ),(y x f 在矩形区域b y y a x x R ≤-≤-||,||:00内连续,而且对 y 满足Lipschitz 条件,则上述问题在区间],[00h x h x I +-= 上有且仅有一个解,其中.|),(|max },,min{),(y x f M Maa h R y x ∈>=(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。