不动点定理及其应用
巴拿赫不动点定理及其应用
巴拿赫不动点定理及其应用
巴拿赫不动点定理是函数分析中的一项基本定理,又称为Banach不动点定理。
该定理是由波兰数学家斯蒂芬·巴拿赫于1922年提出的。
巴拿赫不动点定理可以简单地表述为:在完备度量空间中,连续映射必有不动点。
这个定理的意义在于,对于一些映射或者变换,必然存在一个点不会移动,这个点就被称作“不动点”。
而根据巴拿赫不动点定理,只要一个映射是连续的并且作用于完备度量空间,那么它必然存在不动点。
这个定理有很多应用,下面列举一些常见的:
1.在求解微积分方程、微分方程、积分方程时,巴拿赫不动点定理是很重要的工具。
2.在数值分析中,巴拿赫不动点定理可以用于求解线性方程组、优化问题以及非线性方程组的数值解。
3.在动力学系统中,巴拿赫不动点定理可以用于证明某些系统存在定点。
4.在实际应用中,巴拿赫不动点定理可以用于证明某些算法的收敛性以及求解某些不动点问题。
总之,巴拿赫不动点定理是数学中的一项重要定理,它的实际应用十分广泛。
不动点定理及应用张石生
不动点定理及应用张石生不动点定理是数学分析中的一个重要定理,也是实分析的基础之一。
它是通过将函数与自身的某个值进行比较,来研究函数性质的一个方法。
在实际问题中,不动点定理具有广泛的应用,如经济学、物理学、计算机科学等领域。
不动点定理的基本概念是,对于一个给定的函数f(x),如果存在一个点c使得f(c)=c,那么c就是f的一个不动点。
换句话说,不动点是指函数f的输入和输出相等的点。
不动点定理的核心思想是通过迭代法逼近不动点。
最著名的不动点定理是Banach不动点定理(也称为完备性原理),它的形式是:在完备度量空间中,任何一个压缩映射都有唯一的不动点。
其中,完备度量空间指的是一个具有一个完整的度量的空间,而压缩映射指的是一个将空间元素映射到自身并保持距离不变的映射。
不动点定理的应用非常广泛。
以下列举一些典型的应用领域。
1. 经济学:在经济学中,不动点定理常常用于证明经济学模型中的均衡存在和稳定性。
例如,通过将供求函数模型转化为一个演化方程,可以证明在某些条件下存在一个不动点,表示市场均衡;而通过分析不动点的稳定性,可以研究市场的长期发展趋势。
2. 物理学:在物理学中,不动点定理常用于分析非线性方程的解的存在性与性质。
例如,在动力系统的研究中,可以将动力学方程表示为一个不动点问题,通过分析不动点的性质来研究系统的稳定性和演化行为。
3. 计算机科学:在计算机科学中,不动点定理常常用于程序的求解和优化。
例如,在编译器优化中,可以将程序转化为一个抽象语法树,通过对抽象语法树的变换来求解程序的不动点,以达到提高程序性能的目的。
4. 几何学:在几何学中,不动点定理常用于证明几何变换的存在性和特性。
例如,在拓扑学中,可以通过不动点定理来研究拓扑空间的连续映射和同胚映射的性质。
综上所述,不动点定理是数学分析中的一个重要定理,它通过引入不动点的概念,研究函数的性质和方程的解的存在性。
在实际应用中,不动点定理被广泛用于经济学、物理学、计算机科学等领域,为解决实际问题提供了有力的工具和方法。
几个不动点定理及其应用
1. 平衡点定理:如果一个系统的变量满足某种约束条件,那么它的变量就会趋于一个平衡点,而不会发生变化。
应用:平衡点定理可以用于经济学中的供求平衡分析,以及生态学中的生态系统平衡分析。
2. 马尔可夫不动点定理:如果一个马尔可夫链的转移矩阵的特征值都小于1,那么它就会
收敛到一个不动点。
应用:马尔可夫不动点定理可以用于模拟系统的稳定性分析,以及概率模型的收敛性分析。
3. 卡尔曼不动点定理:如果一个卡尔曼滤波器的状态转移矩阵的特征值都小于1,那么它
就会收敛到一个不动点。
应用:卡尔曼不动点定理可以用于无人机的定位导航,以及机器人的路径规划。
泛函分析中的不动点定理及应用
泛函分析中的不动点定理及应用泛函分析是数学中的一个重要分支,研究的是函数的空间以及变换等概念。
在泛函分析中,不动点定理是一项极为重要的结果,它在许多领域都具有广泛的应用。
本文将介绍不动点定理的概念、证明以及在泛函分析中的应用实例。
一、不动点定理概述不动点定理是泛函分析的基础定理之一,它指出在一定条件下,对于某个变换,总存在至少一个点在变换之后保持不变。
换句话说,就是存在一个点,该点在经过变换后仍然等于它自身。
不动点定理有多种形式,其中最著名的定理之一是巴拿赫不动点定理(Banach Fixed-Point Theorem),该定理也被称为压缩映像原理(Contraction Mapping Principle)。
二、巴拿赫不动点定理及其证明巴拿赫不动点定理是泛函分析中最为经典的不动点定理之一,它具体表述为:若给定一个完备的度量空间,并且在该度量空间上定义了一个压缩映像,那么该压缩映像至少存在一个不动点。
压缩映像的定义如下:对于给定的度量空间(X, d),若存在一个常数0 < k < 1,对于任意的 x, y ∈ X,满足d(f(x), f(y)) ≤ kd(x, y),则称映像 f 是一个压缩映像。
巴拿赫不动点定理的证明基于完备性和收敛性的概念。
具体的证明过程略显复杂,在此不展开叙述,但是通过巴拿赫不动点定理的证明,我们可以得出一个重要结论:在完备的度量空间上,压缩映像的不动点是唯一的。
三、不动点定理的应用实例不动点定理在许多领域中都有着广泛的应用,以下是其中两个典型的应用实例:1. 应用于微分方程不动点定理在微分方程的研究中扮演着重要角色。
许多微分方程可以转化为积分方程,然后利用不动点定理证明解的存在性和唯一性。
例如,在实数轴上关于初始值问题的微分方程中,可以通过构造合适的算子和空间,将微分方程转化为一个算子方程,然后运用不动点定理证明方程存在解。
2. 应用于经济学模型在经济学领域中,不动点定理也有着广泛的应用。
《2024年几类经典的不动点定理与Edelstein不动点定理的统一》范文
《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理在数学分析、微分方程和函数理论等多个领域都有着广泛的应用。
在近几十年里,研究者们通过研究不同的不动点定理,得到了许多重要的结论。
本文将介绍几类经典的不动点定理以及Edelstein不动点定理,并探讨它们之间的联系和统一性。
二、几类经典的不动点定理1. 压缩映射不动点定理压缩映射不动点定理是一种常见的不动点定理,它适用于一些具有压缩性质的映射。
根据该定理,如果一个映射满足压缩条件,那么它必定存在一个唯一的不动点。
该定理在函数逼近、数值计算等领域有着广泛的应用。
2. 抽象空间中的不动点定理在抽象空间中,一些具有特定性质的空间如Banach空间、Hilbert空间等都可以应用不动点定理。
这些不动点定理往往需要一些特定的假设条件,例如自映射的性质等。
它们被广泛应用于各种学科中,如泛函分析、控制论等。
3. 重合度不动点定理重合度不动点定理是研究不动点的另一种重要方法。
该定理将映射的重合度(即,正则性的量化指标)与不动点的存在性联系起来。
通过计算重合度,可以判断出不动点的存在性以及数量。
该定理在微分方程、偏微分方程等领域有着广泛的应用。
三、Edelstein不动点定理Edelstein不动点定理是一种更一般的不动点定理,它适用于更广泛的映射和空间。
该定理的优点在于它不需要像压缩映射不动点定理那样具有特定的压缩性质,因此更具有普适性。
在应用中,Edelstein不动点定理常用于证明某些问题的唯一解或解的存在性。
四、几类经典的不动点定理与Edelstein不动点定理的统一虽然几类经典的不动点定理和Edelstein不动点定理各自有着不同的应用和条件,但它们之间也有着内在的联系和统一性。
事实上,一些特定情况下,Edelstein不动点定理可以视为是其他几种经典不动点定理的特例或推导形式。
因此,从理论上来说,可以将它们统一到一个更为一般的框架下进行研究和应用。
不动点理论及其应用
不动点理论及其应用主要内容:●不动点理论—压缩映像原理●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用目录:一、引言二、压缩映像原理三、在微分方程中的应用四、在中学数学中的应用五、其它一、 引言取一张照片,按比例缩小,然后把小照片随手放在大照片上,那么大小两张照片在同一个部位,一定有一个点是重合的。
这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理定理:(Banach 不动点定理—压缩映像原理)设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。
X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:(1)。
0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。
),(),(x y y x ρρ=;(3)。
),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。
定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<<a , 使得 ),(),(y x a Ty Tx ρρ≤ ),(X y x ∈∀成立。
三、 在微分方程中的应用定理:(存在和唯一性)考虑如下初值问题⎪⎩⎪⎨⎧==.00)(),,(y x y y x f dx dy假设 ),(y x f 在矩形区域b y y a x x R ≤-≤-||,||:00内连续,而且对 y 满足Lipschitz 条件,则上述问题在区间],[00h x h x I +-= 上有且仅有一个解,其中.|),(|max },,min{),(y x f M Maa h R y x ∈>=(1)。
几类不动点定理的推广及证明
几类不动点定理的推广及证明几类不动点定理的推广及证明引言:不动点定理是数学中一个重要的定理,它在很多领域都有广泛的应用。
不动点,顾名思义,是指函数中某一点在映射后仍保持不变的点。
不动点定理从不动点的角度给出了函数存在或唯一性的条件。
本文将介绍几类不动点定理的推广,并给出证明。
一、Banach不动点定理的推广及证明:Banach不动点定理是最经典的不动点定理之一。
它适用于完备度量空间中的压缩映射,并保证了该映射存在唯一的不动点。
然而,在非完备度量空间中的压缩映射是否存在不动点呢?为了解决这个问题,可以引入相似性映射的概念。
相似性映射是指满足$d(f(x),f(y))\leq k\cdot d(x,y)$的映射,其中$k\in(0,1)$,$d$表示度量空间中的距离函数。
根据较弱的条件,我们可以推广Banach不动点定理到非完备度量空间中的相似性映射,并得到存在不动点的结论。
证明:设$X$为一个非完备度量空间,$f:X\rightarrow X$为一个相似性映射,即存在$k\in(0,1)$,使得$d(f(x),f(y))\leqk\cdot d(x,y)$对任意$x,y\in X$成立。
我们需要证明$f$存在一个不动点。
首先选取$X$中的任意点$x_0$,定义序列$\{x_n\}$如下:$$x_n=f(x_{n-1}),\ n=1,2,3,\cdots$$接下来,我们证明$\{x_n\}$是一个Cauchy序列。
由相似性映射的性质可知:$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leq k\cdotd(x_n,x_{n-1})$$不妨设$m>n$,则有:$$d(x_m,x_n)\leq\sum_{i=n}^{m-1}d(x_{i+1},x_i)\leq\sum_{i=n}^{m-1}k^{i-n}d(x_1,x_0)$$利用等比数列求和公式,可以得到:$$d(x_m,x_n)\leq\frac{k^n}{1-k}\cdot d(x_1,x_0)$$ 由于$k\in(0,1)$,故$\frac{k^n}{1-k}$是一个有界数列。
数学中不动点理论及其应用分析
数学中不动点理论及其应用分析不动点理论是数学中一个重要的概念和工具,被广泛应用于不同的学科和领域,例如动力系统、函数方程、微分方程、经济学等。
本文将对不动点理论进行详细分析,并探讨其在数学中的应用。
不动点是指一个函数中的某个点,在施加函数变换后,其值保持不变。
即对于函数f(x),若存在x使得f(x) = x,则x即为f的不动点。
不动点理论主要关注寻找函数的不动点,并研究其性质和存在条件。
在数学分析中,不动点理论由Banach不动点定理和Brouwer不动点定理两大支柱构成。
Banach不动点定理也被称为压缩映射原理,它是20世纪最重要的数学发现之一,为数学中不动点理论的研究奠定了基础。
Banach不动点定理的核心思想是基于完备度的概念。
如果在某个度量空间中,存在一个压缩映射,即满足d(f(x), f(y)) ≤ q · d(x, y)(0<q<1),其中d(x, y)代表x和y之间的距离,则这个压缩映射必有一个不动点。
换句话说,如果将一个空间的点映射到自身,并且映射过程中距离会不断缩小,那么必然存在一个点保持不变,这个点即为不动点。
Brouwer不动点定理则更加普遍,它适用于拓扑空间中的紧集合。
该定理表明,任何连续映射都至少有一个不动点。
虽然定理的证明相对复杂,但其结论确实深刻而重要。
不动点理论在数学的各个领域都有广泛的应用。
其中,动力系统是其中之一。
动力系统研究的是在时间推移下,系统如何演化的数学模型。
通过不动点理论,我们可以确定系统演化的稳定状态,即系统的不动点。
不动点的稳定性分析在动力系统研究中起着至关重要的作用。
不动点理论还被应用于函数方程和微分方程的研究。
对于给定的方程,通过找到方程的不动点,可以解决方程的存在性及唯一性问题。
这对于数学建模和分析具有重要意义。
此外,不动点理论还在经济学、物理学等学科中有广泛的应用。
在经济学中,通过构建经济模型的不动点,可以研究经济系统的平衡状态和稳定性。
不动点定理及其应用
不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。
《2024年两类不动点定理及其应用》范文
《两类不动点定理及其应用》篇一一、引言不动点定理是数学领域中一种重要的理论工具,它在分析、微分方程、函数空间等领域都有着广泛的应用。
不动点定理描述了某种数学结构中元素(如函数)的自映射行为,并给出了在特定条件下这些自映射存在固定点的条件。
本文将主要介绍两类不动点定理,并探讨它们在数学及其相关领域的应用。
二、第一类不动点定理第一类不动点定理通常指的是Banach压缩映射原理,也称为压缩映射原理。
这一原理是函数空间理论中重要的不动点定理之一。
其基本思想是:在完备的度量空间中,存在一个压缩映射,该映射具有一个唯一的不动点。
定理表述:设(X,d)是一个完备的度量空间,T是X上的一个压缩映射,即存在一个常数0<q<1,使得对于任意的x,y∈X,有d(Tx,Ty)≤qd(x,y)。
那么T在X中存在唯一的不动点x0,即Tx0=x0。
应用:Banach压缩映射原理在许多领域都有广泛的应用,如在微分方程的数值解法、优化算法的收敛性分析、概率论的随机过程等。
例如,在优化算法中,通过使用压缩映射原理可以证明某些迭代算法的收敛性。
三、第二类不动点定理第二类不动点定理主要指的是Schauder不动点定理和Kakutani不动点定理等。
这类定理主要应用于更一般的拓扑空间或函数空间中。
Schauder不动点定理:设K是一个紧致凸集,T是K到K的一个连续映射,那么T在K中至少有一个不动点。
应用:Schauder不动点定理在偏微分方程、拓扑学、经济学等领域有广泛的应用。
例如,在偏微分方程中,可以通过Schauder不动点定理证明某些非线性偏微分方程解的存在性。
四、结论本文介绍了两类不动点定理及其应用。
第一类不动点定理以Banach压缩映射原理为代表,它在函数空间理论及许多应用领域有着重要的地位。
第二类不动点定理如Schauder不动点定理等,则适用于更一般的拓扑空间或函数空间。
这些不动点定理为解决许多数学问题提供了有力的工具,同时也为其他领域如微分方程、优化算法、概率论等提供了重要的理论支持。
不动点定理及其应用
不动点定理及其应用一、不动点定理不动点定理fixed —point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =⋅⋅⋅,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。
(一)、压缩算子:1、定义: 设(1)X距离空间;(2)算子:T X X →的映射。
若(01),..,s t x y X θθ∃≤<∀∈,恒有(,)(,)Tx Ty x y ρθρ≤, 则称T 是X 上的压缩算子.θ为压缩系数.2、性质:压缩算子T 是连续的 证 :若nx x →,即(,)0n x x ρ→,则(,)(,)0n n Tx Tx x x ρθρ≤→例:11:T R R →,则 ①12Tx x =是压缩算子因为1111(,)(,),2222Tx Ty Tx Ty x y x y ρρθ=-=-==②0Tx x =是压缩算子(0θ= ) ③Tx x =不是压缩算子(1θ= )(二)、不动点定理1、定义:设(1)X --—— 是完备的距离空间;(2):T X X →的压缩算子.则T 在X 上存在唯一的不动点*x ,即***,..x X s t x Tx ∃∈=2、注意(1)定理的证明过程就是求不动点的方法,称为构造性的证明. (2)定理的条件是结论成立的充分非必要条件。
(3)迭代的收敛性和极限点与初始点无关。
但T 的选取及初始点0x 的选取对迭代速度有影响。
初始点离极限点越近,其收敛速度越快,而不影响精确度。
(4)误差估计①事前(或先验)误差:根据预先给出的精确度,确定计算步数。
此方法有时理论上分析困难。
设迭代到第n 步,将*n xx ≈,则误差估计式为*0010(,)(,)(,)11n nn x x Tx x x x θθρρρθθ≤=--②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取*n x x ≈。
不动点定理知识点总结
不动点定理知识点总结一、不动点的定义首先,我们来看一下不动点的定义。
给定函数f: X → X,如果存在x∈X使得f(x) = x,那么x就是函数f的一个不动点。
换句话说,对于函数f,如果存在一个点x,使得f将x映射到它自身,那么x就是函数f的一个不动点。
举个简单的例子,考虑函数f(x) = 2x,显然f的不动点就是x=0,因为f(0) = 2*0 = 0。
此外,函数g(x) = x^2也有不动点x=0,因为g(0) = 0^2 = 0。
不动点的概念看起来很简单,但它在数学分析中有着深远的应用。
接下来,我们将介绍不动点定理的条件以及应用。
二、Banach不动点定理Banach不动点定理是最著名的不动点定理之一,它是由波兰数学家斯特凡·巴拿赫(Stefan Banach)在20世纪初提出的。
Banach不动点定理说的是,如果X是一个完备度量空间,而f: X→X是一个压缩映射(contraction mapping),那么f在X上存在唯一的不动点。
首先,我们来看一下完备度量空间的定义。
给定的度量空间(metric space)(X, d),如果该空间中任意柯西列(Cauchy sequence)都收敛于X中的某个点,则称X是完备的。
在完备度量空间中,我们可以证明如下的两个定理:定理1:完备度量空间中任何紧集合都是闭的;定理2:完备度量空间上的任何收敛序列都是柯西列。
接着,我们来看一下压缩映射的定义。
给定度量空间(X, d)和函数f: X → X,如果存在一个常数0≤k<1,使得对于任意x, y∈X,有d(f(x), f(y))≤kd(x, y),那么称f是一个压缩映射。
有了完备度量空间和压缩映射的概念,我们可以给出Banach不动点定理的表述:定理3(Banach不动点定理):如果(X, d)是一个完备度量空间,而f: X→X是一个压缩映射,那么f在X上存在唯一的不动点。
这个定理的证明是通过构造一个柯西列,利用完备度量空间的性质来证明不动点的存在,并利用压缩映射的性质来证明不动点的唯一性。
第6章 不动点理论及应用
§6.3 不动点定理的应用
不动点定理建立在距离空间基础上的,而距离空间是一 个比较广泛的抽象空间,所以不动点定理有着广泛的应用。
应用不动点定理解决实际问题的步骤: (1)寻找压缩算子 T ,将问题转化为求 x Tx 的不动点;
* { x } x (2)构造迭代序列 n ,取极限点 xn ;
T : L2[a, b] L2[a, b]
的算子。下证 T 的压缩性。
第一种情形举例
s, 0 s t K ( s, t ) C [0,1] 例 设在 上有 t , t s 1 ,求方程
1 1 (t ) 1 K ( s, t ) ( s)ds 10 0
* { x } x 若序列 n 收敛,则极限点 为 x Tx 的不动点。
这种用逐次代入构造近似解的方法称为迭代法。不同 的算子方程,得到不同的迭代法。
§6.2 不动点定理
1.压缩算子: 设(1) X 距离空间; (2)算子 T : X X 的映射。 若 (0 1), s.t. x, y X ,恒有
则通过点 ( x0 , y0 ) 必有且只有一条积分曲线 y y( x)
证:初值问题 求解方程 y( x) y( x0 ) x0 f (t , y(t ))dt 令 Ty y0 x f (t , y)dt ,则问题为解 y Ty 的不动点。
0
x
(下面只要证明 T 满足不动点定理的两个条件即可)
3 x 例如:求方程 x 1 0 在区间(0,2)内的近似根;
求解线性方程组 Ax b
实际上,对于上述各种方程的求解问题,都可统一为求解相应 的算子方程的不动点问题,并在此基础上建立了迭代方法。 转化方法:方程 f ( x) 0 x x f ( x) 令算子
《2024年几类经典的不动点定理与Edelstein不动点定理的统一》范文
《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理是数学领域中一类重要的定理,广泛运用于函数分析、拓扑学、微分方程等领域。
不动点定理描述的是在一定条件下,算子或映射在特定的空间上存在至少一个不动点。
其中,几类经典的不动点定理和Edelstein不动点定理是这一领域中最为重要的理论之一。
本文旨在探讨这些经典的不动点定理的统一性,以及它们在数学和其他领域的应用。
二、几类经典的不动点定理1. 布洛克萨不动点定理:该定理描述了在实数连续函数中,若函数是压缩映射,则其至少存在一个不动点。
这一定理是现代数学中最为基础的几个不动点定理之一。
2. 巴拿赫压缩映射定理:巴拿赫压缩映射定理是泛函分析中一个重要的不动点定理,该定理在完备的度量空间中,若映射是压缩的,则该映射存在唯一的不动点。
3. 斯科罗霍德不动点定理:斯科罗霍德不动点定理主要应用于拓扑空间中的连续映射,该定理在满足一定条件下,证明了连续映射存在不动点的存在性。
三、Edelstein不动点定理Edelstein不动点定理是一种广义的不动点定理,它适用于更广泛的函数空间和更一般的条件。
Edelstein不动点定理的主要思想是在一定的条件下,一个算子或映射在其定义域内至少存在一个不动点。
这一定理在微分方程、经济学、优化理论等领域有着广泛的应用。
四、几类经典的不动点定理与Edelstein不动点定理的统一尽管几类经典的不动点定理和Edelstein不动点定理在形式和适用条件上有所不同,但它们在本质上都是描述了算子或映射在其定义域内存在至少一个不动点的性质。
因此,我们可以通过抽象出它们的共同特点,将它们统一到一个更为一般的框架下。
这一框架可以更好地揭示不动点定理的内在联系和本质,有助于我们更好地理解和应用这些定理。
五、应用不动点定理在数学和其他领域有着广泛的应用。
在数学领域,它们被广泛应用于函数分析、拓扑学、微分方程等领域。
在经济学和优化理论中,不动点定理被用来描述经济系统的均衡状态和优化问题的解的存在性。
哥德尔不动点引理
哥德尔不动点引理哥德尔不动点引理是逻辑学和计算机科学领域中一个重要的概念,它与数学的基础理论和计算机算法有着密切的关联。
本文将从哥德尔不动点引理的定义、应用以及相关领域的发展等方面进行介绍和分析。
哥德尔不动点引理,又称为哥德尔完全性定理或哥德尔第一不动点定理,是由奥地利逻辑学家库尔特·哥德尔于1930年提出的。
该定理指出,在形式化的数理逻辑系统中,如果一个公式可以在该系统中证明自己,则该公式是不动点。
换言之,如果一个公式可以在系统内推导出来,并且推导出来的过程中不需要使用其他前提或规则,那么这个公式就是一个不动点。
这个定理的重要意义在于揭示了逻辑系统内在的局限性,即存在一些命题无法在该系统内得到证明。
哥德尔不动点引理的应用非常广泛。
在计算机科学领域,哥德尔不动点引理被广泛应用于程序分析和验证、模型检测、并行计算等方面。
例如,在程序分析和验证中,可以利用哥德尔不动点引理来证明一个程序是否满足某个性质,或者找出满足某个性质的最小不动点。
在模型检测中,可以利用哥德尔不动点引理来判断一个系统是否满足某个性质,或者找出满足某个性质的最小不动点。
在并行计算中,可以利用哥德尔不动点引理来证明一个并行算法的正确性或者计算复杂性。
哥德尔不动点引理的提出和发展,推动了数理逻辑和计算机科学领域的发展。
在哥德尔不动点引理之后,许多学者对其进行了进一步的研究和发展,提出了许多相关概念和定理。
例如,哥德尔的第二个不动点定理、图灵定理、哥德尔-塔斯基定理等等。
这些定理和概念的提出,丰富和拓展了数理逻辑和计算机科学的理论体系,为人工智能、计算机算法等领域提供了理论基础。
总结起来,哥德尔不动点引理是逻辑学和计算机科学领域中一个重要的概念。
它揭示了逻辑系统内在的局限性,被广泛应用于程序分析和验证、模型检测、并行计算等方面,并推动了数理逻辑和计算机科学的发展。
对于了解和掌握哥德尔不动点引理,对于深入理解数理逻辑和计算机科学的基础理论,以及应用于实际问题的解决具有重要意义。
泛函分析中的不动点定理及应用
泛函分析中的不动点定理及应用泛函分析是数学中的一个重要分支,主要研究向量空间中的函数和算子的性质及其相互关系。
不动点定理是泛函分析中的一项基本定理,它在数学和应用领域中有着广泛的应用。
本文将介绍不动点定理的概念、主要结果以及其在一些实际问题中的应用。
一、不动点定理的概念不动点定理是指在给定的函数空间中,存在一个函数,它在函数空间中的作用下保持不变。
具体而言,设X为一个非空集合,f为从X到X的映射,如果存在一个元素x∈X,使得f(x)=x,则称x为f的不动点。
不动点定理的证明主要基于完备度和收敛性的概念。
如果给定的空间是完备的,并且函数的映射是连续的,那么不动点定理可以成立。
常见的不动点定理有Banach不动点定理、Brouwer不动点定理和Schwarz-Zippel不动点定理等。
二、主要的不动点定理结果1. Banach不动点定理:设X为一个完备的度量空间,f为X上的一个压缩映射,即存在一个常数k(0 < k < 1),对于任意的x, y∈X,有d(f(x), f(y)) ≤ k · d(x, y)。
则f存在唯一的不动点,即存在x∈X,使得f(x) = x。
2. Brouwer不动点定理:设D是欧几里德空间中的一个非空、闭、有界的凸集,f为D到D的连续映射,则f存在不动点,即存在x∈D,使得f(x) = x。
3. Schwarz-Zippel不动点定理:设D是n维欧几里德空间中的有界凸集,f为D到D的连续映射,并且满足f(0) = 0。
如果f是单调递增的,并且存在一个点a∈D,使得f(a) ≥ a,则f存在不动点。
三、不动点定理的应用不动点定理在实际问题中有着广泛的应用,例如在经济学、力学、计算机科学等领域。
在经济学中,不动点定理可以用来证明一些重要的经济模型的存在性。
例如,通过对需求曲线和供给曲线的分析,可以利用Banach不动点定理证明市场均衡点的存在性。
在力学中,不动点定理可以用来证明牛顿方程的解的存在性。
Banach不动点理论及其在方程组求解中的应用
Banach不动点理论及其在方程组求解中的应用Banach不动点理论是数学中一个重要的概念,它在方程组求解等领域有着广泛的应用。
本文将介绍Banach不动点理论的基本概念和原理,并探讨其在方程组求解中的具体应用。
一、Banach不动点理论概述Banach不动点理论是由波兰数学家斯捷凡·巴拿赫(Stefan Banach)研究并提出的。
它是函数分析中的一个重要分支,研究在完备度量空间中具有某种特定性质的映射的不动点存在性问题。
在数学上,给定一个度量空间X和一个映射T:X→X,如果T存在一个点x∈X,使得T(x)=x,那么我们称x为T的不动点。
Banach不动点理论研究的是在何种条件下,一个映射T必然存在不动点。
二、Banach不动点定理Banach不动点理论的核心定理就是Banach不动点定理,也被称为压缩映像原理。
该定理给出了在完备度量空间中,压缩映射必然存在不动点的条件。
具体表述如下:定理:设X是一个完备度量空间,T:X→X是一个压缩映射。
则T 存在唯一的不动点。
这个定理的意义在于,通过找到一个满足压缩条件的映射T,在完备度量空间中总能找到该映射的不动点。
这为方程组求解提供了一种有效的方法。
三、Banach不动点理论在方程组求解中的应用Banach不动点理论在方程组求解中有着广泛的应用。
我们以线性方程组的求解为例,说明Banach不动点理论在方程组求解中的具体应用。
对于线性方程组Ax=b,其中A是一个已知的n×n矩阵,x和b是未知向量。
我们可以将方程组改写成一个不动点问题:x=T(x)+c,其中T(x)=(I-A)x和c=A·b,I是n阶单位矩阵。
这里T(x)是一个线性映射。
根据Banach不动点定理,如果T是一个压缩映射,那么方程组Ax=b就有唯一解x。
因此,我们可以通过构造一个满足压缩条件的映射T,然后使用Banach不动点定理来求解线性方程组。
在具体操作中,可以使用迭代法来逼近不动点。
lefschetz不动点定理
lefschetz不动点定理摘要:I.引言- 引入Lefschetz 不动点定理- 说明其在数学和物理中的应用II.Lefschetz 不动点定理的定义和性质- 定理的定义- 几个重要的不动点- 定理的性质和证明方法III.Lefschetz 不动点定理在数学中的应用- 代数几何- 拓扑学- 微分几何IV.Lefschetz 不动点定理在物理学中的应用- 统计力学- 场论- 弦论V.总结- 总结Lefschetz 不动点定理的重要性和应用- 展望未来的研究方向正文:I.引言Lefschetz 不动点定理是数学中一个非常重要的定理,它涉及到复数域上的多项式函数,描述了这种函数的不动点性质。
不动点是指在函数空间中,存在一个点,使得该函数在此点上的函数值等于该点。
这个定理由数学家Solomon Lefschetz 于1940 年提出,它在数学和物理学中都有着广泛的应用。
II.Lefschetz 不动点定理的定义和性质Lefschetz 不动点定理的定义如下:设$f: X to X$是一个复数域上的多项式函数,其中$X$是一个复数域上的n 维向量空间。
如果$f$在$X$上的雅可比行列式在某个点$x in X$处不为零,那么$f$在$x$处有一个不动点。
Lefschetz 不动点定理的性质包括:- 它是一个局部定理,即对于每一个不动点,都可以找到一个邻域,使得在这个邻域内,函数的雅可比行列式不为零。
- 它是一个拓扑定理,即如果$f$在$X$上的雅可比行列式在某个点$x in X$处为零,那么$x$一定是$f$的不动点。
III.Lefschetz 不动点定理在数学中的应用Lefschetz 不动点定理在数学的各个领域都有着广泛的应用,包括代数几何、拓扑学、微分几何等。
在代数几何中,Lefschetz 不动点定理被用来描述代数簇的不动点,在拓扑学中,它被用来描述流形上的不动点,在微分几何中,它被用来描述微分流形上的不动点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不动点定理及其应用
一、不动点定理
不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =⋅⋅⋅,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。
(一)、压缩算子:
1、定义: 设(1)X
距离空间;
(2)算子:T X X →的映射。
若(01),..,s t x y X θθ∃≤<∀∈,恒有(,)(,)Tx Ty x y ρθρ≤, 则称T 是X 上的压缩算子。
θ为压缩系数。
2、性质:压缩算子T 是连续的 证 :若n
x x →,即(,)0n x x ρ→,则(,)(,)0n n Tx Tx x x ρθρ≤→
例:1
1
:T R R →,则 ①12
Tx x =
是压缩算子
因为1111(,)(,),222
2
Tx Ty Tx Ty x y x y ρρθ=-=-
=
=
②0Tx x =是压缩算子(0θ= ) ③Tx x =不是压缩算子(1θ= )
(二)、不动点定理
1、定义:设(1)X ---- 是完备的距离空间;
(2):T X X →的压缩算子。
则T 在X 上存在唯一的不动点*
x ,即*
*
*
,..x X s t x Tx ∃∈=
2、注意
(1)定理的证明过程就是求不动点的方法,称为构造性的证明。
(2)定理的条件是结论成立的充分非必要条件。
(3)迭代的收敛性和极限点与初始点无关。
但T 的选取及初始点0x 的选取对迭代速度有影响。
初始点离极限点越近,其收敛速度越快,而不影响精确度。
(4)误差估计
①事前(或先验)误差:根据预先给出的精确度,确定计算步数。
此方法有时理论上分析困难。
设迭代到第n 步,将*
n x
x ≈,则误差估计式为
*
0010(,)(,)(,)11n n n x x Tx x x x θθρρρθθ
≤=--
②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取*
n x x ≈。
此方法简单,但有时无法估计计算步数。
设迭代到第n 步,将*n x x ≈,则误差估计式为
*1(,)(,)1n n n x x x x θ
ρρθ
-≤
-
或 *11
(,)(,)1n n n x x x x ρρθ
+≤
- 3、求解不动点的具体步骤: Step1 提供迭代初始点0x ; Step2 计算迭代点10x Tx =;
Step3 控制步数,检查10(,)x x ρ,若10(,)x x ρε>。
则以1x 替换0x 转到第二步,继续迭代,当10(,)x x ρε≤时终止,取1x 为所求结果。
误差不超过
1θ
εθ
-。
对于不动点理论,为了便于应用,下面给出两种不同情况下所适合的方法。
推论1
设(1)X ----完备的距离空间; (2):T X X →的算子。
(3)T 在闭球0(,)s x r X ⊂上是压缩算子,并且
00(,)(1)Tx x r ρθ≤-
则T 在0(,)s x r 中存在唯一的不动点 推论2
设(1)X ---完备的距离空间; (2):T X X →的算子。
(3)存在01θ≤<及正整数n ,使,x y X ∀∈,都有
(,)(,)n n T x T y x y ρθρ≤
则T 在X 中存在唯一的不动点。
定理的意义在于:如果不能直接得到T 是压缩算子,可以研究n T 是否为压缩算子,从而得到T 有唯一不动点。
二、不动点定理的应用
不动点定理建立在距离空间基础上的,而距离空间是一个比较广泛的抽象空间,所以不动点定理有着广泛的应用。
应用不动点定理解决实际问题的步骤:
(1)寻找压缩算子T ,将问题转化为求x Tx =的不动点; (2)构造迭代序列{}n x ,取极限点*
n x x ≈;
(3)误差分析;
(4)通过实际问题进行验证。
(一)、在线性代数中的应用
例如 ()Ax b x I A x b Tx =⇔=-+=,则迭代格式1()n n x I A x b +=-+
(二)、不动点定理在常微分方程中的应用
科学技术中常常需要求解常微分方程的定解问题。
除了一些简单的微分方程外,要找出
解析解是非常困难的、甚至是不可能的。
因此,许多类型的微分方程应用数值解法求近似解。
数值解法是能够算出解在若干个离散点上近似结果的通用方法。
本节只讨论应用不动点理论在函数空间中给出常微分方程解的存在性和唯一性定理,至于具体的求解方法可参考其它教材。
下面以一阶微分方程的初值问题为例进行讨论。
定理1 (一阶微分方程的初值问题)
已知 00
(,)
()dy
f x y dx y x y ⎧=⎪⎨⎪=⎩,
若(,)f x y 在2R 上连续,并且满足李普西兹(Lipschitz )条件:
1212
(,)(,)(0)f x y f x y L y y L -≤->
则通过点00(,)x y 必有且只有一条积分曲线()y y x =
(三)、不动点定理在积分方程中的应用
定理2 设有线性积分方程(Fredhlolme —弗雷德霍姆方程)
()()(,)()b
a x s f s K s t x t dt λ=+⎰
则对于充分小的λ,有
(1)()[,],(,)[,][,]f s C a b K s t C a b a b ∈∈⨯(正方形域)时,方程有唯一的连续函数解。
(2)22()[,],(,)b
b a a f s L a b K s t ds dt M ⎡⎤∈=<+∞⎢⎥⎣⎦
⎰⎰时,方程有唯一的平方可积函数解。
证(1)思路:构造算子T ,并证明T 是压缩的。
①[,]C a b 按范数()
max ()a t b
x t x t ∞
≤≤=是完备的距离空间;
② 在[,]C a b 上,令()()(,)()b
a
Tx s f s K s t x t dt λ=+⎰,则
:[,][,]T C a b C a b →
的算子。
下面证T 的压缩性。
证(2)思路:构造算子T ,并证明T 是压缩的。
①2[,]L a b 按范数1
2
2
2()()b a x t x t dt ⎛⎫
= ⎪⎝⎭
⎰是完备的距离空间;
② 在2
[,]L a b 上,令()()(,)()b
a
Tx s f s K s t x t dt λ=+⎰,则
22:[,][,]T L a b L a b →的算子。
下证T 的压缩性。
第一种情形举例
例 设在[0,1]C 上有,0(,),1
s s t
K s t t t s ≤≤⎧=⎨≤≤⎩,求方程
1
1()1(,)()10t K s t s ds ϕϕ=+⎰
的近似连续函数解,且要求误差不超过10-4。
解 :100111
()1,,(,)[0,1][0,1],max (,)102
t f t K s t C M K s t ds λ≤≤==
∈⨯==⎰,
令101()1(,)()10T t K s t s ds ϕϕ=+⎰,其中1110M λ=<,11
10M
λ=<,故由定理2(1)的证
明知,算子方程T ϕϕ=存在唯一的不动点*[0,1]C ϕ∈。