利用二次函数的图象求一元二次方程的近似解

利用二次函数的图象求一元二次方程的近似解
利用二次函数的图象求一元二次方程的近似解

19.6.1二次函数的应用

【学习目标】

理解二次函数的图象与x 轴交点的个数与一元二次方程的根的个数之间的关系,会用图象法求一元二次方程的近似解,体会二次函数与一元二次方程之间的联系·

【基础知识】

3.在平面直角坐标系中,抛物线222

12+-=

x x y 与x 轴的交点的个数是 ( ) A .3

B .2

C .1

D .0 4.抛物线m x mx y 22-+=(m 是常数)的图像与x 轴的交点的个数是 ( )

A .3

B .2

C .1

D .0

5.函数)0(2≠++=a c bx ax y 的图象如图所示,那么关于x

的一元二次方程03-2=++c bx ax 的根的情况是( )

A .有两个不相等的实数根

B .有两个异号的实数根

C .有两个相等的实数根

D .没有实数根

【拓展提升】

4.已知抛物线22-++=m mx x y

求证:无论m 取何值时,抛物线总与x 轴有两个交点.

5.已知抛物线1232

++-=

x x k y )( 若图像总与x 轴有一个交点,求k 的取值范围.

6.已知抛物线22

4

13-k kx x y ++= 求证:无论k 取何值时,抛物线总与x 轴没有交点.

公式法解一元二次方程教案-人教版

《公式法解一元二次方程》教案 教学目标 、知识技能 掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程. 、数学思考 通过求根公式的推导,培养学生数学推理的严密性及严谨性. 、解决问题 培养学生准确快速的计算能力. 、情感态度 通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想. 重难点、关键 重点:求根公式的推导及 用公式法解一元二次方程. 难点:对求根公式推导过程中依据的理论的深刻理解. 关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程. 教学过程 一、复习引入 【问题】(学生总结,老师点评) .用配方法解下列方程 ()- ()- .总结用配方法解一元二次方程的步骤。 ()移项; ()化二次项系数为; ()方程两边都加上一次项系数的一半的平方; ()原方程变形为()的形式; ()如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 【活动方略】 教师演示课件,给出题目. 学生根据所学知识解答问题. 【设计意图】 复习配方法解一元二次方程,为继续学习公式法引入作好铺垫. 一、 探索新知 如果这个一元二次方程是一般形式(≠),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 【问题】 已知(≠)且-4ac≥,试推导它的两个根为2b a -+,2b a - 分析:因为前面具体数字已做得很多,我们现在不妨把、、?也当成一个具体数字,根据

上面的解题步骤就可以一直推下去. 解:移项,得:- 二次项系数化为,得 b a - c a 配方,得:b a (2b a )-c a (2b a ) 即(2b a )2244b ac a - ∵-4ac≥且4a> ∴2244b ac a -≥ 直接开平方,得:2b a 即2b a - ∴2b a -,2b a -- 【说明】 这里a ac b b x 242-±-= (042≥-ac b )是一元二次方程的求根公式 【活动方略】 鼓励学生独立完成问题的探究,完成探索后,教师让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式. 【设计意图】 创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。 【思考】 利用公式法解下列方程,从中你能发现什么 ()2320;x x -+=()2222 -=-x x ()24320x x -+= 【活动方略】 在教师的引导下,学生回答,教师板书 引导学生总结步骤:确定c b a ,,的值、算出ac b 42-的值、代入求根公式求解. 在学生归纳的基础上,老师完善以下几点: ()一元二次方程)0(02 ≠=++a c bx ax 的根是由一元二次方程的系数c b a ,,确定的;

初三数学一元二次方程与二次函数测试题

初三数学第二次月考 班级 姓名 学号 一.选择题(每小题3分,共24分) 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3.抛物线3)2(2+-=x y 的对称轴是( ) 4.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤0 1. A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2 =x 5.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位, 所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 7. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___ 象限( ) A. 一 B. 二 C. 三 D. 四 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次 函数y=ax 2+bx 的图象只可能是( )

二.填空题(每小题4分,共32分) 2. 9.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________. 10. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________. 11. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析 式为_____________. 12.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的 根的情况是______________________. 13..若关于的方程 的根是整数,则k 的值可以是______.(只要求写出一个) 14.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 15.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次 函数的解析式:_____________________. 16.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点 的坐标是________________. O x y A B 1 1 三.解答题 1.用适当的方法解方程: (1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;

第2课时一元二次方程的根及近似解

第2课时一元二次方程的根及近似解 【知识与技能】 会进行简单的一元二次方程的试解. 【过程与方法】 根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 【情感态度】 理解方程的解的概念,培养有条理的思考与表达的能力. 【教学重点】 判定一个数是否是方程的根. 【教学难点】 会在简单的实际问题中估算方程的解,理解方程解的实际意义. 一、情境导入,初步认识 学生活动:请同学独立完成下列问题. 问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为x2+82=102. 整理,得x2-36=0. 列表: 问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为(x+2)m.

根据题意,得x(x+2)=120. 整理,得x2+2x-120=0. 列表: 【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围. 二、思考探究,获取新知 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗?问题2呢? (1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0老师点评: 的解. (2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解. 为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根. 回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意. 【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 三、运用新知,深化理解 1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可. 解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根. 2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式

公式法解一元二次方程及答案详细解析

公式法解一元二次方程及答案详细解析 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

21.2.2公式法 一.选择题(共5小题) 1.用公式法解一元二次方程x2﹣5x=6,解是() A.x1=3,x2=2 B.x1=﹣6,x2=﹣1 C.x1=6,x2=﹣1 D.x1=﹣3,x2=﹣2 2.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣ 4x2+3=5x,下列叙述正确的是() A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3 C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣3 3.(2011春?招远市期中)一元二次方程x2+c=0实数解的条件是() A.c≤0B.c<0 C.c>0 D.c≥0 4.(2012秋?建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,则c2+c=() A.1 B.2 C.3 D.4 5.(2013?下城区二模)一元二次方程x(x﹣2)=2﹣x的解是() A.﹣1 B.2 C.﹣1或2 D.0或2 二.填空题(共3小题) 6.(2013秋?兴庆区校级期中)用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a=;b=;c=. 7.用公式法解一元二次方程x2﹣3x﹣1=0时,先找出对应的a、b、c,可求得 △,此方程式的根为. 8.已知关于x的一元二次方程x2﹣2x﹣m=0,用配方法解此方程,配方后的方程是.

三.解答题(共12小题) 9.(2010秋?泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积. 10.(2009秋?五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值. 11.x2a+b﹣2x a+b+3=0是关于x的一元二次方程,求a与b的值. 12.(2012?西城区模拟)用公式法解一元二次方程:x2﹣4x+2=0. 13.(2013秋?海淀区期中)用公式法解一元二次方程:x2+4x=1. 14.(2011秋?江门期中)用公式法解一元二次方程:5x2﹣3x=x+1. 15.(2014秋?藁城市校级月考)(1)用公式法解方程:x2﹣6x+1=0; (2)用配方法解一元二次方程:x2+1=3x. 16.(2013秋?大理市校级月考)解一元二次方程: (1)4x2﹣1=12x(用配方法解); (2)2x2﹣2=3x(用公式法解). 17.(2013?自贡)用配方法解关于x的一元二次方程ax2+bx+c=0. 18.(2014?泗县校级模拟)用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式. 19.(2011秋?南开区校级月考)(1)用公式法解方程:2x2+x=5 (2)解关于x的一元二次方程:. 20.(2011?西城区二模)已知:关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根. (1)求k的取值范围;

解二元一次方程“十字交叉法”

解二元一次方程:“十字交叉法” 十字相乘就是把二次项拆成两个数的积 常数项拆成两个数的积 拆成的那些数经过十字相乘后再相加正好等于一次项 看一下这个简单的例子m2+4m-12 m -2 ╳ M 6 把二次项拆成m与m的积(看左边,注意竖着写) -12拆成-2与6的积(也是竖着写) 经过十字相乘(也就是6m与-2m的和正好是4m) 所以十字相乘成功了 m2+4m-12=(m-2)(m+6) 重点:只要把2次项和常数项拆开来(拆成乘积的形式),可以检验是否拆的对,只要相加等于1次项就成了,十字相乘法实际就是分解因式。 解释说明:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 十字相乘法解题实例 常规题例1:把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -2 ╳ 1 6 所以m2+4m-12=(m-2)(m+6)

例2:把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4, -4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 ╳ 5 -4 所以5x2+6x-8=(x+2)(5x-4) 例3:解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 ╳ 1 -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4:解方程6x2-5x-25=0 分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5 ╳ 3 5

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

初二解二元一次方程公式知识点

解二元一次方程公式知识点设ax+by=c,dx+ey=f,x=(ce-bf)/(ae-bd),y=(cd-af)/(bd-ae),其中/为分数线,/左边为分子,/右边为分母解二元一次方程组一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解二元一次方程组。消元将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:{5x+6y=72x+3y=4,变为{5x+6y=74x+6y=8消元的方法代入消元法。加减消元法。顺序消元法。(这种方法不常用)消元法的例子(1)x-y=3(2)3x-8y=4(3)x=y+3代入得(2)3(y+3)-8y=4y=1所以x=4这个二元一次方程组的解x=4y=1教科书中没有的,但比较适用的几种解法(一)加减-代入混合使用的方法.例1,13x+14y=41(1)14x+13y=40(2)解:(2)-(1)得x-y=-1x=y-1(3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(3)另类换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+6*4t=2929t=29t=1所以x=1,y=4

一元二次方程与二次函数专题

二次函数与一元二次方程专题 一、知识要点: 二次函数图象与x 轴交点情况: 二、经典例题: 1.y=(m-2)22-m x +x -3=0是关于x 的二次函数,则m 的值是 2.(1)关于x 的二次函数y=22(1)1a x x a -++-经过坐标原点,则=a (2)二次函数y=2 (0)ax bx c a ++≠与x 轴两交点的横坐标分别为1和1-,则=++c b a ,=+-c b a (3)等腰ABC △三边的长都是二次函数y=x 2-5x+6与x 轴两交点的横坐标,则周长是 . 3.求下列二次函数与x 轴交点坐标. (1)2222y x mx m n =-+- (2)2()2y m n x nx m n =++-+ (0≠+n m ) 4.已知:关于x 的二次函数y=269kx x -+与x 轴有两个交点,则k . 5.已知关于x 的二次函数2 3y x m x m =-+()- 求证:该函数与x 轴必有两个交点.

6.若关于x 的二次函数y=x 2-x+m 和y=(m-1)x 2-2x+1都与x 轴有两个交点,求m 的整数值. 7.当k 为何整数时,关于x 的二次函数y=kx 2-4x +4和y=x 2-4kx +4k 2-4k -5都与x 轴交于整数点. 8.已知:m 为整数,且二次函数y=x 2-3x +m +2与x 轴正半轴有两个交点,求m 值. 9.已知:抛物线21y (32)22mx m x m =-+++开口向上. (1)求证:该二次函数与x 轴必有两个交点; (2)设抛物线与x 轴交点为A (1x ,0),B (2x ,0)(A 在B 左侧).若2y 是关于m 的函数,且2212y x x =-, 求这个函数的解析式; (3)若AB=3,求抛物线的解析式.

公式法解一元二次方程(教案)

21.2.2公式法 教案设计(张荣权) 教学内容:用公式法解一元二次方程 教材分析:在解一元二次方程时,仅仅是直接开平方法、配方法解一元二次 方程是远远不够的。对于系数不特殊的一元二次方程,这两种方法就不方便了。而用求根公式法解较复杂的一元二次方程教方便了。因此,学习用公式法解一元二次方程很有必要,也是不可缺少的一个重要内容。而公式法是一元二次方程的基本解法,它为进一步学习一元二次方程的解法级简单应用起到铺垫作用。 教学目标: 知识与技能目标:1.理解一元二次方程求根公式的推导。 2.会用求根公式解简单数字的一元二次方程。 3.理解一元二次方程的根的判别式,并会用它判别一元二次方程根的情况。 过程与方法:在教师的指导下,经过观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结能力。 情感态度与价值观:培养学生独立思考的习惯和合作交流意识。 教学重点、难点及突破 重点:1.掌握公式法解一元二次方程的步骤。 2.熟练的利用求根公式解一元二次方程。 难点:理解求根公式的推导过程及判别公式的应用。 教学突破 本节课我主要采用启发式、探究式教学法。教学中力求体现“试——究——升”模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配方能力有限,所以,崩皆可借助于多媒体辅助教学,指导学生通过观察,分析,总结配方规律,从而突破难点。学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性,主动性和创造性。 教学设想 通过复习配方法解一元二次方程,导入对一般形式的一元二次方程的解法探讨,通过提问引导学生观察思考,产生问题,进行小组合作探讨,发现结论。加深对应用公式法的理解。渗透由特殊到一般和分类讨论及化归的数学思想,运用解一元二次方程的基本思想----开方降次,重视相关的知识联系,建立合理的逻辑过程,突出解一元二次方程的基本策略。 教学准备 教师准备:课件精选例题 学生准备:配方法解一元二次方程、二次根式的化简 教学过程:

二元一次方程万能公式总结

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。 使方程左右两边相等的未知数的值叫做方程的解。接下来分享二元一次方程的万能公式, 供参考。 二元一次方程万能公式 b^2-4ac>=0,方程有实数根,否则是虚数根。 实数解是: [-b+sqrt(b^2-4ac)]/2a [-b-sqrt(b^2-4ac)]/2a 二元一次方程的解法 代入消元法 (1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个 未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b 的形式; (2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元 一次方程; (3)解这个一元一次方程,求出x的值; (4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解; (5)把这个方程组的解写成x=c y=d的形式。 换元法 解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某 些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。 加减消元法 (1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以 适当的数,使两个方程里的某一个未知数的系数互为相反数或相等。

(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程。 (3)解这个一元一次方程,求得一个未知数的值。 (4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值。

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分 5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2= 19 10 (不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分 方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵< ∴选方案①更优惠. ……………………………………………8分 2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。根据题意,得 2 150(1)216 x += 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。 (2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ?+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ?+?+万辆。根据题意得 (21690%)90%231.96y y ?+?+≤ 解得30y ≤ 答:该市每年新增汽车数量最多不能超过30万辆。

64二次函数与一元二次方程用二分法求方程的近似解.docx

二次函数与一元二次方程用二分法求方程的近似解 自学评价 1 ?二次函数的零点的概念 一元二次方程a* + /zx + c = O (a H O)的根也称为二次函数y = ax2 + bx + c ( a HO)的零点. 2.二次函数的零点与对应一元二次方程根的关系 (1) 一元二次方程ax2+bx^-c = O (aHO)有两个不相等的实数根禹,勺。判别式△ >0 O 对应的二次函数y = ax1 -\rbx^-c (aHO)的图象与兀轴有两个交点为(x p0), (兀2,0)O对应的二次函数y = ax2 +bx + c (aHO)有两个不同的零点西,x2; (2)一元二次方程ax2+bx-hc = 0 (Q HO)有两个相等的实数根x, = x2<=>判别式 A = 0 o对应的二次函数y = ax2 +bx + c ( a ^0)的图象与兀轴有唯一的交点为(西,0) O对应的二次函数y = ax2+bx + c (a H0)有两个相同零点x} = x2: (3)—元二次方程祇?+加+ c = 0 (G HO)没有实数根O判别式AvOo对应的二次 函数y = ax2 + + c ( a HO)的图象与x轴没有交点 <=>对应的二次函数y = ax2 +加+ c (a H0)没有零点. 3.推广 ⑴函数的零点的概念 一般地,对于函数y = f(x) (xeD),我们把使/(x) = 0的实数兀叫做函数y = f(x) (XG £))的零点. ⑵函数的零点与对应方程的关系 方程/(x) = 0有实数根。函数y =于(兀)的图象与x轴有交点 o函数y =广(兀)有零点. 【精典范例】 例1:求证:一元二次方程2X2+3X-7= 0有两个不相等的实数根. 例2:右图是一个二次函数y = f(x)的图象. (1)写出这个二次函数的零点; (2)写出这个二次函数的解析式; (3)试比较/(-4)/(-1), /(0)/(2)与0的大小关系. 例3:当关于兀的方程的根满足下列条件时,求实数a的取值范围: (1)方程兀彳―祇+ /一7 = 0的两个根一个大于2,另一个小于2; (2)方程cvc2+3x + 4a = 0的两根都小于1; 1 若方程2or2-x-l=0在(0,1)内恰有 一解,则d的取值范围是( ) A. a <-l B. a > 1 C. D. 0 < 6Z < 1

二元一次方程解法大全.

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

二次函数与一元二次方程的关系及解析式求法

1.一元二次方程ax 2 +bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2 +bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。抛物线y=ax 2 +bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax 2 +bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)一元二次方程ax 2 +bx+c=0有两个不等实根 △ =b 2 -4ac>0。 (2)抛物线y=ax 2 +bx+c 与x 轴只有一个公共点时,此公共点即为顶点 一元二次方程ax 2 +bx+c=0有两 个相等实根, (3)抛物线y=ax 2 +bx+c 与x 轴没有公共点 一元二次方程ax 2 +bx+c=0没有实数根 △=b 2 -4ac<0. (4)事实上,抛物线y=ax 2 +bx+c 与直线y=h 的公共点情况方程ax 2 +bx+c=h 的根的情况。 抛物线y=ax 2 +bx+c 与直线y=mx+n 的公共点情况方程ax 2 +bx+c=mx+n 的根的情况。 2.二次函数解析式求法 例1、二次函数与一元二次方程 1、抛物线2 283y x x =--与x 轴有 个交点,因为其判别式2 4b ac -= 0,相应二次方程2 3280 x x -+=的根的情况为 . 2、函数2 2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个 3、关于二次函数2 y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图 像开口向下时,方程2 0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时, 知识梳理 新课讲解

23用公式法求解一元二次方程教学设计

第二章一元二次方程 3.用公式法求解一元二次方程(一) 横山县第三中学柳金帛 一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程. 学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力. 二、教学任务分析 公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。 其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。 为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。 ②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.

③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。 ④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力 三、教学过程分析 本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。 第一环节;回忆巩固 活动内容: ①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0 全班同学在练习本上运算,可找位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 023272=+-x x 配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+- x x 即: 016 25)47(2=--x 1625)47(2=-x 两边开平方取“±” 得: 4547±=-x 4547±= x 写出方程的根 ∴ x1=3 , x2=21

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

二次函数求一元二次方程的近似解

用二次函数求一元二次方程的近似解 在二次函数)0(2≠++=a c bx ax y 中,令y=0,则为一元二次方程 )0(02≠=++a c bx ax ,即抛物线)0(2≠++=a c bx ax y 与x 轴的交点的横坐标,就是 相应一元二次方程的实数根.那么怎么用二次函数来估计一元二次方程的解呢?我们先看一个简单的例子 例1.利用二次函数图象求一元二次方程2 530x x -+=的近似解 分析:如图1,首先画出二次函数253y x x =-+的图象,由图象可知方程有两个根一个在0和1之间,一个在4和5之间,下面具体探究一下: 点评:通过例1的整个探究过程什么发现:用二次函数的图象估计一元二次方程: 20ax bx c ++=的根,主要步骤为: (1)准确画出)0(2 ≠++=a c bx ax y 的图象,其中要先确定抛物线的顶点,再在顶点两侧取相对称的点(至少描五点来连线; (2)确定抛物线与x 轴的交点在一哪两个数之间; (3)列表格,在第(2)步中确定的两个数之间取值,进行估计,通常只精确到十分位即可 下面,我们在来研究比较复杂一点的问题 例2.利用二次函数图象求一元二次方程2 238x x -+-=-的近似解 分析:由于2 23y x x =-+-的函数值为-8时,对应点的横坐标即为一元二次方程 2238x x -+-=-的近似解,故可通过作出函数图象来估计方程的近似解 解:在平面直角坐标系内作出函数2 23y x x =-+-的图象,如图2,又图象可知方程 2238x x -+-=-的根是抛物线223y x x =-+-与直线8y =-的交点,左边的交点横 坐标在-1与-2之间,另一个交点横坐标在3与4之间 图1

初中数学:《公式法解一元二次方程》练习(含答案)

初中数学:《公式法解一元二次方程》练习(含答案) 一、选择题: 1.一元二次方程x(x﹣2)=0根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.有两个实数根 3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2 4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 二、填空题 5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______. 6.若x 1,x 2 分别是x2﹣3x+2=0的两根,则x 1 +x 2 =______. 7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______. 9.写出一个一元二次方程,使它有两个不相等的实数根______. 10.一次二元方程x2+x+=0根的情况是______. 11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______. 12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______. 13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.

相关文档
最新文档