阿维菌素的生物合成研究进展与展望_陈芝

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17卷 第3期 2007年3月

阿维菌素的生物合成研究进展与展望

*

陈 芝 宋 渊 文 莹 李季伦**

中国农业大学生物学院微生物系,北京100094

 2006-07-19收稿,2006-08-18收修改稿

 *国家重点基础研究发展计划资助项目(批准号:2003CB114205) **通信作者,E -mail :lijilu n @

摘要 阿维链霉菌(S treptom yces avermitilis )由于可以产生杀虫抗生素———阿维菌素而备受研究者的青睐.多年来该菌得到了全面系统的研究,其基因组序列也已测定.文中综述了阿维链霉菌中阿维菌素生物合成代谢途径方面的研究,并对后续研究进行展望.关键词 阿维链霉菌 阿维菌素 次级代谢 生物合成 基因工程 组合生物合成

1 阿维链霉菌及其基因组信息

阿维菌素的产生菌———阿维链霉菌(S trepto -myces avermitilis )是1975年日本北里研究所从日本

静岗县的一个土壤样品中分离得到的.阿维链霉菌自发现以来,以日本北里大学和北里研究所以及美国Merk 公司为主的研究小组分别对它开展了深入研究,形成了一个重要的抗生素研究领域.与其他链霉菌一样,阿维链霉菌不仅具有复杂的形态分化,也具有合成多种次级代谢产物的能力,由它产生的阿维菌素在医药、农业及畜牧业上有着重要的商业价值.目前对阿维链霉菌的研究主要集中在阿维菌素的生物合成领域[1—5].

链霉菌中天蓝色链霉菌(S treptomy ces coelicol -or )A3(2)[6]

、阿维链霉菌MA -4680[7]

和S trepto -myces div ersa 的基因组序列已被测定,此外还有一些链霉菌(S.noursei ,S.ambo faciens ,S.peucetius 和S.scabies )的基因组正在测定中(http ://w w w.geno mesonline.o rg /search.cgi ).对它们的基因组序列的比较将为这些微生物的研究提供有价值的信息.阿维链霉菌的线状染色体大小为9025608bp ,G +C 含量为70.7%,至少包含7577个开放阅读框(ORF ),编码区占基因组的86.2%.O RF 平均大小为1034bp.阿维链霉菌还含有一个线性质粒

SAP1,大小为94287bp ,G +C 含量为69.2%,含有96个O RF ,编码区占质粒的79.0%.在阿维链霉菌的基因组中,大多数必需基因都位于一个高度保守的6.5M b 的内部区域.染色体上靠近端粒的

位置有两个保守性低的亚端粒区(subtelome ric re -gio ns ).有趣的是,50%以上的与次级代谢合成有关的基因(包括阿维菌素的生物合成基因)都位于亚端粒区,而在亚端粒区没有发现已知的必需基因.此外,亚端粒区含有基因组中大部分的转座因子[7].这些基因位于亚端粒区可能与阿维链霉菌的遗传不稳定性有关,在对阿维链霉菌培养过程中我们经常得到一些形态分化的突变株(光秃型突变株和白色突变株等),有些突变株同时丧失了合成阿维菌素的能力.

在阿维链霉菌的线状染色体上有30个基因簇与次级代谢合成有关,共有271个基因,占基因组的6.6%.它们广泛地分布于染色体上,但有一半位于染色体的末端.在质粒SA P1上没有发现与次级代谢有关的基因簇[7,8].在30个与次级代谢有关的基因簇中,有4个与黑色素的合成有关,其中两个负责酪氨酸酶及其辅酶的合成,另外两个分别与由尿黑酸生成的赭色色素和聚酮结构的黑色素的合成有关;合成类胡萝卜素和铁载体的基因簇分别由7个和5个基因组成;此外,有8个基因簇与非核

290

糖体肽类化合物的合成有关,还有4个基因簇与萜类化合物的合成有关.在30个次级代谢的基因簇中,有9个基因簇含有Ⅰ型PKS基因(polyketide sy nthase),2个基因簇含有Ⅱ型PKS基因.目前已有3个Ⅰ型PKS合成的化合物被鉴定,它们分别是阿维菌素、寡霉素以及菲律宾菌素(filipin)的衍生物—pentaene[8].

阿维链霉菌和其他链霉菌的基因组计划必将极大地推动对链霉菌形态分化和次级代谢的研究,最终揭示链霉菌复杂的调控网络.

2 阿维菌素的生物合成基因簇

阿维菌素是由阿维链霉菌产生的一组结构相似的十六元环大环内酯类抗生素.阿维菌素的天然发酵产物共有8个组分:A1a,A1b,A2a,A2b,B1a, B1b,B2a和B2b,它们的区别主要在于C-5,C-22, 23和C-26位所连接的基团不同(图1).Cane等通过在阿维菌素合成过程中掺入相应的13C标记的化合物,表明阿维菌素的大环内酯是由7个乙酸盐, 5个丙酸盐和1个带有支链的脂肪酸首尾聚合而成[9].“a”组分的2-甲基丁酰基(C25-C28)和“b”组分的异丁酰基(C25-C27)分别由L-异亮氨酸和L-缬氨酸衍生而成[10].齐墩果糖由葡萄糖直接转化而来[11].阿维菌素中C-5,C-3′和C-3″位上的甲氧基均来自L-甲硫氨酸.

图1 阿维菌素及伊维菌素结构图

Ikeda等利用标记底物结合分析突变株累积中间产物的策略,已基本阐明阿维菌素生物合成的全过程[1],并对阿维菌素合成的全基因簇序列进行了功能分析[2].该基因簇全长82kb,共有18个开放阅读框(图2).基因簇内部的60kb片段含有4个大的阅读框(ave A1-aveA2)和(aveA3-av eA4),共同编码多功能的PKS,该聚酮合酶由12个模块组成,共有55个活性位点,负责1个支链脂肪酸、7个乙酸盐和5个丙酸盐的聚合反应.每个合酶单位(S U)都由缩合酶(KS)-酰基转移酶(A T)-酰基载体蛋白(ACP)组成,有些SU还含有酮基还原酶(KR)和脱水酶(DH)活性位点.每个SU负责一步掺入前体如乙酸或丙酸的聚合反应及β-酮基的还原程度,最后所形成的聚酮体在位于PKS末端的硫酯酶(T E)的作用下成环内酯化.aveC和aveE基因位于aveA1-aveA2和aveA3-ave A4基因之间,与聚酮体的修饰

291

 第17卷 第3期 2007年3月

相关文档
最新文档