流体力学定义与分类

合集下载

流体力学 第1章(下) 流体的主要物理性质

流体力学 第1章(下)  流体的主要物理性质

连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。

连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。

流体的名词解释

流体的名词解释

流体的名词解释流体是指物质在相互之间可以自由流动的状态。

它是物质状态的一种,与固体和气体一同构成了自然界中的三态。

流体的特性与固体和气体有着明显的差异,它的名词解释可以从多个角度进行阐述。

一、流体的物理特性1. 流动性:流体的最显著特征就是可以流动。

相比固体而言,流体的分子间相互作用较弱,不具有固体的几何形状和结构。

这种微观结构上的差异决定了流体可以快速适应外界的形状和位置变化,具有流动性。

2. 压缩性:流体的另一个重要特性是压缩性。

相比固体而言,流体的分子间距较大,可以在较小的外力作用下发生相对大的体积变化。

这使得流体在受力时可以更容易地发生变形。

3. 扩散性:流体的分子在体积上存在着较大的自由度,因此流体具有较高的扩散性。

当两种不同成分的流体接触时,它们的分子会相互扩散,从而实现混合。

4. 表面张力:流体表面上的分子间存在着相互吸引的力,这种现象被称为表面张力。

表面张力使得流体表面呈现出一定的弹性,形成像皮肤一样的薄膜。

这种性质在许多自然界和工业过程中都发挥着重要的作用,如水珠在叶片上的滑动。

二、流体的分类1. 物态分类:根据流体的外在形态,可以将其分为液体和气体两种状态。

液体在常温常压下具有一定的体积和形状,而气体则可自由膨胀至充满其容器。

2. 流变性分类:流体还可以根据其对应力的响应方式来进行分类。

牛顿流体是指流体内部的分子相互作用力满足牛顿定律,即流体的粘度在应力作用下保持恒定。

而非牛顿流体则指无法满足牛顿定律的流体,在外力作用下其粘度可能随着剪应力、速率等参数的变化而发生变化。

三、流体力学流体力学是研究流体运动的科学学科。

它对流体在受力作用下的运动、压力分布、速度分布等进行研究,可以应用到诸多领域。

例如,交通工程中的交通流理论,石油工程中的油流动力学,在水利工程中的水流动力学等等。

四、流体的应用1. 液压传动:流体的不可压缩性和压缩性使其在液压传动中起到重要作用。

液压系统广泛应用于工程机械、航空航天、冶金等领域,用于传递和控制力和能量。

工程流体力学课件-第一章

工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

第4章 流体基本知识

第4章 流体基本知识
粘性作用表现不出来-------流体静力学为无黏性流体的力学 模型。
注:不是流体没有粘性
一、流体的静压强定义:
流体的压强(pressure) :在流体内部或固体壁面所存在的单位 面积上 的法向作用力 流体静压强(static pressure):流体处于静止状态时的压强。
p
lim
A0
P A
4、稳定流和非稳定流
定常流动(steady flow) :流动物理参数不随时间而变化
如:p f ( x, y, z), u f ( x, y, z, )
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f ( x, y, z, t ), u f ( x, y, z, t )
式中μ——黏度或黏滞系数(viscosity or absolute viscosity)。
黏度的单位是:N.s/m2或Pa.s 黏度μ的物理意义:表征单位速度梯度作用下的切应力, 反映了流体黏性的动力性质,所以μ又被称为动力黏度。 与动力黏度μ对应的是运动黏度υ(kinematic viscosity),二 者的关系是
V 0
V 0
V
V
G V
三、流体的压缩性与膨胀性 1、压缩性: 定义:在一定的温度下,流体的体积随压强升高而缩 小的性质 表示方法:体积压缩系数β (The coefficient of compressibility)
1 dV V dp
(1/Pa)
2、膨胀性: 定义: 在一定的压强下,流体的体积随温度的升 高而增大的性质 表示方法:温度膨胀系数α(the coefficient of expansibility)
特别注意:流体静压强的分 布规律只适用于静止、同种、 连续的流体。

流体力学知识点大全

流体力学知识点大全

流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。

以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。

液体和气体都具有易于流动的特点。

2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。

3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。

速度矢量的大小和方向决定了流体中每一点的速度和运动方向。

4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。

压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。

5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。

流体动力学包括流体的运动方程、速度场描述和流动量的计算等。

6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。

而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。

7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。

而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。

8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。

流体的黏度越大,流体粘性越大,流动越缓慢。

黏性对于流体的层流和湍流特性有重要影响。

9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。

当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。

10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。

学科分类 流体力学

学科分类 流体力学

学科分类流体力学
流体力学是力学的一个分支,主要研究流体(液体和气体)在静止和运动状态下的行为,以及流体与其所接触的固体表面之间的相互作用。

流体力学在科学、工程和工业等领域有广泛的应用,例如在航空航天、交通运输、水利工程、环境科学和石油工业等领域。

流体力学的主要研究内容包括流体静力学、流体动力学、流动稳定性、湍流理论等。

其中,流体静力学主要研究流体在静止状态下的压力、密度和浮力等;流体动力学则研究流体在运动状态下的速度、加速度和阻力等;流动稳定性主要研究流体流动过程中的稳定性问题;湍流理论则研究湍流的形成、发展和控制等问题。

此外,流体力学还涉及到许多与实际应用相关的领域,例如计算流体力学、实验流体力学和物理流体力学等。

计算流体力学主要通过数值模拟方法来研究流体的行为;实验流体力学则通过实验手段来研究流体的行为;物理流体力学则结合理论分析和实验研究来深入了解流体的行为。

总的来说,流体力学是一门非常重要的学科,在各个领域都有广泛的应用和发展前景。

如果您需要更多关于流体力学的信息,可以查阅相关书籍、学术论文或咨询专业人士。

流体力学(孔口管嘴出流与有压管流)

流体力学(孔口管嘴出流与有压管流)

缩断面后,液体质点受重力作用而下落。
计算孔口出流流量(出流规律) 列出断面1-1和收缩断面c-c的伯诺里方程。
2 p0 0v0 pc c vc2 H hw g 2g g 2g
(1)
式中 p0=pc=pa
孔口出流在一个极短的流程上完成的,可认为流体的阻力损失
完全是由局部阻力所产生,即
数也相同。 但自由出流的水头H是水面至孔口形心的深度,而淹没出流的
水头H是上下游水面高差。因此淹没出流孔口断面各点的水头相同, 所以淹没出流没有“大”、“小”孔口之分。
问题1:薄壁小孔淹没出流时,其流量与 (C) 有关。
A、上游行进水头; B、下游水头;
C、孔口上、下游水面差; D、孔口壁厚。 问题2:请写出下图中两个孔口Q1和Q2的流量关系式(A1= A2)。(填>、< 或=)
将式(2)和式(3)代入式(1)得
2 2 pv pa pc c 1 v2 2 2 1 g g 2g
把式 v2 n 2gH0
代入上式得
2 pv c 1 2 2 2 1 H 0 g
l 太短,液流经管嘴收缩后,还来不及扩大到整个管断面,真
空区不能形成;或者虽充满管嘴,但因真空区距管嘴出口断面太近,
极易引起真空的破坏。
l 太长,将增加沿程阻力,使管嘴的流量系数μ相应减小,又达 不到增加出流的目的。 所以,圆柱形管嘴的正常工作条件是: ①作用水头H0≤9m ②管嘴长度l=(3~4)d 判断:增加管嘴的作用水头,能提高真空度,所以对于管嘴的 出流能力,作用水头越大越好。
2.小孔口自由出流与淹没出流的流量计算公式有何不同?

流体力学知识点经典总结

流体力学知识点经典总结

流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。

主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。

二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。

六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。

这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。

清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。

特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。

特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学

流体力学
假设
• 从微观上讲,流体是由大量的彼此之间有一定间 隙的单个分子所组成,而且分子总是处于随机运 动状态。 • 从宏观上讲,流体视为由无数流体质点(或微团) 组成的连续介质。 – 所谓质点,是指由大量分子构成的微团,其尺 寸远小于设备尺寸,但却远大于分子自由程。
– 这些质点在流体内部紧紧相连,彼此间没有间 隙,即流体充满所占空间,称为连续介质。
③判断安装是否合适:若
H g实
H 低于 g允
,则说明安装
合适,不会发生汽蚀现象,否则,需调整安装高度。
④欲提高泵的允许安装高度,必须设法减小吸入管路的
阻力。泵在安装时,应选用较大的吸入管路,管路尽 可能地短,减少吸入管路的弯头、阀门等管件,而将 调节阀安装在排出管线上。
4.1.4离心泵的类型与选用
• 注意:
• 对于静止流体,由于各流层间没有相对运动,粘滞性不 显示。 • 流体粘滞性的大小通常用动力粘滞性系数μ和运动粘滞 性系数ν来反映,它们是与流体种类有关的系数,粘滞 性大的流体,μ和ν的值也大,它们之间存在一定的比例 关系。 μ = νρ • 流体的粘滞性还与流体的温度和所受压力有关,受温度 影响大,受压力影响小。实验证明,水的粘滞性随温度 的增高而减小,而空气的粘滞性却随温度的增高而增大。
• (3)恒定流 流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化,这种流体运动称 为恒定流,如图1.11(a)所示。 • (4)非恒定流 流体运动时,流体中任一位置的运 动要素如压强、流速等随时间变化而变化,这种 流体运动称为非恒定流,如图1.11(b)所示。
四、流体的输送机械
常用的流体输送机械
2.汽蚀余量:
汽蚀余量NPSH :
泵入口处的动压头与静压头之和与以液柱高度表示的被输送液体在 操作温度下的饱和蒸汽压之差。

有关流体压强的知识点总结

有关流体压强的知识点总结

有关流体压强的知识点总结流体力学是物理学的一个重要分支,研究流体的性质和行为。

在流体力学中,我们经常会接触到流体的压强。

流体的压强是指单位面积上受到的压力,它是描述流体中压力分布的重要参数。

了解流体的压强对于我们理解流体力学的基本原理和应用有着重要的意义。

本文将对流体压强的基本概念、计算方法以及应用进行总结,希望能够帮助读者更好地理解和应用流体压强的知识。

一、流体力学基础知识1. 流体的定义和分类流体是一种物质状态,它具有流动性和变形性。

根据流体的性质和分子结构,我们将流体分为液体和气体两种基本类型。

液体是一种密度较大、容易流动且不易被压缩的流体;而气体是一种密度较小、容易膨胀且可被压缩的流体。

2. 流体的性质流体有一系列特有的物理性质,包括密度、压力、压强、黏性、表面张力等。

这些性质对于描述流体的行为和作用有着重要的意义。

3. 流体的运动流体在受到外力的作用时会产生运动。

流体的运动可以分为定常流动和非定常流动两种类型。

在定常流动中,流体的性质在时间和空间上均保持不变;而在非定常流动中,流体的性质会随着时间和空间的变化而发生变化。

4. 流体的压力流体中的压力是流体力学中的一个重要参数。

压力是指单位面积上受到的力,它是描述流体中分子间相互作用和受力情况的重要物理量。

流体的压力可以受到外力的作用,也可以由流体自身的重力和运动产生。

二、流体压强的基本概念1. 压强的定义流体压强是指单位面积上受到的压力。

它是描述流体中压力分布的物理量,通常用P来表示。

在国际单位制中,压强的单位为帕斯卡(Pascal),记作Pa。

2. 压强的计算流体压强的计算公式为P = F/A,其中P表示压强,F表示受力的大小,A表示受力的面积。

当流体受到外力作用时,它会在单位面积上产生一定的压力,这个压力就是流体的压强。

3. 静压力和动压力流体的压强可以分为静压力和动压力两种类型。

静压力是指流体静止时受到的压力,它是由流体的重力和外力产生的。

化工原理第一章流体力学

化工原理第一章流体力学

反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力

流体力学概念

流体力学概念

1.粘性:是流体阻止其发生剪切变形和角变形的一种特性,是流体固有的属性,是由于流体分子之间的内聚力和分子热运动造成的流体层之间的动量交换而形成的。

2.牛顿内摩擦定律的物理意义:流体内摩擦力的大小与流体的性质有关,与流体的速度梯度和接触面成正比。

3.流体的粘性系数随温度的变化:流体的粘性取决于分子间的内聚力和分子的热运动。

气体分子间距离大,内聚力较小,但分子运动较剧烈,粘性主要来自分子热运动造成流体层之间分子的质量和动量的交换。

当温度升高时,分子热运动加剧,速度不同的相邻气体层之间的分子质量和动量交换加剧,所以粘性增大。

液体则相反,其粘性主要取决于内聚力。

温度升高时,液体分子间距增大,液体内聚力减少,因而粘度降低。

4.牛顿流体:当压力和温度一定时,流体的内摩擦应力与速度梯度成正比,且比例系数为常数,这种满足牛顿内摩擦定律的流体为牛顿流体,反之为非牛顿流体。

5.理想流体:就是没有粘性的流体。

实际流体与理想流体的重要区别就是与固壁接触时流体的速度。

对于实际流体,紧贴固壁的流体速度为零,此即“无滑移条件”.第二章流体静力学1.表面力:是指作用在所研究的流体表面上的力。

质量力:是指作用在流体内部每一个流体质点上的力,其大小与流体的质量成正比。

2.等压面:在静止流体中,静压强相等的各点所组成的面成为等压面。

等压面的特性:1)等压面就是等势面。

2)在平衡流体中,通过某一点的等压面必与该点所受的质量力互相垂直。

3)两种密度相混的流体处于平衡时,他们的分界面必是等压面。

第三章流体动力学1.体系:决定流体流动过程的基本定律与一个固定的、可以识别的物质集合有关,这一物质集合被称之为体系。

既没有物质进入也没有物质离开,在它之外的一切都称之为外界或环境,体系的形状随着时间和所在空间位置不同可能发生变化。

2.控制体:是一个流体可以流过的虚构的、固定的空间。

控制体外表面称为控制面。

流体总是通过控制面流进或流出控制体。

3.稳定流动:若流场中所有空间点上的各流动参数不随时间变化,又称定常流动。

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

(完整版)流体力学名词解释

(完整版)流体力学名词解释

第一章绪论物质的三种形态:固体、液体和气体。

液体和气体统称为流体。

流体的基本特征:具有流动性。

所谓流动性,即流体在静止时不能承受剪切力,只要剪切力存在,流体就会流动。

流体无论静止或流动,都不能承受拉力。

连续介质假设:把流体当做是由密集质点构成的、内部无空隙的连续体。

质点:是指大小同所有流动空间相比微不足道,又含有大量分子,具有一定质量的流体微元。

作用在流体上的力按其作用方式可分为:表面力和质量力。

表面力:通过直接接触,作用在所取流体表面上的力(压力、摩擦力),在某一点用应力表示。

质量力:作用于流体的每个质点上且与流体质量成正比的力(重力、惯性力、引力),用单位质量力表示流体的主要物理性质:惯性、粘性、压缩性和膨胀性。

惯性:物体保持原有运动状态的性质,其大小用质量表示。

密度:单位体积的质量,粘性:是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性。

流体粘性大小用粘度度量,粘度包括动力粘度和运动粘度无粘性流体:指无粘性,即=0的流体。

不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。

压缩性:流体受压,分子间距减小,体积缩小的性质。

膨胀性:流体受热,分子压缩系数:在一定的温度下,增加单位压强,液体体积的相对减小值,,体积模量体膨胀系数:在一定的压强下,单位温升,液体体积的相对增加值,(简答)简述气体和液体粘度随压强和温度的变化趋势及不同的原因。

答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。

\第二章流体静力学绝对压强pabs:以没有气体分子存在的完全真空为基准起算的压强。

相对压强p:以当地大气压pa为基准起算的压强,各种压力表测得的压强为相对压强,相对压强又称为表压强或计示压强。

真空度pv:绝对压强小于当地大气压的数值。

测量压强做常用的仪器有:液柱式测压计和金属测压表。

大学物理学习指导第2章流体力学基础

大学物理学习指导第2章流体力学基础

⼤学物理学习指导第2章流体⼒学基础第2章流体⼒学基础2.1 内容提要(⼀)基本概念 1.流体:由许多彼此能够相对运动的流体元(物质微团)所组成的连续介质,具有流动性,常被称为流体。

流体是液体和⽓体的总称。

2.流体元:微团或流体质量元,它是由⼤量分⼦组成的集合体。

从宏观上看,流体质量元⾜够⼩,⼩到仅是⼀个⼏何点,只有这样才能确定流体中某点的某个物理量的⼤⼩;从微观上看,流体质量元⼜⾜够⼤,⼤到包含相当多的分⼦数,使描述流体元的宏观物理量有确定的值,⽽不受分⼦微观运动的影响。

因此,流体元具有微观⼤,宏观⼩的特点。

3.理想流体:指绝对不可压缩、完全没有黏滞性的流体。

它是实际流体的理想化模型。

4.定常流动:指流体的流动状态不随时间发⽣变化的流动。

流体做定常流动时,流体中各流体元在流经空间任⼀点的流速不随时间发⽣变化,但各点的流速可以不同。

5.流线:是分布在流体流经区域中的许多假想的曲线,曲线上每⼀点的切线⽅向和该点流体元的速度⽅向⼀致。

流线不可相交,且流速⼤的地⽅流线密,反之则稀。

6.流管:由⼀束流线围成的管状区域称为流管。

对于定常流动,流体只在管内流动。

流线是流管截⾯积为零的极限状态。

(⼆)两个基本原理 1.连续性原理:理想流体在同⼀细流管内,任意两个垂直于该流管的截⾯S 1、S 2,流速v 1、v 2,密度ρ1、ρ2,则有111211v v S S ρρ= (2.1a )它表明,在定常流动中,同⼀细流管任⼀截⾯处的质量密度、流速和截⾯⾯积的乘积是⼀个常数。

也叫质量守恒⽅程。

若ρ为常量,则有Q = S v = 常量(2.1b )它表明,对于理想流体的定常流动,同⼀细流管中任⼀截⾯处的流速与截⾯⾯积的乘积是⼀个常量。

也叫体积流量守恒定律或连续性⽅程。

2 伯努利⽅程:理想流体在同⼀细流管中任意两个截⾯处其截⾯积S ,流速v ,⾼度h ,压强p 之间有11222121gh p gh p ρρρρ++=++2122v v (2.2) 或写成常量=++gh p ρρ221v 。

一、流体力学

一、流体力学

• 分类:按运动方式分为流体静力学和流体 分类:按运动方式分为流体静力学 流体静力学和 动力学。 动力学。
2
流体力学概论
• 应用:在水利工程学、空气动力学、气象学、气 应用:在水利工程学、空气动力学、气象学、 体和液体输运、 体和液体输运、动物血液循环和植物液汁输运等 领域有运用。 领域有运用。
高尔夫球表面为什么有很多小凹坑? 高尔夫球表面为什么有很多小凹坑?
v1
1 2
v2
3
v3
8
1.2
理想流体的定常流动 流管——流线围成的管子 流线围成的管子. 流管 流线围成的管子
一般流线分布随时间改变. 一般流线分布随时间改变
二、定常流动
空间各点流速不随时间变化称定常流动. 空间各点流速不随时间变化称定常流动
定常流动流体能 加速流动吗? 加速流动吗?
v = v ( x, y, z)
1 2 1 2 P + ρvA = P + ρvB A B 2 2 SAvA = SBvB
A B h1 h H1
∵P −P = (ρ银 −ρ流)gh B A
2(ρ银 −ρ流)gh ∴vA = ρ流[1−(SA / SB)2]
所以流量为
Q= SAvA = SBvB = SASB
2(ρ银 −ρ流)gh 2 2 ρ流(SB −SA)
阻力系数约为0.8 阻力系数约为
阻力系数仅为0.137 阻力系数仅为
3
流体力学概论
• 应用: 应用:
植物水分运输动力? 植物水分运输动力? 人体血液循环图 毛细作用 渗透压 水分中的负压强
4
1.1
流体静力学
1、静止流体内应力的特点 压强 、
静止流体内部应力的特点: 静止流体内部应力的特点: a、 ∆ ⊥∆ ,无切向应力。(表现为流动性) F S b、同一点不同方位的截面的应力大小相等。 由上述第二个特点可引入:压强P 由上述第二个特点可引入:压强

流体力学

流体力学

流体力学流体力学积大小和形状变化的弹性。

与固体相比,流体具有抵抗体积大小形变的弹性,而不具有抵抗形状变化的弹性,所以流体都有一定的可压缩性和流动性。

从微观上分析流动性的原因:流体由大量的、不断地作热运动而且无固定平衡位置的分子构成的。

理想流体理想体就是指没有黏性、不可压缩的流体。

水的粘滞性和可压缩性很小时,可近似看作是理想流体。

超流体超流体超流体是一种物质状态,特点是完全缺乏黏性。

如果将超流体放置于环状的容器中,由于没有摩擦力,它可以永无止尽地流动。

例如液态氦在-271℃以下时,内摩擦系数变为零,液态氦可以流过半径为十的负五次方厘米的小孔或毛细管,这种现象叫做超流现象二、流体静力学1 压强定义:F P S =2 压强公式:0P P ghρ=+ 3 帕斯卡定律:在密闭容器内,施加于静止液体的压力可以等值地传递到液体各点,这就是帕斯卡原理。

也称为静压传递原理 可用公式表示为:根据帕斯卡定律,在水力系统中的一个活塞上施加一定的压强,必将在另一个活塞上产生相同的压强增量。

如图所示,如果第二个活塞的面积是第一个活塞的面积的倍,那么作用于第二个活塞上的力将增大至第一个活塞的10倍,而两个活塞上的压强相等。

即:也即:§2.4阿基米德定律2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力.即F浮=G液排=ρ液gV排. (V排表示物体排开液体的体积)3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差三.流体运动学§3.1流体运动学基本概念3.1.1迹线:流体质点的运动轨迹,也就是该流体质点在不同时刻的运动位置的连线。

3.1.2流线:用来描述流场中各点流动方向的曲线。

它是某时刻流速场中的一条矢量线,即在此线上任意点的切线方向与该点在该时刻的速度矢量方向一致。

3.1.3流管:在运动流体空间内作一微小的闭合曲线,通过该闭合曲线上各点的流线围成的细管叫做流管。

工程流体力学

工程流体力学

流体:在任何微小剪切力的持续作用下能够连续不断变形的物质。

流体的密度ρ:单位体积流体所具有的质量,ρ=m/V。

流体的压缩性和膨胀性:随着压强的增加,体积缩小;温度增高,体积膨胀。

流体压缩性用体积压缩系数k来表示。

表示温度保持不变时,单位压强增量引起流体体积的相对缩小量。

不可压缩流体:在大多数情况下,可忽略压缩性的影响,认为液体的密度是一个常数。

可压缩流体:密度随温度和压强变化的流体。

通常把气体看成是可压缩流体,即它的密度不能作为常数,而是随压强和温度的变化而变化的。

把液体看作是不可压缩流体,气体看作是可压缩流体,都不是绝对的。

在实际工程中,要不要考虑流体的压缩性,要视具体情况而定。

流体的黏性:是流体抵抗剪切变形的一种属性。

流体具有内摩擦力的特性。

运动的流体所产生的内摩擦力(切向力) F 的大小与垂直于流动方向的速度梯度du/dy成正比,与接触面的面积A成正比,并与流体的种类有关,而与接触面上压强P 无关。

流层间单位面积上的内摩擦力称为切向应力,则τ=F/A=μdu/dy。

动力黏度(黏性系数)μ:在通常的压强下,压强对流体的黏性影响很小,可忽略。

高压下,流体的黏性随压强升高而增大。

液体黏性随温度升高而减小,气体黏性随温度升高而增大。

运动黏度ν:动力黏度与密度的比值,ν=μ/ρ。

理想流体:不具有黏性的流体,,实际流体都是具有黏性的。

在流体力学中,总是先研究理想流体的流动,而后再研究黏性流体的流动。

作用在流体上的力可以分为两大类,表面力和质量力。

表面力:作用在流体中所取某部分流体体积表面上的力,即该部分体积周围的流体或固体通过接触面作用在其上的力。

可分解成与流体表面垂直的法向力和与流体表面相切的切向力。

质量力:指作用在流体某体积内所有流体质点上并与这一体积的流体质量成正比的力,又称体积力。

在均匀流体中,质量力与受作用流体的体积成正比。

流体的压强:在流体内部或流体与固体壁面所存在的单位面积上的法向作用力,当流体处于静止状态时,流体的压强称流体静压强p,单位为Pa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
流体力学发展简史
直到15世纪,意大利达·芬奇的著作才 谈到水波、管流、水力机械、鸟的飞翔原理 等问题。
1623-1662 ,帕斯卡阐明了静止流体中 压力的概念,并发现了液体压强传递定律。
12
流体力学发展简史
托里拆利(Evangelista Torricelli,1608~1647) 托里拆利实验测定大气压强为76cm汞柱高,发 明了气压计。 托里拆利定理(液体从小孔射流 的定理):在充水容器中,水面下小孔流出的 水,其速度和小孔到液面的高度平方根以及重 力加速度的2倍(2g)的平方根成正比。
13
流体力学发展简史
但流体力学尤其是流体动力学作为一 门严密的科学,却是随着经典力学建立了 速度、加速度,力、流场等概念,以及质 量、动量、能量三个守恒定律的奠定之后 才逐步形成的。
14
流体力学发展简史
牛顿(1643~1727)英国物理学家,数 学家,天文学家,经典物理学理论体系的建 立者。
17世纪,力学奠基人牛顿研究了在流体 中运动的物体所受到的阻力,得到阻力与流 体密度、物体迎流截面积以及运动速度的平 方成正比的关系。他针对粘性流体运动时的 内摩擦力也提出了牛顿粘性定律。
22
流体力学发展简史
普朗特(Ludwig Prandtl,1875~1953年), 德国物理学家,近代力学奠基人之一。
普朗特学派从1904年到1921年逐步将N-S 方程作了简化,从推理、数学论证和实验测 量等各个角度,提出边界层理论,建立绕物 体流动的小粘性边界层方程,以解决计算摩 擦阻力、求解分离区和热交换等问题,奠定 了现代流体力学的基础。
6
流体力学与工程
环境科学(环境流体力学)
7
流体力学与工程
航空(空气动力学)
8
流体力学与工程
生物流体(生物流体力学)
9
血液在毛细血管中的流动
流体力学与工程
物理化学流体力学 多相流体力学 渗流力学 稀薄气体力学 超高速气体动力学 。。。(Archimedes,约公元前287~212) 对流体力学学科的形成第一个作出贡献 。建立 了包括物理浮力定律和浮体稳定性在内的液体 平衡理论,奠定了流体静力学的基础。此后千 余年间,流体力学没有重大发展。
皮托(Pitot,Henri 1695-1771)法国数学 家、水利工程师,发明了测量流速的皮托管 (毕托管)。
谢才(A-Chezyap,1718-1798,法国)法 国水力工程师。他在水力学上的主要贡献是 提出了明渠均匀流速公式:谢才公式。
还包括:曼宁、文丘里、达西、尼古拉兹等
21
流体力学发展简史
理论分析方法、实验方法、数值方法 理论分析方法
力学模型→物理基本定律→求解数学方程→分析和 揭示本质和规律 实验方法
相似理论→模型实验装置;野外观测实验 数值模拟
计算机大规模模拟
4
流体力学与工程
水利工程、土建工程(水力学)
三峡大坝
5
都江堰
流体力学与工程
船舶制造(水动力学,船舶流体力学)
辽宁号 航空母舰
(2)流体运动学 ( Fluid Kinematics) 讨论速度、加速度、流线、迹线、运动基本形式及涡量等 运动学量,而不涉及外力和能量。
(3)流体动力学(Fluid Dynamics) 研究流体在合外力作用下的运动,也要考虑能量等。依据 受力分析、动量方程、能量方程等求解。
3
流体力学的研究方法
流体力学定义和分类
1.1 流体的定义及流体力学的任务
1. 流体的定义: 液体与气体的总称。 2. 流体力学的任务: 研究流体在各种力作用下
的平衡和机械运动规律及其在工程实际应用 的一门学科。
2
3. 流体力学的组成部分
(1)流体静力学( Fluid Statics )
“静止流体”的力学,讨论静压强和总压力的计算等。
15
流体力学发展简史
约瑟夫·拉格朗日(Joseph-Louis Lagrange 1736~1813) 他在《分析力学》中从动力学普遍方程导出流体 运动方程,着眼于流体质点,描述每个流体质点 自始至终的运动过程,这种方法现在称为“拉格 朗日方法” 。
16
流体力学发展简史
欧拉 (Leohard Euler,1707~1783年) 欧拉采用了连续介质的概念,把静力学中压力的 概念推广到运动流体中,建立了欧拉方程,正确 地用微分方程组描述了无粘流体的运动。
斯托克斯(G.Stokes,1819-1903,英国)
19
流体力学发展简史
19世纪,工程师们为了解决许多工程 问题,尤其是要解决带有粘性影响的问题。 于是他们部分地运用流体力学,部分地采 用归纳实验结果的半经验公式进行研究, 这就形成了水力学,至今它仍与流体力学 并行地发展。
20
流体力学发展简史
伯努利(Daniel I Bernoulli ,1700~1782年) 伯努利从经典力学的能量守恒出发,研究供水管 道中水的流动,精心地安排了实验并加以分析, 得到了流体定常运动下的流速、压力、管道高程 之间的关系——伯努利方程。
17
流体力学发展简史
欧拉方程和伯努利方程的建立,是流 体动力学作为一个分支学科建立的标志, 从此开始了用微分方程和实验测量进行流 体运动定量研究的阶段。
雷诺 (Osborne Reynolds 1842~1912) 德国力学家、物理学家、工程师。 雷诺在流体力学方面最主要的贡献是发现流动的相似律, 他引入表征流动中流体惯性力和粘性力之比的一个量纲 为1的数,即雷诺数。在雷诺以后,分析有关的雷诺数 成为研究流体流动特别是层流向湍流过渡的一个标准步 骤。此外,雷诺还给出平面渠道中的阻力;提出轴承的 润滑理论(1886);1895年,雷诺首先采用将湍流瞬时 速度、瞬时压强加以平均化的平均方法 ,从纳维-斯托 克斯方程导出湍流平均流场的基本方程——雷诺方程, 奠定了湍流的理论基础。
18
流体力学发展简史
纳维(L.Navier,1785-1836,法国)
1822年,纳维建立了粘性流体的基本运动方程;1845 年,斯托克斯又以更合理的基础导出了这个方程,并将 其所涉及的宏观力学基本概念论证得令人信服。这组方 程就是沿用至今的纳维-斯托克斯方程(简称N-S方程), 它是流体动力学的理论基础。上面说到的欧拉方程正是 N-S方程在粘度为零时的特例。
相关文档
最新文档