盖斯定律优秀课件15页PPT
合集下载
化学反应热的计算(盖斯定律)》优质教学课件PPT
试计算
ΔH3=-1370 kJ/mol
④2CO(g)+ 4 H2(g)=H2O(l)+ C2H5OH(l) 的ΔH
【解】:根据盖斯定律,反应④不论是一步完成还是分几步完成, 其反应热效应都是相同的。
①×2 + ②×4 - ③ = ④ 所以,ΔH=ΔH1×2 +ΔH2×4 -ΔH3 =-283.2×2 -285.8×4 +1370 =-339.2 kJ/mol
解:①- ②得: C(石墨,s)= C(金刚石,s) △H=+1.5kJ/mol
7
【训练2】 已知 ① CO(g) + 1/2 O2(g) =CO2(g)
ΔH1= -283.0 kJ/mol
② H2(g) + 1/2 O2(g) =H2O(l) ΔH2= -285.8 kJ/mol
③C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(l)
说明:相同质量的白磷和红磷,白磷的能 量高,白磷不稳定,它的键嫩小。
例5:已知,氢气的燃烧热为△H=— 2请8分5析.8,KJ/mol
(1)写出氢气燃烧热的热化学方程式? (2)100克氢气完全燃烧放出的热量为?
H2(g)+1/2O2(g)=H2O(l) ΔH=—285.8KJ/mol
放出的热量为:50×285.8KJ
△H=-1135.2kJ/mol
例3:写出石墨变成金刚石的热化学方程式 (25℃,101kPa时)
查燃烧热表知:
①C(石墨,s)+O2(g)=CO2(g) △H1=393.5kJ/mol
②所3CC以9((石金5,.0刚墨①k石,J-/,ms②)s=o得)lC+:(O金2(刚g)石=,COs2)(△gH) =△+H12.=5k- J/mol
人教版高中化学选修四 131 盖斯定律 课件1 (共15张PPT)
ΔH1=-2983.2 kJ·mol-1 ΔH2=-738.5 kJ·mol-1
①P4(s,白磷)+5O2=P4O10(s) ΔH1=-2 983.2 kJ·mol-1
②P(s,红磷)+5/4O2(g)=1/4P4O10(s) ΔH2=-738.5 kJ·mol-1
P4(s,白磷)=4P(s,红磷)
①C(s)+O2(g)=CO2(g) ②CO(g)+1/2O2(g)=CO2(g) ③C(s)+1/2O2(g)=CO(g)
C(s)+CO2(g)=2CO(g)
• 因①= ② + ③ • 则 ΔH1 = ΔH2 +ΔH3 • ΔH3 =ΔH1- ΔH2 • =-393.5-(-283.0) • =-110.5kJ/mol
=ΔH3+ΔH4+ΔH5
如何理解盖斯定律?
化学反应的反应热相当于山的高度,与登山途径无关!
ΔH1<0 ΔH1+ΔH2=0
S(始态)
L(终态)
ΔH2>0
H2O(g)==H2(g)+½O2(g)
ΔH=+242 kJ·mol-1
H2(g)+½O2(g)==H2O(g)
ΔH=-242 kJ·mol-1
小组讨论
ΔH=?
因为=①-②×4 则ΔH=ΔH1 -ΔH2×4
=-2983.2-(-738.5)×4 =-29.2kJ·mol -1
例2:嫦娥二号,用N2H4(肼)在NO2中燃 烧,生成N2、气态H2O。已知: N2(g)+2O2(g)=2NO2(g) △H1=+67.2kJ/mol N2H4(g)+O2(g)=N2(g)+2H2O(g) △H2=-534kJ/mol 假如都在相同状态下,请算出发射嫦娥二号 卫星所用燃料反应的反应热。 2 N2H4(g)+ 2NO2(g)=3N2(g)+4H2O(g)
高中化学精品课件:化学反应的热效应第1课时 盖斯定律
例如: 测定如下反应: C(s)+1/2O2(g)=CO(g)的反应热△H?
环节二 应用盖斯定律
【资料】火箭推进剂用偏二甲肼(C2H8N2,l)作燃料,N2O4(l)作氧 化剂时,反应生成 CO2、N2 和水蒸气,请写出偏二甲肼-四氧化 二氮推进剂燃烧的热化学方程式。已知: ① C2H8N2(l) + 4NO2(g) ==2CO2(g) + 3N2(g) + 4H2O (g) ΔH1 ② 2NO2(g火箭推进剂燃烧时的反应热呢?
根据热化学方程式和键能计算 反应热的计算:
盖斯定律 思路:设计反应路径实现物质转化
①能否直接测定吗?请说明理由?
C燃烧时不可能全部生成CO,总有一部分CO2生成,因此该反应的 反应热是无法直接测定的.
②若不能直接测,能否设计路径使之可测?
分析:C(s)+1/2O2(g) = CO(g)
能量
O 2(g)+C(石墨,S)
△H3=?
物质
燃烧热 ΔH (kJ/mol)
CO(g) +1/2O 2(g) ∆H3=?
第一章 化学反应的热效应
第二节 反应热的计算
第1课时 盖斯定律
环节一 发现盖斯定律
问题:火 箭推进剂 产生的热 效应是衡 量推进剂 效能的重 要指标, 那么如何 获得推进 剂燃烧时 的反应热 呢?
长征五号推进剂
液氢-液氧
煤油-液氧
保温杯式量热计
问题:如何用实验测定如下反应: C(s)+1/2O2(g)=CO(g)的反应热△H。
H2(l)= H2(g) ΔH= + 0.92 kJ/mol O2(l)= O2(g) ΔH= + 6.84 kJ/mol H2O (l) =H2O (g) ΔH= + 44.0 kJ/mol 活动1. 根据补充的数据求算液氢-液氧推进剂反应生成气态水的热效应。
环节二 应用盖斯定律
【资料】火箭推进剂用偏二甲肼(C2H8N2,l)作燃料,N2O4(l)作氧 化剂时,反应生成 CO2、N2 和水蒸气,请写出偏二甲肼-四氧化 二氮推进剂燃烧的热化学方程式。已知: ① C2H8N2(l) + 4NO2(g) ==2CO2(g) + 3N2(g) + 4H2O (g) ΔH1 ② 2NO2(g火箭推进剂燃烧时的反应热呢?
根据热化学方程式和键能计算 反应热的计算:
盖斯定律 思路:设计反应路径实现物质转化
①能否直接测定吗?请说明理由?
C燃烧时不可能全部生成CO,总有一部分CO2生成,因此该反应的 反应热是无法直接测定的.
②若不能直接测,能否设计路径使之可测?
分析:C(s)+1/2O2(g) = CO(g)
能量
O 2(g)+C(石墨,S)
△H3=?
物质
燃烧热 ΔH (kJ/mol)
CO(g) +1/2O 2(g) ∆H3=?
第一章 化学反应的热效应
第二节 反应热的计算
第1课时 盖斯定律
环节一 发现盖斯定律
问题:火 箭推进剂 产生的热 效应是衡 量推进剂 效能的重 要指标, 那么如何 获得推进 剂燃烧时 的反应热 呢?
长征五号推进剂
液氢-液氧
煤油-液氧
保温杯式量热计
问题:如何用实验测定如下反应: C(s)+1/2O2(g)=CO(g)的反应热△H。
H2(l)= H2(g) ΔH= + 0.92 kJ/mol O2(l)= O2(g) ΔH= + 6.84 kJ/mol H2O (l) =H2O (g) ΔH= + 44.0 kJ/mol 活动1. 根据补充的数据求算液氢-液氧推进剂反应生成气态水的热效应。
盖斯定律(第一课时)课件-高二上学期化学人教版(2019)选择性必修1
1 C(s)+O2(g)==CO2(g) ∆H1=–393.5 kJ/mol
2
CO(g)+
1 2
O2(g)==CO2(g)
∆H2= – 283.0 kJ/mol
容易测定
3 C(s)+1/2O2(g) == CO(g) ∆H3=? 难在哪? 不易测定
一. 盖斯定律
盖斯 G.H.
盖斯定律: 不管化学反应一步完成或是分几步完成,其反应热是相同的。
∆H2= – 283.0 kJ/mol
∆H3=?
虚拟路径法
1、已知化学反应的热效应只与反应物的初始状态和生成物的最终状
态有关,如图甲所示: ΔH1=ΔH2+ΔH3。根据上述原理和图乙所示,判断
下列各对应的反应热关系中不正确的是( D )。
A.A→F ΔH=-ΔH6
B.A→D ΔH=ΔH1+ΔH2+ΔH3
2C(s) + 2H2 (g) + O2 (g) = CH3COOH (l)
解: ④= ②×2 +③×2- ①
2C(s) + 2O2 (g) = 2CO2(g)
2△H2= -787.0 kJ/mol
2H2(g) + O2(g) =2H2O(l)
2△H3= -571.6 kJ/mol
+) 2CO2(g)+2H2O(l) =CH3COOH(l)+2O2(g) -△H1= 870.3 kJ/mol
△H= -488.3 kJ/mol
4、已知
① CO(g) + 1/2 O2(g) = CO2(g) ΔH1= -283.0 kJ/mol
② H2(g) + 1/2 O2(g) = H2O(l)
1.2 课时1 盖斯定律(18张PPT) 课件 高二化学人教版(2019)选择性必修1
ΔH1
ΔH2
终态
始态
始态
终态
一个化学反应,不管是一步完成的还是分几步完成的,其反应热是相同的。
在一定条件下,化学反应的反应热只与反应体系的始态和终态有关,能量守恒定律的确认,是热化学领域发现的第一个定律,也是自然科学上首先得出的能量守恒和转化的规律性结论。盖斯定律是化学热力学发展的基础。
从途径角度理解盖斯定律:
如同山的绝对高度与上山的途径无关一样,A点相当于反应体系的 ,B点相当于反应体系的 ,山的高度相当于化学反应的 。
从能量角度理解盖斯定律:
先从始态 S 变化到终态 L 体系放出热量(∆H1 <0)
同一个热化学反应方程式,正向反应∆H1与逆向反应∆H2大小相等,符号相反,即: ∆H1= –∆H2,ΔH1+ΔH2=0
同学们再见!
授课老师:
时间:2024年9月15日
D
3. 写出肼(N2H4,液态)与NO2反应的热化学方程式
资料:火箭发射时用肼做燃料,NO2做氧化剂,二者反应可生成N2和水蒸气。已知:①N2(g)+2O2(g)=2NO2(g) ΔH1=+66.4kJ/mol②N2H4(l)+O2(g)=N2(g)+2H2O(g) ΔH2=−534kJ/mol
CH4(g)+H2O(g)=CO(g)+3H2(g) ∆H=+206.1kJ/mol
①H2(g)+O2(g)=H2O(l) ∆H=-285.8kJ•mol-1②CO(g)+O2(g)=CO2(g) ∆H=-283.0kJ•mol-1③CH4(g)+2O2(g)=CO2(g)+2H2O(l) ∆H=-890.3kJ•mol-1④H2O(g)=H2O(l) ∆H=-44.0kJ•mol-1
讲课盖斯定律ppt课件
1.盖斯定律的内容
不管化学反应是一步完成或 是分几步完成,其总反应热是相
同的。即化学反应的反应热只 与反应体系的始态和终态有关,
而与反应的途径无关。
PPT课件
7
类比盖斯定律 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
登山
PPT课件
8
知识升华
已知: H2(g)+Cl2(g)=2HCl(g) △H = —184.6 kJ/mol HCl(g) =1/2H2(g)+1/2Cl2(g) △H =+—92—.3—k—J/—mol
反映了“质、能、量”之间的辩证关系
PPT课件
11
2、盖斯定律的应用 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
PPT课件
22
能力提升已知下列各反应的焓变 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
①Ca(s)+C(s,石墨)+3/2O2(g)=CaCO3(s) △H1 = -1206.8 kJ/mol
②Ca(s)+1/2O2(g)=CaO(s) △H2= -635.1 kJ/mol
PPT课件
17
二.反应热的计算 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 思考与讨论:
用盖斯定律解题的方法如何?
有哪些注意事项?
PPT课件
18
用盖斯定律解题的方法: 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
不管化学反应是一步完成或 是分几步完成,其总反应热是相
同的。即化学反应的反应热只 与反应体系的始态和终态有关,
而与反应的途径无关。
PPT课件
7
类比盖斯定律 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
登山
PPT课件
8
知识升华
已知: H2(g)+Cl2(g)=2HCl(g) △H = —184.6 kJ/mol HCl(g) =1/2H2(g)+1/2Cl2(g) △H =+—92—.3—k—J/—mol
反映了“质、能、量”之间的辩证关系
PPT课件
11
2、盖斯定律的应用 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
PPT课件
22
能力提升已知下列各反应的焓变 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
①Ca(s)+C(s,石墨)+3/2O2(g)=CaCO3(s) △H1 = -1206.8 kJ/mol
②Ca(s)+1/2O2(g)=CaO(s) △H2= -635.1 kJ/mol
PPT课件
17
二.反应热的计算 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统 思考与讨论:
用盖斯定律解题的方法如何?
有哪些注意事项?
PPT课件
18
用盖斯定律解题的方法: 篮球比赛是根据运动队在规定的比赛时间里得分多少来决定胜负的,因此,篮球比赛的计时计分系统是一种得分类型的系统
(人教A版选择性必修第一册)高二化学同步精品课件讲义 第03讲 盖斯定律(PPT课件)
知识精讲
三、盖斯定律应热。如:
对于前面提到的反应:C(s) + O2(g) === CO(g) 虽然该反应的反应热无法直接测定,但下列两个 反应的反应热却可以直接测定:
C(s) + O2(g) === CO2(g) CO(g) + O2(g) === CO2(g)
盖斯定律的提出,为反应热的研究提供了极大的方便,使一些不易测准或无法测定的化学反应的反 应热可以通过推算间接求得。盖斯定律的提出要早于能量守恒定律的确认,因此,盖斯定律是化学热 力学发展的基础,至今仍有广泛的应用。
知识精讲
二、盖斯定律在生产和科学研究中的意义 有些反应,因为某些原因,导致反应热难以直接测定,如: (1)有些反应进行得很慢 (2)有些反应不容易直接发生 (3)有些反应的产品不纯(有副反应发生)
最早研究反应热的是法国化学家拉瓦锡和法国数学家、天文学家拉普拉斯(place, 1749―1827) , 他们利用冰量热计(即以被熔化了的冰的质量来计算热量)测定了碳单质的燃烧热,测得 的数值与现代精确测定值十分接近。1836年,盖斯受炼铁中热现象的启发,利用自己设计的量热计测 定了大量的反应热,并依据氨水、氢氧化钠、氢氧化钾、石灰分别与硫酸反应的反应热总结出了盖斯 定律。
知识精讲
应用盖斯定律时,如果每次都要将方程式进行加 减,很是费时费力,有无简便的方法?
知识精讲
归纳总结
①唯一入手(唯一:目标方程式中的物质,在给出的已知方程式中只出现一次) ②同加异减(目标方程式中的物质,与给定方程式中物质若在方程式等号的同侧,则加起来,反之, 则减去)
说明
如上述即时小练(2),目标方程式中的NH3只在③中出现一次,且“异”侧,则- 2×③,O2出现两次, 暂时不看,NO2(g) 和H2O同理。
《讲课盖斯定律》课件
结论
盖斯定律在实验条件下成立,对于理解化学反应的本质和预 测反应过程具有重要意义。实验结果有助于加深对化学反应 过程中能量变化规律的理解。
04
盖斯定律在科学中的应用
在化学反应中的应用
要点一
总结词
盖斯定律在化学反应中有着广泛的应用,它可以帮助我们 预测反应的焓变,从而更好地理解化学反应的本质和过程 。
详细描述
盖斯定律的重要性在于它提供了一种理解和计算热力学过程的方法。通过应用盖斯定律 ,我们可以将复杂的热力学过程简化为简单的能量变化,从而更方便地分析系统的热力 学性质。此外,盖斯定律还为能源转换和利用提供了理论基础,对于能源科学和工程领
域的发展具有重要意义。
02
盖斯定律的原理
盖斯定律的数学表达
探索盖斯定律在生命科学领域 中的应用,如生物体内的能量
转换和ห้องสมุดไป่ตู้谢过程等。
THANKS
感谢观看
盖斯定律定义了一个系统的热力学状态,即系统的内能、熵等状态函数,只取决于系统内部能量和熵的变化,而 与这些能量和熵是如何变化的无关。也就是说,只要系统的初态和终态相同,无论其变化过程如何,其热力学状 态都是一样的。
盖斯定律的发现和历史
总结词
盖斯定律是由苏格兰物理学家约翰·罗伯特·盖斯在19世纪提出的,它是热力学领域的一项重要发现。
03
盖斯定律的实验验证
实验目的和原理
目的
通过实验验证盖斯定律,了解化学反应的能量变化与反应路径无关,只与起始状 态和最终状态有关。
原理
盖斯定律指出,一个化学反应的焓变(ΔH)等于反应物和生成物的能量差。当 反应路径改变时,虽然反应过程中的能量变化不同,但最终的ΔH值保持不变。
实验步骤和操作
盖斯定律在实验条件下成立,对于理解化学反应的本质和预 测反应过程具有重要意义。实验结果有助于加深对化学反应 过程中能量变化规律的理解。
04
盖斯定律在科学中的应用
在化学反应中的应用
要点一
总结词
盖斯定律在化学反应中有着广泛的应用,它可以帮助我们 预测反应的焓变,从而更好地理解化学反应的本质和过程 。
详细描述
盖斯定律的重要性在于它提供了一种理解和计算热力学过程的方法。通过应用盖斯定律 ,我们可以将复杂的热力学过程简化为简单的能量变化,从而更方便地分析系统的热力 学性质。此外,盖斯定律还为能源转换和利用提供了理论基础,对于能源科学和工程领
域的发展具有重要意义。
02
盖斯定律的原理
盖斯定律的数学表达
探索盖斯定律在生命科学领域 中的应用,如生物体内的能量
转换和ห้องสมุดไป่ตู้谢过程等。
THANKS
感谢观看
盖斯定律定义了一个系统的热力学状态,即系统的内能、熵等状态函数,只取决于系统内部能量和熵的变化,而 与这些能量和熵是如何变化的无关。也就是说,只要系统的初态和终态相同,无论其变化过程如何,其热力学状 态都是一样的。
盖斯定律的发现和历史
总结词
盖斯定律是由苏格兰物理学家约翰·罗伯特·盖斯在19世纪提出的,它是热力学领域的一项重要发现。
03
盖斯定律的实验验证
实验目的和原理
目的
通过实验验证盖斯定律,了解化学反应的能量变化与反应路径无关,只与起始状 态和最终状态有关。
原理
盖斯定律指出,一个化学反应的焓变(ΔH)等于反应物和生成物的能量差。当 反应路径改变时,虽然反应过程中的能量变化不同,但最终的ΔH值保持不变。
实验步骤和操作
《盖斯定律及应用》课件
重要影响。
对可逆过程的依赖性
总结词
盖斯定律的应用依赖于可逆过程,但实 际反应往往难以达到可逆状态。
VS
详细描述
盖斯定律仅适用于可逆过程,但在实际反 应中,由于各种因素的限制,如反应动力 学、热力学ቤተ መጻሕፍቲ ባይዱ化学平衡等,反应很难完全 达到可逆状态。因此,在应用盖斯定律时 需要考虑这些因素的影响。
对热力学过程的依赖性
详细描述
盖斯定律表明,一个系统的热力学状态变化只取决于起始和 最终状态,而与变化过程中所经历的中间状态无关。这意味 着,通过不同的反应路径,可以达到相同的最终状态,这些 路径的热力学行为是等效的。
盖斯定律的发现与起源
总结词
盖斯定律由苏格兰物理学家和数学家詹姆斯·克拉克·盖斯于19世纪提出。
详细描述
盖斯定律的发展趋势与展望
盖斯定律的理论研究进展
盖斯定律基本原理的完善
随着理论物理学的发展,盖斯定律的基本原理得到进一 步明确和阐述,为相关领域的研究提供更坚实的理论基 础。
盖斯定律与其他理论的融合
盖斯定律与热力学、统计力学等理论相互渗透,形成更 广泛的理论体系,推动相关领域的发展。
盖斯定律在交叉学科中的应用
要点二
详细描述
盖斯定律在多个领域中具有重要意义。在化学反应计算中 ,盖斯定律可以用于计算不同反应路径的能量变化,有助 于理解化学反应的本质和过程。在能源利用方面,盖斯定 律有助于优化能源转换过程,提高能源利用效率。此外, 在环境保护领域,盖斯定律可以帮助我们更好地理解和控 制环境污染物的生成和转化过程。
总结词
盖斯定律的应用受到热力学过程的限制,不 适用于非热力学平衡过程。
详细描述
盖斯定律适用于等温、等压或绝热过程,但 不适用于非热力学平衡过程。在非平衡过程 中,化学反应的热效应不仅与反应途径有关 ,还与反应条件有关。因此,在应用盖斯定 律时需要确保所研究的反应过程符合热力学 的基本原理。
对可逆过程的依赖性
总结词
盖斯定律的应用依赖于可逆过程,但实 际反应往往难以达到可逆状态。
VS
详细描述
盖斯定律仅适用于可逆过程,但在实际反 应中,由于各种因素的限制,如反应动力 学、热力学ቤተ መጻሕፍቲ ባይዱ化学平衡等,反应很难完全 达到可逆状态。因此,在应用盖斯定律时 需要考虑这些因素的影响。
对热力学过程的依赖性
详细描述
盖斯定律表明,一个系统的热力学状态变化只取决于起始和 最终状态,而与变化过程中所经历的中间状态无关。这意味 着,通过不同的反应路径,可以达到相同的最终状态,这些 路径的热力学行为是等效的。
盖斯定律的发现与起源
总结词
盖斯定律由苏格兰物理学家和数学家詹姆斯·克拉克·盖斯于19世纪提出。
详细描述
盖斯定律的发展趋势与展望
盖斯定律的理论研究进展
盖斯定律基本原理的完善
随着理论物理学的发展,盖斯定律的基本原理得到进一 步明确和阐述,为相关领域的研究提供更坚实的理论基 础。
盖斯定律与其他理论的融合
盖斯定律与热力学、统计力学等理论相互渗透,形成更 广泛的理论体系,推动相关领域的发展。
盖斯定律在交叉学科中的应用
要点二
详细描述
盖斯定律在多个领域中具有重要意义。在化学反应计算中 ,盖斯定律可以用于计算不同反应路径的能量变化,有助 于理解化学反应的本质和过程。在能源利用方面,盖斯定 律有助于优化能源转换过程,提高能源利用效率。此外, 在环境保护领域,盖斯定律可以帮助我们更好地理解和控 制环境污染物的生成和转化过程。
总结词
盖斯定律的应用受到热力学过程的限制,不 适用于非热力学平衡过程。
详细描述
盖斯定律适用于等温、等压或绝热过程,但 不适用于非热力学平衡过程。在非平衡过程 中,化学反应的热效应不仅与反应途径有关 ,还与反应条件有关。因此,在应用盖斯定 律时需要确保所研究的反应过程符合热力学 的基本原理。
盖斯定律优质课人教课件
① H2(g)+1/2O2(g) = H2O (g) △H1
② H2(g)+1/2O2(g) = H2O (l) △H2
2.盖斯定律的应用
① H2(g)+1/2O2(g) = H2O (g)
2.盖斯定律的应用
2.盖斯定律的应用
如何得到C(s) + 1/2O2(g) = CO(g)的反应热?
(4)CH3COOH (aq) + NaOH (aq) =
B
氢气、一氧化碳、辛烷、甲烷的热化学方程式分别为:H2(g)+1/2O2(g)=H2O(l); △H=-285.8kJ/molCO(g)+1/2O2(g)=CO2(g); △H=-283.0kJ/molC8H18(l)+25/2O2(g)=8CO2(g)+9H2O(l); △H=-5518kJ/molCH4(g)+2O2(g)=CO2(g)+2H2O(l); △H=-890.3kJ/mol相同质量的氢气、一氧化碳、辛烷、甲烷完全燃烧时放出热量最少的是( ) A. H2(g) B. CO(g) C. C8H18(l) D. CH4(g)
A
盖斯定律的灵活应用
3.已知胆矾溶于水时溶液温度降低,A盖斯定律的灵活应用
已知H+ (aq) + OH- (aq) = H2O (l) ; △H=-57.3 kJ/mol 现有下列反应(1)H2SO4 (aq) + 2NaOH (aq) = Na2SO4 (aq) + H2O (l) ;(2)H2SO4 (aq) + 2BaOH (aq) = BaSO4(s)+ H2O (l) ;(3)HCl (aq) + NH3·H2O (aq) = NH4Cl (aq) + H2O (l) ;
② H2(g)+1/2O2(g) = H2O (l) △H2
2.盖斯定律的应用
① H2(g)+1/2O2(g) = H2O (g)
2.盖斯定律的应用
2.盖斯定律的应用
如何得到C(s) + 1/2O2(g) = CO(g)的反应热?
(4)CH3COOH (aq) + NaOH (aq) =
B
氢气、一氧化碳、辛烷、甲烷的热化学方程式分别为:H2(g)+1/2O2(g)=H2O(l); △H=-285.8kJ/molCO(g)+1/2O2(g)=CO2(g); △H=-283.0kJ/molC8H18(l)+25/2O2(g)=8CO2(g)+9H2O(l); △H=-5518kJ/molCH4(g)+2O2(g)=CO2(g)+2H2O(l); △H=-890.3kJ/mol相同质量的氢气、一氧化碳、辛烷、甲烷完全燃烧时放出热量最少的是( ) A. H2(g) B. CO(g) C. C8H18(l) D. CH4(g)
A
盖斯定律的灵活应用
3.已知胆矾溶于水时溶液温度降低,A盖斯定律的灵活应用
已知H+ (aq) + OH- (aq) = H2O (l) ; △H=-57.3 kJ/mol 现有下列反应(1)H2SO4 (aq) + 2NaOH (aq) = Na2SO4 (aq) + H2O (l) ;(2)H2SO4 (aq) + 2BaOH (aq) = BaSO4(s)+ H2O (l) ;(3)HCl (aq) + NH3·H2O (aq) = NH4Cl (aq) + H2O (l) ;
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。